

EV 化社会に向けたパワーエレクトロニクス用軟磁性材料研究

高耐食性ナノ結晶合金のコンビナトリアル合成

山 崎 貴 大*

1. はじめに

高い飽和磁東密度 (B_s)や低い磁気損失を兼ね備えたナノ 結晶軟磁性材料は、モータやトランス、電源などのエネルギ ー関連産業機器への応用に加え、近年では GHz オーダーの 高周波帯域での利用拡大が期待されている⁽¹⁾⁽²⁾.特に、 Fe系ナノ結晶 FeSiBPCu (NANOMET[®])合金⁽³⁾は、 FeSiBNbCu(FINEMET[®])合金⁽⁴⁾や他の合金系⁽⁵⁾⁽⁶⁾よりも高 い $B_s c = z = 2$ がメリットとして挙げられる.さらに近年 では、NANOMET をベースとした FeCoSiBPCu、FeNiSiB-PCu、FeSiBPCCu などの様々な多元系 NANOMET 系合金 が開発され、ナノ結晶材料としての要求特性である磁気機能 やアモルファス形成能、熱安定性の向上などが報告されてい る⁽⁷⁾⁻⁽⁹⁾.

ナノ結晶軟磁性材料に関する基礎研究では、その取扱いの 容易さから主にリボン材が使用されるが、高周波用デバイス への応用はその低渦電流損の性質から磁性粉体が利用される.

NANOMET[®] 粉体は,水アトマイズ法を用いて製造され, 様々な形状への適用可能なネットシェイプ成形や,高周波で 動作する通信機器用の磁心材料へ適用されている⁽¹⁰⁾⁽¹¹⁾.水 アトマイズ法は溶融金属に高圧水を噴射し,霧化急速冷却に より微細な金属粉体を製造する手法である.しかし,溶融金 属が水と接触する際に生じる酸化や腐食が原因で,アモルフ ァス合金粉体におけるアモルファス形成能や磁気性能が劣化 してしまうという問題を有する.これらを防ぐためには,防 錆効果を有する元素添加や構成元素の再調整による原料自体 の耐食性の向上が必要となる.

組成改良による耐食性向上に関する先行研究として、金属

バルクガラスへの元素添加に関する研究がいくつか報告され ている⁽¹²⁾⁻⁽¹⁵⁾.例えば、Ni添加はガラス自体の耐食性を大 きく向上させるものの, Bsも大幅に減少してしまう. さら には、Ni 元素の存在により、面心立方(fcc)-Fe 相が析出し やすくなることに加え、炭素の存在下でNi含有量が4-5 at%以上になるとアモルファス形成能が急激に低下すること が報告される(16).一方で、一般に合金の耐食性向上に寄与 するとされる Cr, Nb, Mo, Si などの防錆元素のアモルフ ァス金属への添加効果については、今回想定している高温高 湿下での腐食挙動については十分に明らかになっていない. また,これらの元素は非磁性であるため,添加に伴い Bs が 低下してしまうという懸念点も残る.このように,磁気性能 と耐食性はトレードオフの関係を有することから、添加元素 の選定と濃度の最適設計が重要な課題であることがわかる. しかし、膨大な数の元素候補の中から、耐食性向上を実現す る適切な元素と適切な添加量を決定するには、従来の逐次手 法では限界がある.また、これらの元素の共添加による防錆 効果のメカニズムについてもあまり報告されていない.

本稿では、ナノ結晶合金の前駆体であるアモルファス合金 の耐食性向上に向けた最近の取り組みを紹介し、コンビナト リアル合成と高温高湿試験を組み合わせたナノ結晶合金探索 に関する課題と研究成果について述べる.本稿で紹介する研 究は、筆者の前籍におけるナノ結晶合金を開発する企業との 共同研究により得られた研究成果⁽¹⁹⁾の一部であり、筆者の これまでの軟磁性材料研究に関連して、まてりあに寄稿する 機会を頂戴した.この場をお借りして関係の先生方に心より 御礼申し上げます.

集

^{*} 東京理科大学研究推進機構総合研究院; 嘱託助教(〒125-8585 東京都葛飾区新宿 6-3-1)

Combinatorial Evaluation of Nanocrystalline FeSiBPCuC Soft Magnetic Alloys with Enhanced Corrosion Resistance; Takahiro Yamazaki (Research Institute for Science and Technology, Tokyo University of Science, Tokyo) Keywords: nanocrystalline soft magnetic alloys, corrosion resistance, combinatorial sputtering, thin film, high-temperature/high-humidity test

Reywords: *manorystatime soft magnetic andys, corrosion resistance, combinatorial spatiering, thin film, mgn-temperature/mgn-numulity test* 2023年4月28日[doi:10.2320/materia.62.600]

2. コンビナトリアルスパッタ成膜

(1) コンビナトリアル成膜プロセス

アモルファス合金薄膜に添加する防錆元素を高効率にスク リーニングするコンビナトリアル成膜プロセスを提案し,高 温高湿環境下での高耐食性を持つFeSiBPCCuアモルファス 薄膜の組成最適化に向けた実験手法を検討する.コンビナト リアルスパッタ成膜とは,マグネトロンスパッタリング法を 利用し,単一の基板上に組成が連続的に変化したサンプル群 (組成傾斜膜)を一括成膜する手法である.筆者らの研究グル ープは,金属ガラスや磁歪材料などの機能性材料の開発やハ イスループット評価のため,組成傾斜膜のコンビナトリアル 合成を実施してきた⁽¹⁷⁾⁻⁽¹⁹⁾.本稿で紹介する研究では, FeSiBPCCu合金に0-10 at%程度のNi元素および微少量の Nb, Mo, Si 売素を共添加した組成傾斜膜を製膜し,その耐 食性への影響を高温高湿試験により評価した.

FeSiBPCCu 組成傾斜膜は,図1に示すようなRFマグネ トロンスパッタリングシステム(SP-3500; Sanvac Co.Ltd.) を用いて作製した.Arガス圧1.0Pa,ベース圧力(<5.0× 10⁻⁴Pa)の条件下で、3つのターゲット;FeSiBPCCu,Ni, Nb/Mo/Siの同時スパッタリングを実施した.この際,基板 温度は室温で、マスクで覆われたカソードに対して基板を貼 り付けたステージが回転することにより、ステージ半径方向 に組成傾斜を有する薄膜が作製された.

ターゲットに用いた FeSiBPCCu 合金および成膜した FeSiBPCCu アモルファス薄膜の組成は,誘導結合プラズマ 質量分析法(ICP-MS),炭素/硫黄(CS)分析器,酸素/窒素 (NO)分析器により,ほぼ同一組成であることを確認した (表1).FeSiBPCCu 系組成傾斜膜は,50×50 mm²のアル ミナ基板上に成膜した.その後,組成傾斜方向に10 mm 幅 で切り欠きを入れることで,1 枚の組成傾斜膜から5 つのサ ンプルを取得し,以下の評価を実施した.

(2) 膜評価

NANOMET 組成をベースとして Ni および Nb, Mo, Si

図1 コンビナトリアル成膜プロセスのためのスパッタリン グ装置の構成図.(オンラインカラー)

表1 今回使用したターゲットおよび成膜したアモルファス膜 の化学組成.

Sample, at%	Fe	Si	В	Р	Cu	С	0	Total
Target Thin film	81.8 82.5	$\begin{array}{c} 0.5 \\ 0.5 \end{array}$	13.3 13.3	$\begin{array}{c} 1.0\\ 1.0\end{array}$	$\begin{array}{c} 0.7 \\ 0.7 \end{array}$	$^{2.1}_{-}$	0.5	99.9 100

図2 コンビナトリアル成膜により取得した(a) Ni-Nb, (b) Ni-Mo, (c) Ni-Si 添加した FeSiBPCCu 合金組成.

を含む3種類の組成傾斜膜をコンビナトリアルスパッタ成 膜で合成した. 膜の厚さは 750 ± 80 nm で, FeSiBPCCu-Ni-Nb, FeSiBPCCu-Ni-Mo, FeSiBPCCu-Ni-Si 薄膜の19 枚(それぞれ6枚,7枚,6枚)の組成傾斜膜を成膜した.そ れらの切り欠きにより95個の単一サンプルを取得した.し かし、その中で組成誤差が0.25 at%以内のものは排除し、 最終的に78個のサンプルを本研究に使用した. これらのサ ンプルについて,以下の評価を行った. 膜厚は白色光干渉計 (Nikon Corp., BW-S507)を用いて測定し、構成元素の組成 濃度は, 走査電子顕微鏡(SEM; TM3030Plus, Hitachi High-Tech Corp.)およびエネルギー分散型 X 線分析法(EDS)で5 回ずつ測定した結果を平均化して、0.25 at%の範囲で定量 分析した.図2に今回作製した元素添加 NANOMET 薄膜 の組成分布を示す.このように、一部組成の偏りはあるもの の、網羅的に所望組成の薄膜が成膜できていることが確認で きる.

(3) FeSiBPCCu アモルファス合金の膜評価

コンビナトリアルスパッタ成膜で作った薄膜がリボン材と 同様なナノ結晶化挙動を示すのか確認する必要があるため, まずはこれらの基礎特性を無添加材で比較検証を行った.図 3は,高真空スパッタしたアモルファス FeSiBPCCu 薄膜と アニール薄膜のX線回折(XRD)パターンを示し,ロールク

図3 FeSiBPCCu 合金のリボン材および成膜した薄膜試料の (a) XRD 測定と(b) DSC 解析の結果.(オンラインカラー)

エンチによる FeSiBPCCu リボン材の XRD パターンと比較 している.スパッタ膜の基板には、構造・組成分析への影響 がないことを考慮し、Al 箔を選定した. XRD パターンは、 Cu-Kα線源とD/teX Ultra 1D シリコンストリップ検出器 を備えたX線回折装置(Rigaku, MiniFlex600)を用いて 0.01°ステップサイズで取得した.FeSiBPCCu 薄膜の XRD パターンから、リボンと一致するアモルファス構造を示すブ ロードパターンが観察された.図3(b)の示差走査熱量計 (DSC)曲線から、薄膜とリボンの第一結晶化温度(T_{x1})と第 二結晶化温度(T_{x2})が決定される.FeSiBPCCu薄膜の相転 移は, 熱示差走査熱量測定(DSC8500; PerkinElmer Inc.)を 用いて, Ar 雰囲気下, 試料を 0.67 K/s の昇温速度で測定し た. DSC 分析は, 質量 10.0 mg の剥離した薄膜フレークに 対して行われた. 薄膜の T_{x1}は 700 K 以下であり, リボン よりも低い温度でナノ結晶化が起こることが示された. ま た, 薄膜の T_{x2} はリボンの T_{x2} よりも 27 K 低かった.

アモルファス膜とリボン材の結晶化温度 $T_{x1} \ge T_{x2}$ の違い は、スパッタ後の内部応力に起因すると推測される.この内 部応力は、非晶質相から結晶質相への相変態の駆動力の元と なり、ナノ結晶の析出が促進される.これまでの研究から、

図4 (a) 成膜した薄膜サンプルの熱処理後の TEM 画像.ナ ノ結晶を視野に撮像した(b) 電子回折像および(c) ナノ 結晶の頻度分布.(オンラインカラー)

アモルファス合金は圧縮応力下でアモルファスから結晶への 相転移が起こることが示されており、内部応力が FeSiBPCCu薄膜のナノ結晶化を促進し、 T_{x1} が低温側にシ フトすることを説明できる⁽²⁰⁾. T_{x2} 値はリボンとほぼ同じ であった理由は、薄膜の内部応力が構造緩和により773 K 以上の温度で解放されるためであると考えられる.

さらに,透過型電子顕微鏡(TEM)を用いて FeSiBPCCu アモルファス膜の熱処理後の組織観察を行った結果, bcc-Fe ナノ結晶が残留アモルファス相中に分散している様子を 確認できた(図4). このナノ結晶の粒径は,頻度分布から平 均直径は9.1 nm であることが判明した. この平均直径や分 布は熱処理条件により左右される.

さらに、走査型電子顕微鏡(SEM)観察により、薄膜はス パッタリング金属クラスターに起因して、結晶粒が面直方向 に伸びたような柱状構造であることが明らかになった(図5 (a)(b)).この結果は、RFマグネトロンスパッタリングに 関する過去の研究と一致する⁽²¹⁾.さらに、Amanoらは、マ グネトロンスパッタリング法により形成されたFeNbBP薄 膜が、シングルローラーのメルトスピニング法によって生成 されたリボンとほぼ同じアモルファス構造を形成する傾向を 示すことを実証している⁽²²⁾.

以上より,無添加 NANOMET 合金の各種膜特性はリボ ン材と比較して,第1結晶化温度がわずかに低いものの, 合金組成やナノ結晶の構造,形態に大きな違いはないことを 確認できた.そのため,NANOMET 合金組成探索に関し て,コンビナトリアルスパッタ成膜による本手法の妥当性は 担保できるものと考えられる.

3. アモルファス合金膜の耐食性評価

(1) 高温高湿試験

NANOMET 前駆体のアモルファス合金膜の耐食性を加速 的に評価するため,水アトマイズ法の環境を模倣した高温高 湿試験を実施した.高温高湿度下で腐食挙動を観察すること

図5 高温高湿試験前後のアモルファス合金膜の(a) 断面および(b),(c)表面におけるSEM 画像. 黄色の領域で示されたさびのコロニーが観察される.(オンラインカラー)

で、腐食速度を増大させた疑似環境を再現できる.本手法お よび測定条件は、水アトマイズ工程に近い環境で耐食性試験 が可能であり、大面積の薄膜試料に対して電極が不要なハイ スループット評価が可能であることから選定された.

腐食試験の前処理として,試料表面に結露を防ぐために 333 K オーブンで30分間予備加熱を行った.その後,試料を オーブンから取り出し,高温(358 K)・高湿度(85% RH)チ ャンバーで1000時間保持し,最後に333 K オーブンで30分 間再加熱を行った.本試験は,ESPEC 社製の環境チャンバ ー(PH-2K)を用いて実施された.高温高湿試験前後の FeSiBPCCu 薄膜の表面構造を電界放出型走査電子顕微鏡 (FE-SEM; SU-8230, Hitachi High-Tech Corp.)で観察し た.二次電子イメージング(SEI)によりトポグラフィー像を 得て,後方散乱電子イメージング(BEI)で試料の組成情報を 取得した(図5(c)).続いて,光学顕微鏡(VHX-7000, KEYENCE 社製)を用いて表面生成物のデジタル画像を取得 し,そのさび面積を算出した.さび面積は,試験後に収集し た各試験片の2値化像から,平均化された表面積比を定量 的に算出した.

(2) 耐食性に及ぼす添加元素の効果

FeSiBPCCu-Ni-(Nb, Mo, Si)薄膜表面において,部分的 なさびの生成が確認された.図5(c)は高温高湿試験後にお ける薄膜表面の典型的なSEM 画像であり,さびの核生成と 広範囲なコロニーの形成が明らかになった.図6には,

図6 高温高湿試験後に観察されたさび面積の添加元素依存 性とその時に観察されたアモルファス膜表面のさびの 光学顕微鏡写真.(オンラインカラー)

FeSiBPCCu – Ni – Nb お よ び FeSiBPCCu – Ni – Mo, FeSiBPCCu–Ni–Si アモルファス薄膜の各添加組成を軸とし たプロットでさび面積を示している.特に,このカラーマッ プは,総点増加係数1000,平滑化パラメータ0.001にて補間 と外挿で埋めてスムージング処理したものである.

まず,Ni添加効果について,2at%以上のNiを添加する と,耐食性が大幅に向上した.光学顕微鏡を用いて観察した 薄膜表面のさびの様子を確認すると,Niが少ない領域で は,赤茶色のさびが生成され,Niが多い領域ではさびの生 成が確認できず,青白い不働態膜が確認された.先行研究に よれば,Ni添加が保護的なさび層(NiFe₂O₄)の形成を促進 し,耐食性を向上させることが示唆されている⁽²³⁾. FeSiBPCCuスパッタ前駆体におけるさび層は,主にFe酸 化物で構成されていると推測される.一方,多量のNi(>2 at%)が薄膜中に存在する場合,耐食性が向上することが示 された.これは,腐食による生成物層全体がNi酸化物で構 成されるためであると考えられる.

次に,Nb添加効果について,耐食性の向上を確認するためには,3at%以上のNb添加が必要であり,その効果はあまり大きくない.先行研究⁽²⁴⁾によるFe系金属ガラスへのNb添加においても添加量4at.で最大の防錆効果を確認していることから,本研究での結果は妥当であるといえる.

一方, Mo 添加効果については, Nb よりも少ない添加量 1-2 at%において, 優れた耐食性が得られた. 金属合金の耐 食性に及ぼす Mo のメカニズムについては議論がある⁽²⁵⁾が, Mo 元素が酸化に対してより良い保護を与える層を形成する 傾向があることと推察される.

最後に, Si の添加効果について, 添加量3at%付近でわ ずかに耐食性向上が確認できるものの, 添加量が大きくなる につれて, 耐食性が劣化していくことが判明した. また, Ni との共添加によるシナジー効果として, Ni と Si がともに 2 at%付近においてもっと少ない添加量で耐食性が向上した といえる.

以上より、本研究で試みた添加元素の中では、NiとMo を含むNANOMETアモルファス薄膜において、もっとも 優れた耐食性を示した.本研究の結果は、最適な添加元素を 決定することで耐食性を向上させ、 $B_{\rm S}$ の減少の直接的な原 因であるNiの使用量の減少に寄与する高 $B_{\rm S}$ を有する NANOMET系合金の設計に重要な情報を提供することが期 待される.本研究では、合金の形態としてリボンや粉体が薄 膜と同じ傾向が示すと仮定しているため、今後の研究でこれ らの耐食性に及ぼす添加効果を比較検証する必要がある.

4. 高耐食性ナノ結晶合金の構造評価・磁気特性

最後に、今回作製したアモルファス合金膜のうち、特に 高耐食性を示す(FeSiBPCCu)_{95.5}Ni_{4.0}Nb_{0.5}および (FeSiBPCCu)_{97.0}Ni_{2.0}Mo_{1.0}に対し、従来の無添加NANO-METリボン材と比較して、磁気軟性とナノ結晶化挙動を検 討した. $1 \times 1 \text{ mm}^2$ のSi(001)基板上に、各薄膜をマスク無 しスパッタリング法により同一組成膜として成膜した.自動 保磁力計(K-HC1000、東北電機株式会社)を用い、保磁力を 評価した(図7).最大印加磁場は150 kA/m で測定した.飽 和磁束密度の評価には、成膜領域の僅かな違いが影響を及ぼ すため、本研究では保磁力のみの報告とし、 B_S 変化につい ては別の機会で報告したい.

保磁力測定の結果,いずれの薄膜についても673 K付近 でアニールされたサンプルが最も低い H_c 値を示した. FeSiBPCCuリボン材およびNb添加薄膜,Mo添加薄膜の Hcは,それぞれ7,26,67A/mであった.これらの結果 から,NiおよびNb/Moの添加レベルの増加と膜厚の増加 が, H_c の悪化に寄与していることと考えられる.これまで の研究では,NiまたはNb/Mo置換による H_c の劣化が確認 されている⁽²⁶⁾⁽²⁷⁾.最も低い H_c を示すFeSiBPCCu-Ni-(Nb,Mo)薄膜の熱処理温度は,FeSiBPCCuリボンのそれ

 図 7 共添加後の FeSiBPCCu 合金薄膜とリボン材の保磁力の 比較結果.(オンラインカラー)

図 8 共添加後の FeSiBPCCu 合金薄膜の XRD パターン. (オンラインカラー)

よりも低い温度にシフトしていることがわかった.最適なア ニール温度の差は,DSC 曲線で観察された温度シフトとほ ぼ同じであり,主に薄膜の残留応力に起因すると考えられ る.このように,磁気特性は若干悪化しているものの,微量 元素の添加によって,ナノ結晶/アモルファス構造が不均一 な薄膜で高い耐食性を示す可能性があることが明らかとなっ た.

図8に示すのは、上記薄膜のXRDパターンである.この 薄膜は573-873Kで10分間アニールされ、最大アニールレ ートは40K/minであった.α-Feのナノ結晶化は約623K で始まり、Fe_xM(M=B, P, C)化合物は823K以上で生成し た.アニールされた薄膜は、リボン材とほぼ同じナノ結晶化 挙動を示した.本研究で調査した添加元素の腐食挙動と耐食 性向上のためのシナジー効果を明らかにするためには、さら なる研究が必要である.本研究で得られた知見は、高性能な Fe系ナノ結晶軟磁性合金の大規模生産と長期利用への道を 拓くものであり、様々な産業応用に貢献できる.

5. おわりに

本稿では、高耐食性を有するナノ結晶合金 FeSiBPCCu の 創製に向けて、コンビナトリアル合成と高温高湿試験を組み 合わせた耐食性評価法を紹介した.Ni,Nb,Mo,Si元素 の添加がアモルファス合金膜の耐食性に与える影響を明らか にし、効率的なナノ結晶合金探索が期待できることを示唆し た.今後の課題として、酸化被膜や腐食後生成物の特定、共 添加による腐食メカニズムの解明が挙げられる.

ナノ結晶軟磁性材料の研究開発には、磁気特性以外にもア モルファス形成能,熱安定性,機械的脆性など多面的な評価 が必要であり、従来の逐次的評価手法では現実的ではない. 網羅的・効率的な評価手法の提案が引き続き重要な研究課題 となる.本研究は、コンビナトリアルスパッタリング法によ るスクリーニングを通じて耐食性向上を目指す Fe 系ナノ結 晶合金開発に貢献し、エネルギー関連産業や環境負荷低減に 寄与する新しい軟磁性材料の創出への貢献が期待できる.

文 献

- (1) M. Ohta and Y. Yoshizawa: J. Phys. D: Appl. Phys., 44(2011), 064004.
- (2) C. Jiang, X. Li, S. S. Ghosh, H. Zhao, Y. Shen and T. Long: IEEE Trans. Power Electronics 35(2020), 10821–10830.
- (3) A. Makino, H. Men, T. Kubota, K. Yubuta and A. Inoue: IEEE Trans. Magn., 45 (2009), 4302–4305.
- (4) Y. Yoshizawa, S. Oguma and K. Yamauchi: J. Magn. Magn. Mater., 401(2016), 479–483.
- (5) K. Suzuki, A. Makino, N. Kataoka, A. Inoue and T. Masumoto: Mater. Trans. JIM, 32(1991), 93–102.
- (6) M. A. Willard, D. E. Laughlin, M. E. McHenry, D. Thoma, K. Sickafus, J. O. Cross and V. G. Harris: J. Appl. Phys., 84 (1998), 6773–6777.
- (7) T. Liu, F. Kong, L. Xie, A. Wang, C. Chang, X. Wang and C. T. Liu: J. Magn. Magn. Mater., 441(2017), 174–179.
- (8) E. Dastanpour, M. H. Enayati, A. Masood and V. Strom: J. Alloys Compd., 815 (2021), 156727.
- (9) K. Takenaka, A. D. Setyawan, P. Sharma, N. Nishiyama and A. Makino: J. Magn. Magn. Mater., 401 (2016), 479–483.
- (10) K. Yoshida, M. Bito, J. Kageyama and Y. Shimizu, M. Abe and

A. Makino: AIP Adv., 65(2016), 055933.

- (11) J. Luan, P. Sharma, N. Yodoshi, Y. Zhang and A. Makino: AIP Adv., 65 (2016), 055934.
- (12) X. Jia, Y. Li, H. Wang, G. Xie, S. Yamaura and W. Zhang: Phys. B, 476 (2015), 141–146.
- (13) J. Jayaraj, Y. C. Kim, K. B. Kim, H. K. Seok and E. Fleury: J. Alloys Compd., 434 (2007), 237–239.
- (14) S. Pang, T. Zhang, K. Asami and A. Inoue: J. Mater. Res., 17 (2002), 701–704.
- (15) H. Zohdi, H. R. Shahverdi and S. M. M. Hadavi: Electrochem. Commun., **13**(2011), 840–843.
- (16) H. Okamoto and T. B. Massalski: ASM International, Materials Park, OH, USA, (1990).
- (17) R. Yamauchi, S. Hata, J. Sakurai and A. Shimokohbe: Jpn. J. Appl. Phys., 45 (2006), 5911.
- (18) Y. Aono, J. Sakurai, A. Shimokohbe and S. Hata: Jpn. J. Appl. Phys., 50(2011), 055601.
- (19) T. Yamazaki, T. Tomita, K. Uji, H. Kuwata, K. Sano, C. Oka, J. Sakurai and S. Hata: J. Non. Cryst. Solids, 563(2021), 120808.
- (20) B. Varga, A. Lovas, F. Ye, X. J. Gu and K. Lu: Mater. Sci. Eng. A, 286 (2000), 193–196.
- (21) H. N. Shah, R. Jayaganthan and D. Kaur: Mater. Chem. Phys., 121 (2010), 567–571.
- (22) H. Amano, A. Hasegawa, K. Ara, K. Horino and H. Matsumoto: AIP Adv., 93 (2019), 035027.
- (23) H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz and D. de la Fuente: Corros. Sci., 87 (2014), 438–451.
- (24) H. Zohdi, H. R. Shahverdi and S. M. M. Hadavi: Electrochem. Commun., 13(2011), 840–843.
- (25) S. Pang, T. Zhang, K. Asami and A. Inoue: J. Mater. Res., 17 (2002), 701–704.
- (26) X. B. Zhai, Y. G. Wang, L. Zhu, H. Zheng, Y. D. Dai, J. K. Chen and F. M. Pan: J. Magn. Magn. Mater., 480(2019), 47– 52.
- (27) L. Wu, Y. Li, K. Yubuta, A. He, Y. Zhang and W. Zhang: J. Magn. Magn. Mater., 497 (2020), 166001.

★★★★★★★★★★★★★★★★★★★★★★★★★★★★

2019年 横浜国立大学大学院工学府博士後期課程修了 2019年4月-2022年3月 名古屋大学工学研究院日本 学術振興会特別研究員 PD

2021年3月-2022年3月 米国メリーランド大学客員 研究員

2022年4月-現職

- 専門分野: 軟磁性材料, 磁気物理, 機械学習 ◎磁歪合金やナノ結晶合金を中心とする軟磁性材料の 創製や磁気機能解析, マイクロ磁気シミュレーショ
 - ンに関する研究に従事.
