

遊佐 斉* 長谷川 正**

1. はじめに

圧力は、

物質の構成元素・それらを

規則的に構成する結晶 格子にダイレクトに働きかける力である. 各元素はエネルギ 一的に結晶構造全体の安定化をはかるために, 圧力下で様々 な位置を占有し多彩な高密度構造を形成する. こうした, 高 圧下における結晶構造の様々な変遷過程の理解は、機能性物 質を探索する上で,基本的かつ重要な情報となる.そこで は、計算科学の急速な進歩による構造情報の集積から、その 構造変化が系統的に理解されている物質群も多い. しかしな がら、材料の優れた機能の多くは、基となる結晶構造のみな らず、構造中への欠陥生成やドーパント導入、格子不整合 性,バルク焼結体界面制御等,機能向上を資する要素(機能 コア)にも起因している.我々は、これまでに開発してきた 高圧合成プロセスの強化および高度化をはかり、機能コア研 究に着目した物質創製をおこなっている.本稿では、大容量 ベルト型高圧装置内での複分解化学反応(メタテシス反応)の 開発、ならびに、難窒化性化合物半導体の合成とバンドギャ ップ制御研究,3000℃を超える温度発生と揮発性元素の密 閉性を特徴とするレーザー加熱とダイヤモンドアンビルセル (LHDAC)中で実現した、新規多ホウ化物、多窒化物合成と 硬質特性, 高圧下で不整合構造が圧力下で多彩に展開する Chimney-Ladder 化合物と組成・キュリー温度相関と室温強 磁性の発現,新規アルミン酸蛍光体の高圧合成と発光波長, 良質焼結体作製のための新技術として導入した、超高圧パル ス通電焼結について紹介する.

高圧下複分解化学反応によるASnN₂(A = Zn, Mg, Ca)合成とバンドギャップ制御

化合物半導体としての窒化物合成は,多成分化すること で,バンドギャップ等の電子物性を制御するという潮流があ り,計算予測によりその多様性が示唆されている.

GaN等の窒化物半導体における3価の陽イオンを2価お よび4価で交互に置き換えることで、新規半導体系列が存 在しうることが報告され、薄膜合成によりZnSnN₂が合成さ れたが、結晶性の面で良質なものが得られていなかった⁽¹⁾. そこで、大容量ベルト型装置により、高圧下メタテシス反応 によるバルク合成(800°C, 5.5 GPa)を試みたところ、結晶性 の大きな改善が見られ、wurtzite型ZnSnN₂について、バン ドギャップの正確な見積りが可能になった⁽²⁾.

この方法は,容積の大きなベルト型装置中での,制御され た温度場が可能にしたものであり,特に窒素供給剤(NaN₃) の高圧下における分解温度の制御,高圧による生成窒化物の 分解を防ぐ効果によるところが大きい⁽³⁾.

これを契機に、2価陽イオンの置換により、一連のスズ系 窒化物半導体(II-Sn-N₂系)の合成が可能になった⁽⁴⁾. 図1 に高圧セルの試料構成と反応式を示す.イオン半径の違いに より、ZnSnN₂(wurtzite), MgSnN₂(rock salt), CaSnN₂ (layered rock salt)と結晶構造は変化していくが、陽イオン 種の置換によりバンドギャップが1.3~2.4 eV の広範囲でチ ューニング可能であることが示された(図2).さらに、カソ ードルミネッセンスは、580 nm 付近での明瞭な発光を示す とともに、第一原理計算により、いずれも直接遷移型の半導 体であることも検証された.

** 名古屋大学大学院工学研究科;教授

^{*} 物質・材料研究機構 機能性材料研究拠点;グループリーダー(〒305-0044 つくば市並木 1-1)

High-pressure Synthesis of Novel Functional Compounds; Hitoshi Yusa* and Masashi Hasegawa**(*Research Center for Functional Materials, National Institute for Materials Science, Tsukuba. **Department of Materials Physics, Graduate School of Engineering, Nagoya University, Nagoya)

Keywords: *high-pressure synthesis, metathesis reaction, diamond anvil cell, belt-type apparatus, HP-SPS(high pressure spark pulse sintering), higher borides, high coordination nitrides, Chimney-Ladder compounds, fluorescent materials* 2022年6月3日受理[doi:10.2320/materia.61.656]

図1 超高圧メタテシス反応セルの試料構成と反応式.(オン ラインカラー)

図2 化合物半導体 ASnN₂(A=Zn, Mg, Ca)の反射スペクト ルと光学バンドギャップ.(オンラインカラー)

3. 高配位多ホウ化物の合成とホウ素フレームワーク 構造の堅牢性

ホウ化物は、ホウ素量に応じ多様なホウ素フレームワーク を形成し、様々な結晶構造の化合物が存在する.これらは、 高融点材料であるため、難合成物質として知られており、常 圧合成では、高周波誘導加熱炉による合成が主である.合成 対象とした希土類12ホウ化物 RB₁₂の結晶構造は、12ホウ素 クラスターと希土類元素を中心とする24配位ホウ素ケージ 構造を有する特徴があり(図3)、Gdよりサイズの大きな軽 希土類元素をケージ内に配置させるためには、高圧合成が不 可欠であることが示唆されていた⁽⁵⁾.

ダイヤモンドアンビルセル(DAC)は、大型高圧装置では 到達の困難な 20~200 GPa での高圧発生が容易であるだけ でなく、高圧下で赤外レーザーを組み合わせることで、 3000℃を超える温度による高温高圧合成を可能にする.特 に、多ホウ化物合成における、融点近傍でのホウ素成分の大 量導入には威力を発揮する.出発試料は、予め高周波誘導加 熱炉で RB₆を合成し、それに化学量論比で RB₁₂ となるよう にホウ素を混合粉砕したものである.赤外レーザー加熱によ る高圧合成実験と放射光 X 線その場観察の結果、7 GPa 程 度で合成が可能な GdB₁₂ とは対照的に、NdB₁₂ は 28 GPa 以 上、PrB₁₂ は 35 GPa 以上の超高圧下で合成されることが確 認された⁽⁶⁾.一方、Ce³⁺ は Pr³⁺ よりサイズが大きいにも

図3 RB₁₂の結晶構造(左は14面体 B₁₂ホウ素クラスター,右 は24配位 RB₂₄ホウ素多面体により図示).(オンラインカ ラー)

図4 圧力とCe価数揺動によるRB₁₂構造の安定化(概念 図).(オンラインカラー)

かかわらず, CeB₁₂は 26 GPa の圧力で合成でき, 一気圧の 格子定数も0.4%短いことが確認された. 回収試料の XANES 測定の結果は Ce が価数揺動により Ce^{3.3+} であるこ とを示し, 格子の収縮や合成圧力の低減との関連が示唆され た(図 4)⁽⁶⁾.

体積弾性率の測定値および DFT 計算値は, RB₁₂の方が RB₆より20~30%程度大きな値を示した.また DFT 計算 (Tian の方法)⁽⁷⁾によるビッカース硬度(Hv)の見積りは, RB₁₂が Hv=38 GPa と RB₆の Hv=23 GPa から大きな増大 を示すことから,構造中の12ホウ素クラスターならび24配 位ホウ素ケージがより堅牢であることを示していると考えら れる.

高密度窒素流体反応によるタングステン多窒化物 合成と硬質特性および電子構造

窒化タングステンは,高硬度,耐熱性,耐食性,耐摩耗性 などの特徴を併せ持つ機能性化合物としての可能性を持って いるため,基礎と応用の両面から研究が進められてい る⁽⁸⁾⁽⁹⁾.我々は,超高圧下における高密度窒素流体と窒化タ ングステン前駆体との窒化反応によって,新しいタングステ ン多窒化物の合成に成功し,その硬質特性を明らかにし た⁽⁹⁾. 圧力 70 GPa で DAC 内の試料室に MoC 型 WN_{0.6} と 液体窒素を充填し,赤外レーザーを照射して加熱した.その 結果,新しい窒化タングステン相である $U_7 Te_{12} 型 W_7 N_{12}$ という多窒化物を創製することに成功した(図5).

六方晶系(P-6)の結晶で,格子定数は,a=0.82398(3)nm, c=0.294948(14)nm,V=0.173423(13)nm³である. タング ステン原子には8個と9個の窒素原子が配位しており,こ れまで報告されているタングステン窒化物よりも高い配位数 である.図5に約10GPaまでの圧縮特性を示す.圧力の増 加とともに体積は単調に減少しており,格子定数の圧力依存 性から,ほぼ等方的な圧縮挙動を示していることがわかる. 2次のBirch-Murnaghan状態方程式から求めた体積弾性率 は、312(5)GPa(K'_0 =4で固定)であった.図6に,第一原 理計算を用いてバンド計算結果を示す.

電子構造はフェルミレベル近傍に擬ギャップが存在するが

図5 U₇Te₁₂型W₇N₁₂の結晶構造(a)と圧縮特性(b).(オンラ インカラー)

図6 U₇Te₁₂型W₇N₁₂のバンド計算.(オンラインカラー)

有限な状態密度であり、 $U_7 Te_{12}$ 型 $W_7 N_{12}$ は金属的な性質を 持っていると予測される.

5. CrGe, Chimney-Ladder 化合物の高圧合成と室 温強磁性の発現

Chimney-Ladder (CL) 化合物は 4~9 族の遷移金属 M と 13~15族のメタロイド元素 X が作る化合物 $M_m X_x (MX_y)$ で ある. 図7に示すように,遷移金属副格子[M]とメタロイド 副格子[X]の2つの副格子は c_M , c_X の異なる c 軸長をもつ非 整合複合結晶であり,組成比である y はこの2つの c 軸長 の比 c_M/c_X にも対応する.

これまで, Mn-Si 系 CL 化合物はじめ,機能物性として 熱電特性に注目した報告が数多くなされている⁽¹⁰⁾.一方 で,最近,常圧相である $Cr_{11}Ge_{19}(CrGe_{1.727})$ CL 化合物が 86 K で強磁性転移を示すことが報告された⁽¹¹⁾. c 軸が磁化容 易軸で磁気異方性が大きく,空間反転対称性のない遍歴強磁 性体であると報告されている⁽¹²⁾.我々は最近,DAC やマル チアンビル型高圧発生装置を用いた高圧合成によって,さま ざまな組成の Cr-Ge 系 CL 化合物 CrGe_y を創製することに 成功した⁽¹³⁾⁽¹⁴⁾.超空間群に基づく Le Bail 精密化法によっ て,各組成の CrGe_yの結晶構造パラメターを求めることに 成功した.精密化された c 軸長から求められた組成比 y,す なわちゲルマニウム含有量は合成圧力とともに増加すること がわかった.また,図8には,磁場10 kOe を印加したとき の各組成の磁化の温度依存性を示す.

図からわかるように、組成比 y が大きくなると磁気転移温 度は高くなることが明らかとなった。注目すべきことに、圧 力 10 GPa と 14 GPa で 合 成 さ れ た CrGe_{1.763} と CrGe_{1.774} は、それぞれ 295 K と 333 K の強磁性磁気転移温度を持っ ており、室温強磁性体である。さらに、非常に興味深いこと に、組成比が約0.047しか違わないにもかかわらず、磁気転 移温度は約 250 K も変化していることが確認された。

6. 新規アルミン酸蛍光体の高圧合成と発光波長

電磁波や電子線などの励起により発光する蛍光体は白色 LEDなどの照明器具等に広く利用されている.蛍光体は一

図7 Chimney-Ladder 化合物の結晶構造. (オンラインカラー)

図8 CrGe,の磁化の温度依存性. (オンラインカラー)

図9 Sr₂Al₆O₁₁の結晶構造.(オンラインカラー)

般に母体材料となる無機物質に発光中心となる賦活剤を点欠 陥としてドープすることから,その発光特性は発光中心の配 位環境すなわち母体材料の結晶構造に大きく依存する.最近 我々は,マルチアンビル型高圧装置を用いた高圧合成法によ り,Sr₂Al₆O₁₁と同型構造(図9)のEu²⁺ 賦活新規高圧相アル ミン酸塩蛍光体 Ba₂Al₆O₁₁:Eu²⁺の合成に成功した⁽¹⁵⁾.Eu を賦活した Ba₂Al₆O₁₁は近紫外線励起によって狭帯域な青緑 色発光を示した.この狭帯域な発光は Eu²⁺ の f-d 遷移によ る発光であり、Ba²⁺ を Eu²⁺ が置換したと推察される.

7. 良質焼結体作製のための新技術:超高圧パルス通 電焼結

従来からおこなわれている,放電プラズマ焼結法(SPS: Spark Plasma Sintering)は,黒鉛製電極型により試料を数 Paで挟み込み,真空雰囲気でパルス大電流投入によるパル ス通電加熱を与えることで,被加工物の焼結・接合・合成を 行うプロセスである.この方法は,一般的な焼結に比べ,被 焼結試料自身の自己発熱や放電プラズマエネルギー等が複合 的に作用することにその特徴がある.近年,SPS 装置によ りメガパスカル領域(200-500 MPa)までの圧力を加える実 験も報告されている.しかしながら,これらは専用の高圧装 置から派生したものではないため,ギガパスカル以上の圧力 下での実験は想定されていない.高圧合成装置であるベルト 型装置は,10 GPa までの圧力発生が可能であるうえ,試料 の幾何学的配置が SPS 装置に類似しているため,パルス電 源を組み合わせることにより,超高圧 SPS(UHP-SPS)の技 術開発をおこなっている.図10に装置の模式図を示す.

ギガパスカル以上では,無機物質における多様な構造相転 移が存在するだけでなく,融点上昇効果や高圧処理時間の短 縮も期待され,高圧燒結に関して,従来のSPS法にはない 新たな展開が期待できる.

高圧発生装置はシリンダー穴径 32 mm のベルト型高圧装置を用いた.パルス直流電源には,ON/OFF 制御かつ極性反転制御可能な電源(最大 1200 A-8 V)を導入した.加熱時の試料温度については,予め試料位置に充填した AlN, hBN等の粉末成形体の温度について,C熱電対を用いて投入電力に対して測定している.8Y-YSZ に対して,圧力6 GPa,温度400℃~900℃で処理した結果,600℃~800℃の温度で焼結すると,透光性のある焼結体が得られた(図11).しかしながら,試料と接する金属種を変えると,同じ処理条件にも関わらず,試料が黒色を呈することが認められた.着色の由来を酸素欠損に起因するものと推測し⁽¹⁶⁾,かつ酸素欠損量を少なく抑える意図からY添加量の少ない5Y-YSZを800℃で処理したところ,無色に近い透光性焼結体が得られ

図11 各条件で焼結された YSZ 焼結体と6 GPa, 800℃で焼結 された 5Y-YSZ とその内部透過スペクトル比較.(オン ラインカラー)

た. SPS 効果を検証するために, 試料を電気的に絶縁した 構成において, 同条件で焼結体作製を行った⁽¹⁷⁾. 内部吸収 スペクトルから 2 mm 厚での透過率@600 nm を算出すると, 13% (HP-SPS) と10% (非 HP-SPS)であり, 透過率向上が 認められた(図11). 今後, 処理圧力, 昇温速度, 保持時間, ONOFF 比等, まだ最適化していないパラメターを詰めるこ とで, さらに透光性を改善できるか検証していく予定である.

8. おわりに

高圧・高温合成プロセスは、二つの代表的な示強変数を縦 横無尽に利用することで、新物質創製の場を供与できる.本 稿では、様々な機能発現での高圧合成の特徴についていくつ かの例を示して紹介した.計算科学およびそれと連携した情 報科学的手法により予測される物質・構造群を具現化するた めには、多様な合成プロセスが必要である.これからも、高 圧合成プロセスは、様々な機能性物質の合成に対し、その役 割を発揮していくことであろう.

本稿は,著者の他,新学術研究「機能コア」A03(オ)班に 参画している各メンバー(物質・材料研究機構 川村史朗 氏,宮川仁氏,名古屋大学 丹羽健氏,佐々木拓也氏,Gaida Nico Alexander 氏, Chang Chung-Chin 氏等)による成 果をまとめたものである.大阪府立大学 村田秀信氏,産業 総合研究所 藤久裕司氏に第一原理計算において協力いただ きました.また,茨城大学 伊賀文俊氏にはホウ化物出発原 料合成にご協力いただきました.この場をお借りしてお礼申 し上げます.本研究は科研費(19H05790,19H02005),の助 成によりおこなわれたことを付記します.なお,本研究の実 験の一部は AichiSR (2019N5006, 2019N4001, 2019N6005, 2020N3001, 2020N5002, 202003037, 202004031, 202004032, 202005054, 202006039, 202102054), SPring-8 (2019A1193, 2019A4500, 2020A1379)の実験課題でおこなわれました.

文 献

- L. Lahourcade, N. C. Coronel, K. T. Delaney, S. K. Shukla, N. A. Spaldin and H. A. Atwater: Adv. Mater., 25(2013), 2562– 2566.
- (2) F. Kawamura, N. Yamada, X. Cao, M. Imai and T. Taniguchi: JPN J. Appl. Phys., 58(2019), SC1034–1–4.
- (3)川村史朗,遊佐 斉:高圧力の科学と技術, 30(2020), 195-201.
- (4) F. Kawamura, H. Murata, M. Imura, N. Yamada and T. Taniguchi: Inorg Chem, 60 (2021), 1773–1779.
- (5) J. F. Cannon, D. M. Cannon and H. Tracy Hall: J. Less Common Metals, 56 (1977), 83–90.
- (6) H. Yusa, F. Iga and H. Fujihisa: Inorg. Chem., **61**(2022), 2568–2575.
- (7) Y. Tian, B. Xu and Z. Zhao: Int. J. Refract. Met. Hard Mater., **33**(2012), 93–106.
- (8) T. Sasaki, T. Ikoma, K. Sago, Z. Liu, K. Niwa, T. Ohsuna and M. Hasegawa: Inorg. Chem., 58 (2019), 16379–16386.
- (9) C. C. Chang, T. Sasaki, N. A. Gaida, K. Niwa and M. Hasegawa: Inorg Chem, **60**(2021), 13278–13283.
- (10) 宮崎 讓:日本金属学会誌, 79(2015), 530-537.
- (11) N. J. Ghimire, M. A. McGuire, D. S. Parker, B. C. Sales, J. Q. Yan, V. Keppens, M. Koehler, R. M. Latture and D. Mandrus: Phys. Rev. B, 85 (2012), 224405.
- (12) H. Han, L. Zhang, X. Zhu, H. Du, M. Ge, L. Ling, L. Pi, C. Zhang and Y. Zhang: Scientific Reports, 6(2016), 39338.
- (13) T. Sasaki, K. Noda, N. A. Gaida, K. Niwa and M. Hasegawa: Inorg Chem, **60** (2021), 14525–14529.
- (14) T. Sasaki, K. Kanie, T. Yokoi, K. Niwa, N. A. Gaida, K. Matsunaga and M. Hasegawa: Inorg. Chem., 60(2021), 1767– 1772.
- (15) 佐々木拓也,丹羽 健,長谷川正:2019年日本金属学会秋期 講演概要集,S5.39.
- (16) V. Paygin, E. Dvilis, S. Stepanov, O. Khasanov, D. Valiev, T. Alishin, M. Ferrari, A. Chiasera, V. Mali and A. Anisimov: Appl. Sci., 11(2021), 1304.
- (17) 宮川 仁,小林 清,川村史朗,谷口 尚,遊佐 斉:高圧 力の科学と技術,**31**(2021),175.

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★ 遊佐 斉

- 1994年 東京大学大学院理学系研究科博士課程修了 ·博士(理学)取得
- 1994年 科学技術庁無機材質研究所
- 2000年 スウェーデンウプサラ大学客員研究員
- 2001年 物質·材料研究機構(改組)

専門分野:超高圧物質科学

◎ダイヤモンドアンビルセル中でのレーザー加熱による高温高圧下物質合成,および高圧構造のその場観察による結晶化学が専門.

遊佐 斉

長谷川 正

²⁰²⁰年 現職