永久磁石の保磁力メカニズム 第3回 原子描像のアプローチ

前回まで(1)(2)に見てきたように、工学的に信頼できる保磁 力の正確な理論予測のためには、有限のエネルギー障壁を熱 活性化過程で乗り越えるといった、熱揺らぎの効果を取り込 んだ取り扱いが必要である.材料を連続的な媒体とみなして 磁気物性値を温度と位置の関数として表現する議論では結晶 粒界や結晶表面の原子配列の乱れなどの効果を直接取り扱う ことができない.結晶や粒界の元素配列に基づいた磁性の第 一原理計算に基づいて、局所の磁化を構成する原子各個の磁 気モーメントの熱運動を取り扱うことのできる、原子描像の アプローチが必要である.このアプローチには、有限の大き さの結晶モデルに配置した全ての原子磁気モーメントの磁化 反転過程のダイナミクスを直接計算する方法と、それら多数 の原子磁気モーメントの統計的な挙動を確率論によって計算 し、有限温度で磁化反転核が生成するプロセスの自由エネル ギー障壁を計算する方法があり、両者の結果を比較すること で,その整合性が検証されている.本講座の最終回はそのよ うな原子描像のアプローチを紹介し、それらが示唆するとこ ろに基づいて、熱揺らぎの効果から磁石の高温特性を守るた めに考慮すべき点について考察する.

入門講座

原子描像の考え方

前回までに、マイクロマグネティックスの基本的な定式化 で使われている連続体描像の範囲では取り扱えない、原子尺 度のミクロな視点で議論するべき課題があることを指摘して きた.最近,有限温度での実際の磁化過程を個々の原子の磁 化の運動を考えて磁化反転過程を記述するという立場の研究 が進歩を遂げている.最近の総合的な文献としては、宮下清 二らのレビュー(オープンアクセス)⁽³⁾⁽⁴⁾がある.最近,本学 会誌にも西野正理の解説⁽⁵⁾が掲載された.本稿ではこの考え 広 沢 哲*

方を原子描像のマイクロマグネティックスと呼ぶことにする.

原子描像のマイクロマグネティックスを用いて有限温度の 保磁力を扱う方法の概要を図17に示す.大きく分けて,系の 熱平衡状態の物理量をモンテカルロ法により計算する方法 と,エネルギーをその原子磁気モーメントに働く有効磁界と して表現してその下での磁気モーメントの運動を熱揺動の効 果を入れた確率的ランダウ・リフシッツ・ギルバード (SLLG)方程式を使って計算する方法とがある.原子磁気モ ーメントのエネルギーを原子磁気モーメント間の交換結合と 双極子相互作用のエネルギー,および,結晶磁気異方性エネ ルギー等の和として表現する点は両者とも共通である.前者 では磁気モーメントや磁壁のエネルギー,磁化反転核のエネ ルギーなどが計算でき,後者では磁化反転の時間発展過程を 直接計算し,磁化反転核が生成する様子を視覚化したり,平 均の緩和時間を求めたりすることができる.実際にそのよう なダイナミクスの計算ができるのは最近のコンピュータでも

* 物質・材料研究機構;特別研究員(〒305-0047 つくば市千現 1-2-1)

Mechanisms of Coercivity of Permanent Magnets : 3. Atomistic Approaches; Satoshi Hirosawa*(* Materials Open Platform for Permanent Magnets, National Institute for Materials Science, Tsukuba)

Keywords: spin magnetic moment, atomic spin, micromagnetics, finite temperature, Monte–Carlo method, stochastic LLG, thermal fluctuations, microstructure

2022年12月19日受理[doi:10.2320/materia.62.470]

1ナノ秒以下の時間領域にしか過ぎず,取り扱うモデルの空間サイズは数十nm径の小ささという制約があるが,物理的根拠が明確な第一原理計算の情報と温度の効果を入れて物理的な洞察を助けるという点に大きな意義がある.

原子描像のマイクロマグネティックスの連続体描像にない 利点は,結晶構造とその格子点に入る原子種を決めれば,第 一原理計算を使って非経験的にエネルギーの計算をすること が原理的に可能であり,磁化反転に関与する微小な領域の磁 化や結晶磁気異方性といった物性の測定値や,恣意的なパラ メータを用いることなく磁化反転過程を取り扱うことが,原 理的にできる点にある.さらに,熱揺らぎの効果を直接取り 扱うことができる点は原子描像の最大の利点であろう.特 に,磁化反転核の生成に局所的な磁気モーメントの熱揺らぎ がどのように拡大して反転核の生成に至るかを調べるには, 実際に熱揺動を入れたダイナミクスをシミュレートしてスナ ップショットとして画像化してみるのが直接的である.熱揺 動の影響はその効果を表す時間的にランダムに方位を変える 磁場成分として表現される.最近の研究を紹介しつつ両者の 関係がどうなっているかも見てみよう.

10. 原子描像による磁気物性値の熱平衡値

本講座の初回冒頭の問題提起の一つは、従来の保磁力の議 論では有限温度での保磁力を原子レベルの組織構造と関連付 けることができていなかったという点であった.Nd-Fe-B 磁石のブロッホ型の磁壁幅は約4.2 nm であるのに対して、 Nd₂Fe₁₄Bの結晶格子の単位胞は *a* 軸方向が約0.88 nm, *c* 軸 が約1.221 nm である.磁壁の厚み方向は単位胞およそ5 個 分しかない.これはすでに個々の原子の挙動を離散的に取り 扱うべき領域ではないのか、といったことを議論した.

磁化反転過程を記述するためのエネルギー式には少なくと も結晶格子に置いたスピン間の交換結合 J_{ij}^{ex} と各サイトの結 晶磁気異方性,一様な外部磁界とスピン磁気モーメントとの 静磁気相互作用が含まれる.例えば $Nd_2Fe_{14}B(218(a))$ は単 位胞に68個の原子を含み,磁壁幅よりも十分大きい一辺お よそ10 nm の立方体の磁化反転を調べるには,11×11×8= 968個のユニットセル(約9.68 nm×9.68 nm×9.76 nm)に含 まれる65,824個の原子スピンを扱う必要がある(Bにも小さ いが磁気分極があるので数に入れる). これらの原子スピン 間全ての交換結合定数 *J*^{ex} の個数は膨大であるが,文献(6) にスピン成分との積の数表が提供されている.図18(b)にグ ラフ化したものを示す. 遍歴電子系の磁性体なので,スピン 対間の交換エネルギーが遠距離まで有限の値を持つことが分 かる.

− 栂裕太ら⁽⁷⁾が行った計算では、希土類イオンの結晶磁気異 方性は結晶場モデルを使って記述し、遷移金属原子の*i*サイトでの磁気異方性エネルギー、希土類イオンの*i*サイトでの 結晶磁気異方性エネルギーで表記して、

$$\mathcal{H} = -2\sum_{i < j} S_i J_{ij}^{\text{ex}} S_j \boldsymbol{e}_i \cdot \boldsymbol{e}_j - \mu_0 \sum_i m_i \boldsymbol{e}_i \cdot \boldsymbol{H}_{\text{ext}} - \sum_{i \in TM} D_i^A (\boldsymbol{e}_i^z)^2$$

$$+\sum_{i\in RE}\sum_{l=2,4,6}\theta_l^{j_i}A_{l,i}^m\langle r^l\rangle_i\hat{O}_{l,i}^{m_l} \tag{30}$$

と書き表している.右辺は第1項から順に,交換相互作 用,印加磁界による静磁気エネルギー,鉄サイトの磁気異方 性,希土類サイトの磁気異方性のそれぞれの全サイトにわた る和である. e_i はサイトiのスピンの方位ベクトル, D_i^A は サイト i の微視的な磁気異方性定数である.右辺第4項の希 土類サイトの4f電子の磁気異方性は孤立した3価イオンの 結晶場理論に従って記述されており、 0¹は電荷分布の球対 称性からのずれを表すスティーブンス因子, $A^{m}_{l,i}$ と $\hat{O}^{m}_{l,i}$ は結 晶場係数とスティーブンス演算子、 $\langle r \rangle_i$ は4f電子の空間分 布である. 各項の指数(l,m)は各サイト(i)の結晶場ポテン シャルを球面調和関数 Y"で表現する際の係数の指数であ る. 各原子の磁化 *m*_iは Fe と B についてはスピン磁気モー メントであり,希土類原子については 4f 電子以外のスピン 磁気モーメントと結晶場理論に従って求められる 4f 電子の 磁気モーメントとの和である.また,原子スピン間の双極子 相互作用は、取り扱うモデルのサイズが数十nm まででは交 換相互作用と比較して小さいので,無視されている.

栂らは Nd₂Fe₁₄B の磁性について希土類サイトの磁気異方 性を除いて第一原理計算によって各原子サイトの磁気パラメ ータを決定し,結晶場パラメータは磁化困難方向の磁化曲線

図18 Nd₂Fe₁₄Bの結晶構造(単位胞)とサイト i-j間の交換結合エネルギーの原子間(d)距離依存性⁽⁶⁾.(オンラインカラー)

図19 Nd₂Fe₁₄B におけるブロッホ磁壁のモンテカルロシミュ レーション結果⁽⁸⁾. 横軸を磁壁中心からの距離(a 軸長 (d_a)単位),縦軸を磁化のz成分(M_z)(a) Ex-y 成分の自 乗平均値の平方根(M_{xy})(b) Eした場合のモンテカルロ シミュレーションにおける熱平衡状態のスナップショッ ト(複数回の重ね合わせ). この表現での磁壁の関数形は 磁化の回転角で表現した場合とは異なっている点に注意. Reused under the Creative Commons Attribution 4.0 International license from Ref. (8). (オンラインカラー)

を再現するように決められた数値を用いて,最大6×6×6= 216ユニットセル(14,688原子)のモデルに対して,磁化の温 度変化,磁化曲線,および,結晶磁気異方性の温度変化を計 算し,Nd₂Fe₁₄Bの磁性について測定結果をほぼ再現できる ことを示した.キュリー温度については,スピン間交換結合 のカットオフ半径に強く依存するうえ,計算値が実験値より 数百K高温側にずれている.しかし,このずれは絶対零度 でのみ正確な第一原理計算で決めた交換結合定数を使用した 結果であり,温度軸をキュリー温度でスケールし直すなどの 方法を使えば,我々の目的には十分定量的な議論ができる. この研究によって,我々は原子描像のモデルを使って永久磁 石の使用温度での保磁力の問題を扱うために必要な有限温度 の磁性をある程度正確に記述できる手法を手にすることがで きたと言える.

さらに,保磁力に関係する最も基本的な磁化の局所ねじれ 構造である磁壁についても,西野正理らが同様のスピンモデ

ルを用いて解析している⁽⁸⁾.彼らは有限サイズの角柱状の結 晶モデルを使い、両端面のスピンを逆方向にした時にどのよ うな磁化分布が確からしい状態として表れるかを,モンテカ ルロ法を使って計算した.温度の効果はモンテカルロ法のボ ルツマン確率因子によって取り扱われる.本稿第1回(1)の 図3と比較するため、いくつかのシミュレーションのスナ ップショットを下記図19に引用する.これらの計算から、ブ ロッホ磁壁のc軸方向の磁化成分の期待値(M2)が連続体描 像で得られている関数形 $tanh(x/\delta_0)$ で近似できるだけでな く、磁壁幅の温度依存性も Nd-Fe-B 系の実験結果(実験値 は広くばらついているが)とおおむね合致することが示され た(ここで、 $\delta_0 = \sqrt{A/K_1}$ は磁壁特性長).また、磁化の横成 分の値も連続体描像の $\cosh^{-1}(x/\delta_0)$ に従う.連続体モデル (実線)の磁化方向を向かない原子磁気モーメントが確率的に 存在するため、その振幅は c 軸方向の磁化の値よりも数%小 さく,両端付近でも有限の値(揺らぎ成分)を持っている.

以上述べた二つの研究で,原子描像のマイクロマグネティ ックス計算を用いて,磁壁幅程度の局所的な磁気構造の有限 温度における自由エネルギーの計算をするための手法が準備 された.これらは最低エネルギー状態の原子磁気スピンの方 向を決定するものではなく,数多く存在し得るスピン配列を 含んだアンサンブルの熱的挙動を記述している点に注意いた だきたい.非常に多くの原子磁気モーメントの集団が示す実 際の材料における挙動を理解するにはこれらのアプローチが 有効であると思われる.永久磁石材料に対する原子描像のア プローチは海外でも近年盛んに研究されており,Nd-Fe-B 磁石を扱ったものとしては,S.C.Westmoreland ら⁽⁹⁾⁽¹⁰⁾や, Qihua Gong ら⁽¹¹⁾⁽¹²⁾の論文を挙げることができる.

11. 逆磁区核発生のエネルギーバリア

磁化反転のエネルギーバリアの形状を,連続体のマイクロ マグネティックスシミュレーションを使って最低エネルギー 経路を求めることにより求めた例について前回述べたが,有 限温度では最低エネルギーではない状態を経由した磁化反転 が確率的に発生することも議論した.原子描像のマイクロマ グネティックスでは多数のスピンの向きをランダムに発生さ せるモンテカルロ計算を使って自由エネルギーを計算し,磁 化のz方向成分 M_zの関数として書き出すことによって,多 数の原子スピン状態のエントロピーの効果を含んだ自由エネ ルギー地形図を求める方法が,栂らによって開拓された⁽¹³⁾.

この方法では、原子スピンモデルを使って、 $Nd_2Fe_{14}B$ の 微小孤立粒子における逆磁区核発生から磁化反転に至る過程 の自由エネルギーバリアを磁化容易軸方向の磁化の関数とし て明らかにし、外部磁界を逆向きに印加した時のエネルギー 障壁の磁界依存性から、緩和時間が1秒になる磁界を保磁 力として、その温度依存性を求める。図20に自由エネルギー の M_2 への依存性と、自由エネルギー障壁の印加磁界依存性 の結果を文献(13)から引用する。この図は本稿第2回⁽²⁾の 概念図(図15)に対応する。図20(b)から結晶サイズが14.1

 図20 室温(スピンモデルの計算値の46%の温度)における Nd₂Fe₁₄B 単結晶(14.1×14.1×14.6 nm³, 212,536スピン)における印 加磁界 2.8 MA/m(µ₀H=3.5T)下の自由エネルギーと結晶の磁化の z 成分(単位はボーア磁子 µ_B)との関係(a),および,自 由エネルギー障壁(F_B(H₂))の印加磁界(m₀H₂)依存性(b).図中(a)図の小文字ローマ数字は i:臨界核形成直前,ii:臨界核, iii:核発生後の状態を示す.Used under the Creative Commons Attribution 4.0 International License from Ref. (13) (modified).(オンラインカラー)

nm 以上で計算結果がほぼ収束したことがわかる.

連載第2回で,エネルギー障壁と緩和時間との関係を議 論した際に,エネルギー障壁が $\ln(10^{-11})k_BT = 25.3 k_BT$ と なる印加磁界が,我々が通常の測定で観測する緩和時間1 秒の保磁力 H_c に対応すると考えられることを示した(式 (16)).緩和の無い場合の仮想的な保磁力 H_0 と比較すると, H_c はおよそ12%低い.これらは熱揺らぎを考慮しない場合 は一斉回転粒子臨界径程度のサイズの $Nd_2Fe_{14}B$ 単結晶粒子 についての,室温の熱揺らぎの効果を入れた定量的な計算結 果である.この研究により,古典スピン模型の範囲内ではあ るが,反転核生成過程のエネルギー障壁の正確な形が初めて 明らかにされたと言える.なお,ここでは反磁界の効果は無 視されているので,それを考慮すると,得られた保磁力値は 実験値と比較できる数値範囲に入る.

この計算から、栂らはエネルギーバリアの頂点付近に磁壁 生成から磁化反転した中心核が生成する過程への遷移に対応 するカスプが頂点付近に現れることを初めて指摘した.本講 座第1回の図9で示した概念のように、有限の厚みのある 磁壁が生成する場合は、磁化反転核生成初期の磁壁生成過程 では自由エネルギーの増分が磁化が回転し始めた領域の体積 にほぼ比例するのに対し、磁化反転した核が現れるとその境 界(磁壁)の面積にほぼ比例するようになるので、この二つの 過程のクロスオーバー点で自由エネルギーの*M*² 依存性にカ スプ状の変化が現れる.この磁壁生成から中心核の生成まで の磁気構造は印加磁界によって大きくは変わらないので、保 磁力近傍ではこのカスプの位置は磁界にあまり依存しない. これは、上記のようなミクロな解析でなければ分からない特 徴であり、磁化反転の起点となる反転核の構造が印加磁界に ほとんど依存しないことを示す重要な結果である.

前回の最後に議論した活性化体積についても、上記の計算 から定量的な数値が得られる.図20(a)の ΔM_z が活性化体 積 V_a の磁化の大きさ $\Delta M_z = V_a M_s$ であり、栂らの計算では Nd₂Fe₁₄Bの一辺21.1 nm および24.6 nm の単結晶粒子につ いて、保磁力近傍では活性化体積がほぼ一定で、室温でおよ そ200 nm³であることが示された.球として換算すると活性化体積(すなわち,反転核)の半径はおよそ3.6 nmとなり,本講座第2回目に紹介した磁気余効現象の測定に基づく解析結果と定量的によく一致している.図20(b)のエネルギー障壁の印加磁界依存性の形は逆磁区の核生成過程に密接に関係していて,古典的なマイクロマグネティックス理論の解析式と比較して議論することもできるが,本稿では割愛する.

12. 磁化反転過程の時間発展

永久磁石材料では磁気記録材料やスピントロニクス材料と は異なり磁化反転過程のダイナミクスを追う必要はないが, 磁化の運動方程式に基づくシミュレーションは,熱揺らぎの 効果で多くのスピンの向きが時々刻々変化しつつ,磁化反転 領域がどのように局在化して成長するか,と言ったことを視 覚化する有効な手段である.実測される保磁力を定量的に予 測するためには,長くても1ナノ秒(ns)の時間スケールま でしか計算できないダイナミクスシミュレーションから1 秒の時間領域を予測する手法について,西野らの提案を以下 に紹介する⁽¹⁴⁾.

原子スピンモデルでの原子サイト*i*の原子磁気モーメント の運動は、エネルギーを原子スピンモデルのハミルトニアン (式30)で表し、各サイトに働く有効磁界 *H*^{eff}

$$\boldsymbol{H}_{i}^{\text{eff}} = -\partial \mathcal{H} / \partial \boldsymbol{m}_{i} \tag{31}$$

と熱揺動の効果をノイズ磁界, $\xi_i(t) = (\xi_i^x, \xi_i^y, \xi_i^z)$, の和とし て, サイト*i*の磁気モーメント m_i の運動を確率的ランダ ウ・リフシッツ・ギルバート(Stochastic Landau-Lifshitz-Gilbert; SLLG)運動方程式,

$$\frac{d}{dt}\boldsymbol{m}_{i} = -\frac{\gamma}{1+\alpha_{i}^{2}}\boldsymbol{m}_{i} \times (\boldsymbol{H}_{i}^{\text{eff}} + \boldsymbol{\xi}_{i}) - \frac{\alpha_{i}\gamma}{(1+\alpha_{i}^{2})S_{i}}\boldsymbol{m}_{i}$$
$$\times [\boldsymbol{m}_{i} \times (\boldsymbol{H}_{i}^{\text{eff}} + \boldsymbol{\xi}_{i})] \qquad (32)$$

を使って記述される. ここで, γは磁気回転比, α;はギルバ

ートのダンピング係数である.ノイズ磁界は時間軸上でラン ダムに方位を変えるホワイトノイズで、 $\xi_i(t)$ の振幅 D_i は、

$$D_i = \frac{\alpha_i k_{\rm B} T}{\gamma m_i} \tag{33}$$

により,熱エネルギー k_BT ,および,各サイトのダンピンク 係数と磁気モーメントと関連付けられる⁽¹⁵⁾.この関係式は 熱平衡値を正しく与えるための条件から導かれる.ホワイト ノイズを用いると熱揺動の効果が過大に見積もられる可能性 があるが,量子効果のない古典スピン系のモデルとしてキュ リー温度近傍(概ね室温以上)の振る舞いや熱平衡値は正しく 与えられるので室温以上の議論では許容される⁽³⁾として議論 を進める. α_i をサイトごとに知ることは容易でないので一 定値 α として扱う(D_i は m_i に逆比例することになる).

一定の緩和時間での保磁力を問題にする場合は結果の α 依存性が問題となるが,西野らは非常に長い時間(計算可能 な時間に対して)に対しては印加磁界の関数として緩和時間 が急速に増大するので,確率論による保磁力の予測値があま り変わらず,前節の自由エネルギー障壁から求めた結果とほ ぼ一致することを示している⁽¹⁴⁾.以下にその議論を紹介す る.

$$\langle \pi \rangle = \frac{1}{p}$$
 (34)

で与えられる.時刻0からtまでに緩和現象が起こる確率は $P(t) = 1 - e^{-\mu}$ であり,N回のシミュレーションサンプルの 中で,この間に緩和(磁化反転)しないサンプルの数はNe^{- μ} である.SLLG方程式によるシミュレーションで磁化反転が 起こるまでの時間は印加磁界により大きく変動し,印加磁界 が系のH₀よりも大きい場合は非確率的(決定論的)に磁化反 転が起こってしまうが,印加磁界がH₀よりもわずかに小さ な一定の範囲では,シミュレーション時間中に磁化反転に至 ったサンプルと磁化反転に至らなかったサンプルとが確率的 に現れる.数多くのシミュレーションを実行して磁化反転に 至らなかったサンプルの数Ne^{- μ}の対数を時間に対してプロ ットすれば(支配的な緩和メカニズムが同じ範囲では)直線関 係が得られる.その傾きから緩和頻度pが求められ,式 (34)から平均の緩和時間(τ)を知ることができる.

西野らは Nd₂Fe₁₄B の12×12×9 単位胞(近似的に一辺約 11 nm の立方体)のモデルについて,緩和時間の印加磁界依 存性を室温に相当するシミュレーションの温度で上記の解析 を実施し,ダンピング係数を0.1とした場合,印加磁界 3.26 MA/m(μ_0 H=4.1T)に対してp=1.491×10⁹ 毎秒, τ =6.71 ×10⁻¹⁰ 秒となることを見出した⁽¹⁴⁾.この緩和時間は通常 の保磁力の測定に相当する緩和時間(1 秒)と比較すると,約 9 桁も短い.これを磁化測定の時間スケール(秒)の領域に外 挿することにはあまり物理的な意味がないと考えることもで きるが,緩和時間が印加磁界の減少と共に指数関数的に極め て急峻に増加するため,実際にはダンピング係数にはあまり 依存しない値となることが示された.ダンピング係数が0.1 から0.2の範囲で,室温の保磁力として,2.4 MA/m 近傍の 値が得られ,同じハミルトニアンを用いたモンテカルロシミ ュレーションで求められた自由エネルギー障壁から得られた 値と良く一致することが確認されている.エネルギー障壁の 解析から反転核のサイズは磁界によらずほぼ一定の値である ことが示唆されたので,動的シミュレーションが可能な時間 枠で磁化反転する程度の大きな印加磁界の下での磁化反転過 程を種々の構造モデルに対して調べ,視覚化していくことに は,一定の意味があると言える.

図21は Nd₂Fe₁₄B の12×12×9 単位胞(88,128原子)のモデ ルを使った室温,印加磁界 3.26 MA/m での磁化飽和状態か らの一回の磁化反転初期過程について西野らが行ったシミュ レーション⁽¹⁴⁾のスナップショットである.各原子磁化の向 きはランダムに変化しながら立体の辺や頂点付近に全体とは 逆方向(すなわち減磁界と同じ向き)を向いたスピンが高頻度 で現れ始め,スピン間の方位相関のために次第にまとまった 領域が揺らぎを伴いつつ形成されて,逆磁区核が形成される 直前の過程が見て取れる.

直接シミュレーションの利点は、粒界相として強磁性で磁 気異方性が小さい層が数原子層入ったモデルのような少し複 雑な系についても、挙動を把握することができる点にある. 実際の原子配列や原子間の交換結合定数(*J*_{ii})等がまだ決定さ れていない場合でも、粒界相の構造は主相と同一として物性 値を人為的に変更するなどのモデルを採用すれば、磁化反転 過程における原子レベルの挙動の理解に有益な知見が得られ る.西野らは、粒界相を挟んだモデルを使った主相表面層の

図21 Nd₂Fe₁₄B の12×12×9単位胞(88,128原子)のモデルに おける室温(0.46 T_{c}^{el}),印加磁界 3.26 MA/m の下での 磁化飽和状態からの磁化反転初期過程⁽¹³⁾のスナップシ ョット(NIMS・西野正理博士作成の動画から承諾を得 て作成.動画では全ての原子磁気モーメントが矢印で描 画されており,赤色と青色で矢印の先端が上下半球のい ずれにあるかが表現されているが,白黒印刷で分かりや すいように反転方向(下半球)を向いたスピンのみが黒い 点で表現されるよう画像変換したものである.).

NdのDyによる置換の磁化反転ダイナミクスへの影響について磁化反転の様子の動画を公開している⁽¹⁶⁾.室温において希土類サイトの磁化の揺らぎが鉄サイトと比較して大きいことなど、動的過程から多くの示唆が得られている.

13. 原子描像のマイクロマグネティックスが磁石開 発に教えてくれること

磁石材料のマクロの世界に対して数十 nm という非常にミ クロな領域を扱う原子描像のマイクロマグネティックス解析 を,何にどのように役立てるのかという点について,著者の 思いを述べて本講座を終了したい.一般には,物理モデルに 基づいた関数形を仮定して解析的に説明するという演繹的方 法が有益だが,材料の組織に依存する保磁力の問題で実際の 材料の改善につなげるには,問題の原因を推定する帰納法的 なアプローチも重要である.永久磁石材料では,磁化反転開 始の素過程は常に活性化体積がナノメートル(nm)オーダー の微小な領域であることを見てきた.エネルギー障壁の形を 実際のミクロな核生成プロセスに基づいて具体的に知り,そ れを材料組織に基づいて局所の磁性を記述する理論計算と関 連付けるところから,材料組織を改善する具体的な方針が得 られることが期待される.

(1) 熱揺らぎ効果抑制の指針

熱揺らぎの効果を定量的に取り扱える点が,原子描像のマ イクロマグネティックス計算の最大の利点である.本稿の第 1回で反磁界の横成分がいわゆるブラウンパラドクスの説明 要素の一つであることを指摘したが,本稿で紹介した原子ス ピンモデルの計算では双極子相互作用を無視しているので, その効果はない.しかし,栂らが指摘しているように⁽¹³⁾, 立方体の角部から磁化反転が開始する確率が高い.その要因 は,立体の角部では磁壁の面積が小さくて済むことの他に, 結晶頂点の表面では原子対の数が内部原子より大幅に少ない ため,熱揺らぎの効果が大きくなることにある.そこで熱揺 らぎを抑制する指針について考えてみよう.

(a) 希土類元素の選定

保磁力が高温でも大きく低下しない磁石を実現するために は、熱揺らぎを抑制する強い交換場によって原子磁気モーメ ントが高温までよく整列していることが重要と考えられる. 特に希土類副格子の磁気異方性は副格子磁化のほぼ3乗に 比例して変化するので、高温まで希土類副格子の磁化を維持 することが効果的と考えられる.分子場理論の描像に従うと、 3d 遷移金属との化合物では希土類副格子の磁化は3d 遷移金 属副格子の磁化との弱い相互作用によって誘起されている. 熱揺らぎの効果を抑制するには、その副格子間相互作用が大 きいことが望ましい.この相互作用は、大雑把に言えば、4f 電子のスピン磁気モーメントのJ方向の射影 $\mu_B(g_J-1)J$ に 比例すると考えられる.ここで g_J はランデ因子であり、希 土類イオンの磁気モーメントと全角運動量量子数Jとの比例

図22 ランタン系列元素の3価イオン基底状態の(g_J-1)Jの 絶対値の希土類元素による変化.

係数である.したがって、図22に示すように、 $(g_J-1)J$ の 絶対値が大きくなるランタン系列中央(Gd)近傍でスティー ブンス因子の絶対値が大きな希土類元素、すなわち、Sm と Tb が熱に強い希土類磁石創出に有利な元素ということにな る.ただし、この議論は希土類元素の4f 軌道が局在した場 合を想定しているので、4f 軌道の半径が大きい軽希土類側 と4f 電子が内郭に埋もれている重希土類側を同列に取り扱 うことには注意が必要である.例えば、最近の第一原理計算 による計算結果がNd₂Fe₁₄B と Dy₂Fe₁₄B について示されて おり⁽³⁾⁽¹⁶⁾、Nd と Dy の Fe との交換結合エネルギーの差は ほぼないことが分かっている.すなわち、軽希土類側では孤 立した 3 価イオンの基底状態での推定値よりもかなり大き な磁気結合が希土類と 3d 遷移金属との間に働いている.

Dy 添加による高温での保磁力改善効果の仕組みとして, Nd イオンでは低温でスピン再配列転移を引き起こす磁気異 方性エネルギーの角度依存性のために,スピンの回転に対し て回転角が直角方向付近のエネルギーバリアが常に低いとい う特徴が高温でも残るので,常に c 軸方向にエネルギーの最 低ポイントがある Dy の方が Nd よりも高温でのエネルギー バリアが相対的に大幅に高くなるという効果を西野らが指摘 している⁽¹⁶⁾. Nd-Fe-B 磁石では Pr の利用が既に進んでい るが, Pr も Dy と同様の効果によって,ランタン系列の端 にありながらも,高い保磁力を室温直上付近まで維持するこ とに貢献していると考えられる.

他方,過去には新たな磁石開発のテーマとして Ce の価数 を 3 価にすることがしばしば試みられてきたが、もしも Ce が 3 価になって大きなスティーブンス因子を獲得したとし ても、 $(g_{J}-1)J$ の絶対値が小さすぎるため、室温以上の温 度では磁気異方性に対する Ce³⁺の寄与は、熱揺らぎのた め、あまり期待できないことも指摘できる.

一方,3d 遷移金属の磁気異方性への寄与が高温では相対 的に重要になる.これまでの理論計算では原子間の交換結合 パラメータに基底状態の第一原理計算の結果が使われている が,R₂Fe₁₄B系では系統的にキュリー温度を過大評価する結 果になり,有限温度では交換結合パラメータが実効的に減少 していることが示唆されている⁽¹⁷⁾. 交換結合定数が温度に 依存しないことは,3d および4f原子の副格子磁化を高温ま で維持して結晶磁気異方性を保持することにより保磁力の温 度依存性を抑制したい我々にとっては重要な要素である. 交 換結合定数の温度依存性は、今後の鉄基永久磁石の研究開発 において重要な視点となろう.

(b) 結晶表面の熱揺らぎ抑制

保磁力の問題における結晶表面の効果については,結晶磁 気異方性が表面では内部と大きく異なっていることや,実際 の磁石材料では粒界相との界面の構造が結晶内部とは異なっ ていることなどがこれまでに指摘されている⁽¹⁸⁾⁽¹⁹⁾.その影 響については,熱揺らぎ効果を考慮した解析が始まったばか りであり⁽²⁰⁾,十分な理解には程遠い.有限温度での原子描 像に立った解析のためには,副相との界面構造の詳細やその 多様性を把握する必要があり,今後の課題として残されてい る.

他方,Nd-Fe-B系焼結磁石では,磁石表面からTbやDy などの重希土類元素を粒界に沿って拡散させ,主相の結晶表 面層に磁気的な硬さを強化したシェル層を形成することによ って,保磁力とその温度依存性を強化する手法⁽²¹⁾が既に工 業的に採用されている.また,Nd_{0.7}Cu_{0.3}などの低融点共晶 合金を粒界浸透させて主相間に希土類リッチな層を形成し, 主相間の強磁性的磁気結合を分断する技術も既に開発されて いる⁽²²⁾.逆磁区核のサイズが半径数nmという知見から,

シェル層の厚みは主相の結晶表面層の数 nm から数十 nm の 領域を覆っていれば十分であることが分かってきた. それに 近い組織は, J. Li らの研究や⁽²³⁾ Xin Tang らの研究⁽²⁴⁾等に より実現されている. そのような微細組織を制御して工業的 に適用可能な製造プロセスを確立するためには組織形成過程 を動的に記述できる熱力学も必要であり,今後も地道な研究 が欠かせない.

(2) 有限温度における有限要素マイクロマグネティックス との関係

最近, A. Bolyachkin らは FePt 記録媒体を対象にして, 材料組織解析のデータから組織モデルを生成し,マイクロマ グネティックス・シミュレーションと実際の減磁曲線とをデ ータ同化してシミュレーションに機械学習をさせ,組織モデ ルに用いたマイクロマグネティックス・パラメータを調整す るというようなアプローチを使ってシミュレータを構成し, 材料組織と減磁曲線の形状とを関連づけることに成功し た⁽²⁵⁾.原子描像の理論計算の役割のひとつは,エネルギー 最少化経路を求める通常のマイクロマグネティックスシミュ レーションでは取り込んでいない熱揺らぎの効果を理論的に 明確にし,計算結果と実験値との乖離の要因として理解する ことにある.その理解に基づいて,上記のようなシミュレー タで生成されるパラメータの物理的合理性を原子描像の理論 計算が吟味あるいは担保するという位置づけになる.原子描 像の計算から物理的な枠組みが異なる有限要素法のマイクロ マグネティックス・パラメータの物理的に意味のある数値範 囲を与えるという手法は,有効性も含めて未だ検討されてい ないが,工学的手法として磁石材料においても材料組織の改 良のために用いることができる可能性があると思われる.

14. ま と め

今回は熱揺らぎを伴う有限温度での磁化反転過程を解析す る手法として最近著しい進展を見せた原子描像の解析手法と それが示唆する熱活性化過程の定量的な理解について述べ た. 現実の磁石材料は数 mm から数 cm の大きさを持つマ クロな材料であり、その減磁曲線の形が材料の性能を記述す る最重要の特性であるが、それは nm 領域の逆磁化核の生成 という極めてミクロな現象に支配され、熱揺らぎの効果を無 視しては記述できない、その領域を扱う原子描像のマイクロ マグネティックスの理論手法を、さらに大きな領域を扱う連 続体描像の有限要素法のマイクロマグネティックスの理論手 法に接続することは未だ実現されていないが、原子描像のマ イクロマグネティックスシミュレーションを用いて保磁力を 支配している熱揺らぎによる磁化反転開始までのメカニズム を理解し、その領域のミクロな組織解析と組み合わせて材料 の改善につなげられる可能性が見えてきている. ミクロな領 域での現象の物理を把握したうえで多結晶系の磁化曲線の形 状を記述し、材料の組織因子と結び付ける手法の研究開発は 今後も必要とされる.

3回にわたって,永久磁石の保磁力メカニズムについて概 念的な記述を進めた.大学等での永久磁石材料についての講 義では保磁力現象の動的な特徴や温度依存性の本質について 踏み込んだ議論をすることが少ないと思われたので,その層 の読者を念頭に置いた.本講座が磁石材料をこれから研究す る方々の役に立てば幸いである.

本講座は著者が代表を務めた文部科学省の委託事業「元素 戦略磁性材料研究拠点」(2012年度~2021年度,課題番号 JPMXP0112101004)で得られた永久磁石の保磁力に関する 理解が進展した部分について一部を解説したものです.特に 本稿では,宮下清二,西野正理,栂裕太各氏が執筆された多 数の論文から多くを引用させていただきました.関係者の皆 様に謝意を表します. (完)

文 献

- (1) 広沢 哲:まてりあ, 62(2023), 307-313.
- (2) 広沢 哲:まてりあ, 62(2023), 375-380.
- (3) S. Miyashita, M. Nishino, Y. Toga, T. Hinokihara, I. E. Uysal, T. Miyake, H. Akai, S. Hirosawa and A. Sakuma: Sci. Tech. Adv. Mater., 22(2021), 658–682.
- (4) 宮下精二,西野正理,栂 裕太,檜原太一,I.E.Uysal,三
 宅 隆,赤井久純,佐久間昭正:粉体および粉末冶金,69 (2022), S126-S146.
- (5) 西野正理, 宮下精二:日本金属学会誌, 87(2023), 158-172.

- (6) Supplemental material of Ref. (1), available on-line; https://www.tandfonline.com/doi/suppl/10.1080/14686996. 2021.1942197?scroll=top
- (7) Y. Toga, M. Matsumoto, S. Miyashita, H. Akai, S. Doi,T. Miyake and A. Sakuma, Phys. Rev. B, 94(2016), 174433.
- (8) M. Nishino, Y. Toga, S. Miyashita, H. Akai, A. Sakuma and S. Hirosawa: Phys. Rev. B, 95 (2017), 094429.
- (9) S. C. Westmoreland, R. F. L. Evans, G. Hrkac, T. Schrefl, G. T. Zimanyi, M. Winklhofer, N. Sakuma, M. Yano, A. Kato, T. Shoji, A. Manabe, M. Ito and R. W. Chantrell: Scr. Mater., 148 (2018), 56–62.
- (10) S. C. Westmoreland, C. Skelland, T. Shoji, M. Yano, A. Kato, M. Ito, G. Hrkac, T. Schrefl, R. F. L. Evans and R. W. Chantrell: J. Appl. Phys., **127** (2020), 133901.
- (11) Q. Gong, M. Yi, R. F. L. Evans, B.-X. Xu and O. Gutfleisch: Phys. Rev. B, 99 (2019), 214409.
- (12) Q. Gong, M. Yi and B.-X. Xu: Phys. Rev. Mater., 3(2019), 084406.
- (13) Y. Toga, S. Miyashita, A. Sakuma and T. Miyake: npj Comp. Mater., 6(2020), 67.
- M. Nishino, I. E. Uysal, T. Hinokihara and S. Miyashita: Phys. Rev. B, **102** (2020), 020413(R).
- (15)~ M. Nishino and S. Miyashita: Phys. Rev. B, $\mathbf{91}(2015)$, 134411.
- (16) M. Nishino, H. Hayasaka and S. Miyashita: Phys. Rev. B, (2022), 0254422, Supplemental material; https://journals.aps.org/prb/abstract/10.1103/PhysRevB. 106.054422#supplemental.
- (17) T. Miyake, Y. Harashima, T. Fukazawa and H. Akai: Sci. Tech. Adv. Mater., 22(2021), 543–556.

- (18) H. Tsuchiura, T. Yoshioka and P. 1 Novák: IEEE Trans. Magn., 50 (2014), 2105004.
- (19) 合田義弘,立津慶幸,常行真司:日本金属学会誌,81(2017), 26-31.
- (20) M. Nishino, H. Hayasaka and S. Miyashita: Phys. Rev. B, 106 (2022), 054422.
- (21) K. Hirota, H. Nakamura, T. Minowa and M. Honshima: IEEE Trans. Magn., 42 (2006), 2909–2911.
- (22) T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattoric and K. Hono: Scr. Mater., 81(2014), 48–51.
- (23) J. Li, L. Liu, H. Sepehri-Amin, X. Tang, T. Ohkubo, N. Sakuma, T. Shoji, A. Kato, T. Schrefl and K. Hono: Acta Mater., 161 (2018), 171–181.
- (24) Xin Tang, J. Li, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori and K. Hono: Acta Mater., 203 (2021), 11679.
- (25) A. Bolyachkin, H. Sepehri–Amin, I. Suzuki, H. Tajiri, Y. K. Takahashi, K. Srinivasan, H. Ho, H. Yuan, T. Seki, A. Ajan and K. Hono: Acta Mater., 227 (2022), 117744.

★★★★★★★★★★★★★★★★★★★★
 1981年 京都大学大学院工学研究科博士後期課程修了
 1984年 住友特殊金属㈱(現 日立金属㈱)入社
 2012年4月- 現職
 専門分野:希土類磁石材料
 ◎Nd-Fe-B系焼結磁石,および,ナノコンポジット

磁石の研究開発等に従事,元素戦略プロジェクト の磁石分野研究代表者として活動後,その成果を 基盤とする産学連携マテリアルズオープンプラッ トフォームの企画運営に2022年から従事.
