

ミルフィーユ材料における多様なキンク現象

3大材料におけるキンク変形帯の微視的構造

江 草 大 佑* 戸木田雅利** 阿 部 英 司教,***

1. はじめに

一般に構造材料設計においては、多結晶材料の連続かつ安定な塑性変形のため「結晶構造には独立な5つのすべり系が必要」とするフォン・ミーゼス条件が金科玉条となる。新学術領域研究「ミルフィーユ構造の材料科学」⁽¹⁾では、あえて容易すべり系が限定される「微視的な硬質層・軟質層による層状構造」を創製し、キンク変形を効果的に誘発することで、従来にない新しい概念での材料高強度化を目指している。

キンク変形は、六方晶系(hcp)金属である亜鉛やカドミウ ム単結晶の容易すべり面(稠密面)に対して平行に圧縮応力を 与え、転位運動を抑制した際に発現する変形形態として 1942年 Orowan により報告された⁽²⁾. 巨視的には座屈の様 相を呈し、微視的には双晶に類似の結晶回転を生じている. これらの特徴は, 強度劣化の原因とされることはあっても, 材料強化に寄与し得るとは考え難い. その発見から半世紀以 上を経て,キンク変形が注目されるきっかけとなったのは, 長周期積層規則(LPSO)型 Mg 合金のキンク変形帯導入によ る顕著な高強度化である⁽³⁾⁽⁴⁾.hcp-Mgの積層多形を基本格 子とする LPSO 構造は結晶異方性が大きく,その多結晶材 の高温押出加工中に容易にキンク変形が進行する.キンク変 形帯を高密度に導入することによって初めて強度発現する 「キンク強化現象」は、全く予想外の発見であった.その後 の研究により、キンク変形を誘発するために LPSO 構造が 必須ではないことも明らかとなっている. 例えば, 元素添加 量を抑えた希薄 LPSO 型 Mg 合金系では、LPSO 構造ユニ

ットである元素濃化積層欠陥(SESF)が hcp-Mg マトリクス 中に無秩序かつ疎に配列する組織が生成し,それらもキンク 変形を通して高強度が発現する.この事実から,LPSO 構造 を内包する「硬質層・軟質層よりなるミルフィーユ構造群 (MFS)」を上位概念として,現在の展開へとつながった.

キンクが材料強化に有効である, との視点に立つと, Mg 合金以外にも鉄鋼材料, Ti 合金や Al 合金にも類似の変形帯 がしばしば見受けられる事に気づく. さらに, キンク変形・ キンク形態はセラミックス⁽⁵⁾, 高分子材料⁽⁶⁾, 炭素繊維⁽⁷⁾, 液晶⁽⁸⁾といった多様な物質・材料においても報告されてい る. これら様々な材料におけるキンク強化発現の可能性につ いては, 現在研究が進行中である.本稿では, 三大材料であ る金属・セラミックス・高分子の例として, それぞれ Mg 合金・MAX セラミックス相・液晶性ブロック共重合体に形 成されたキンク変形組織の微視的構造の特徴について紹介す る.

2. キンク変形における課題

双晶と同様の格子回転型の変形であるにもかかわらず,な ゼキンクがミクロな破壊起点を与えず,材料強化に有効とな り得るのであろうか.その解明へ向けて,キンクの微視的構 造の解析を進めている.ここでは,キンク変形の本質的課題 と,既存のモデルについて簡単に触れておきたい.

hcp 金属のキンク変形で生成した急峻な界面(キンク界面) の形成機構として,結晶内に逆向きの符号を有する転位対 (dipole)の生成・再配列によりキンク界面の形成を説明する

Kink Microstructure in Alloys, Ceramics, and Polymers; Daisuke Egusa*, Masatoshi Tokita** and Eiji Abe*.***(*Graduate School of Engineering, University of Tokyo, Tokyo. **School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo. ***Research Center for Structural Materials, National Institute for Materials Science, Tsukuba) Keywords: kink, mille-feuille structure, magnesium alloys, MAX phase, block copolymers, lamellae, electron microscopy, small-angle x-ray scattering

2022年6月23日受理[doi:10.2320/materia.61.550]

^{*} 東京大学大学院工学系研究科;1)助教 2)教授(〒113-8656 東京都文京区本郷 7-3-1)

^{**} 東京工業大学物質理工学院;教授

^{**} 物質・材料研究機構 構造材料研究拠点;チームリーダー

Hess-Barrett モデル⁽⁹⁾が知られている. このモデルでは, 典型的にはポリゴニゼーション等による乱れを多数含む界面 となることが予測される. この予測特徴は, Mg 合金中に観 察される原子レベルで平滑なキンク界面構造とは一致しな い. 一方,双晶は一般に急峻な界面を生成する. 例えば hcp 構造における双晶変形では,幾何学的には双晶界面の取り得 る構造は無数に考えられるが,実際にはせん断量およびシャ フリング量が少ない構造が優先的に選択され,母相と双晶領 域は特定の格子対応のみが許されることになる. これは,キ ンク変形が連続的な結晶回転変形を許容する特徴とは相容れ ない. キンク界面は,転位変形・双晶変形の一見相反する特 徴を同時に有しており,これを矛盾無く説明する変形機構は 明らかとなっていない.

我々は、キンク変形の微視的理解のためには回位(disclination)が鍵であると考えている.回位は、転位と同様に連 続体の変形を表現する線状欠陥の一つであり、古くから Volterra の円筒モデルにより示されている⁽¹⁰⁾.転位がせん 断変形に対応する一方,回位は回転変形に対応する変形素子 となりうる.回位を用いれば、結晶回転をベースとするキン ク変形領域の表現自体は見通しがよくなるであろう.しかし ながら,回位導入に伴う体積変化は(転位のそれと比較して) 一般に非常に大きく、変形領域のサイズに依存した大きな弾 性エネルギーを生じてしまう(11).実際,結晶性材料におけ る回位の存在は微粒子(12),強加工材料(13),二次元材料(14) など、回位形成に伴うエネルギーの増大を自由表面や界面等 で緩和しうる系での報告に留まっている.バルク体でのキン ク界面近傍における回位の有無、およびそのキンク変形中の ダイナミクスが明らかとなれば、上述の転位変形、双晶変形 とも異なる,新しい回位変形のモデル構築が期待される.

3. 金属材料: Mg 合金におけるキンク組織・構造

本節ではミルフィーユ構造を有する Mg 合金の事例とし て、LPSO型 Mg 合金,および近年進展が著しい MFS 型 Mg 合金での解析結果を紹介する.図1に LPSO型・MFS 型 Mg 合金より取得した高角環状暗視野(HAADF)-走査透 過型電子顕微鏡(STEM)像を示す. LPSO 相は hcp 構造の 2H 積層(ABAB…)に対して、Intrinsic II 型に相当する積層 欠陥(ABCA)を周期的に導入した積層秩序を持つ.また, STEM 像のコントラストから確認できるように、積層欠陥 部に添加元素が選択的に濃化した化学秩序を有しており、積 層秩序と化学秩序が同期したシンクロ型 LPSO 構造と名付 けられている⁽¹⁵⁾. 一方で, MFS 型 Mg 合金では, LPSO 型 合金に含まれる添加元素濃化積層欠陥(SESF)が積層方向に ランダムに分布した構造として理解されている(16).いずれ のMg合金においても、軟質層に相当するMg層に対し て,硬質層として振る舞う SESF が導入された積層構造を 有しており、その構造異方性に起因してキンク変形が発現す ると考えられている.

高温押出加工によりキンク組織を導入した LPSO 型・

図1 (a), (b)LPSO 型 Mg 合金および(c), (d)MFS 型 Mg 合 金より取得した HAADF-STEM 像. 各合金組成は以下 の通り, LPSO型: Mg97Zn1Y2(at%), MFS型: Mg97Zn1Gd2(at%). (オンラインカラー)

MFS型Mg合金に対して透過型電子顕微鏡(TEM)観察によ り変形組織を解析した⁽¹⁷⁾.図2(a)に示すTEM像より, LPSO型Mg合金はLPSO相および α -Mg相の2相から構 成されており,点線で示すLPSO相の形態から結晶の折れ 曲がり,すなわちキンク界面が導入されていることが確認で きる.界面近傍より取得した電子回折図形より,キンク界面 での回転角度は数度~数十度までの多様な値を取っており, いわゆる双晶界面などとは異なる特徴を示している.キンク 界面近傍の領域において,hcp構造の底面方向に対応する二 波励起条件で取得したTEM像(図2(b))を見ると,底面方 向の成分を有する転位(a転位, $b=1/3\langle11\bar{2}0\rangle$)がキンク界面 に沿って配列している.この転位はH-Bモデルで示されて いる結晶回転を埋め合わせるために導入された幾何学的に必 要な転位(GN転位)に相当すると考えられる.

続いて、MFS型 Mg 合金の場合については、図 2(c)に示 す TEM 像より、ほぼ α -Mg 相のみから組織が構成されて おり、局所的に SESF に相当する底面方向に伸長した線状 のコントラストが確認できる. SESF の方位変化から、矢頭

図2 (a), (b)LPSO 型 Mg 合金および(c), (d)MFS 型 Mg 合 金 押出材より取得した TEM 明視野像. 押出条件は以 下の通り, 押出温度:350℃, 押出比:10, ラム速度: 2.5 mm/s. (b)は文献⁽¹⁷⁾から許諾を得て一部改変して転 載. (オンラインカラー)

で示す部分で数度程度の結晶回転が起きており、キンク界面 が導入されていることが確認できる. LPSO 型 Mg 合金と同 様に二波励起条件で取得した TEM 像(図2(d))より、キン ク界面に沿ってa転位が配列している様子が観察される. 興 味深いことに、上記の転位に由来するコントラストは底面方 向にやや分裂しているとともに、その間の領域では SESF に類似した線状のコントラストが確認できる.

キンク界面近傍に存在する欠陥構造の詳細について, HAADF-STEM 観察により解析した.LPSO型 Mg 合金の 場合,図3(a)に示されるようにキンク界面に沿ってSTEM 像強度が低下した領域が配列している.当該領域を拡大した STEM 像(図3(b))より,像強度が低下した領域はLPSO 構 造中のSESF上に存在することが分かる.図中に示すバー ガース回路から,この領域に原子余剰面が導入されているこ と,すなわち TEM 観察で確認された a 転位が SESF上に 存在していることが確認できる.加えて,転位部分では積層 が局所的にfccからhcpに変化しており,積層変化に起因し て添加元素濃度が低下したと考えられる.上記結果から,キ ンク界面上に存在する転位は図3(c)の模式図で示すように, SESF上で Shockley 部分転位に拡張した a 転位であり,拡 張に伴う積層変化(fcc→hcp)によってナノスケールのhcp-Mg 領域を導入した構造に相当している.

一方で, MFS型 Mg 合金の場合には図 3(d)に見られるように, キンク界面に沿って STEM 像強度が上昇した領域が 配列している.図3(e)に示す拡大像より,当該領域はキン ク界面上のa転位に対応しており, Shockley 部分転位への

図3 (a), (b)LPSO 型 Mg 合金および(c), (d)MFS 型 Mg 合 金 押出材のキンク界面近傍 HAADF-STEM 像. (オン ラインカラー)

拡張に伴う積層変化(hcp→fcc)によって、LPSO 型の場合と は反対に添加元素濃度が上昇したと考えられる.図3(f)に 示す模式図の通り、MFS型Mg合金におけるキンク界面上 の転位はナノスケールのSESFを導入した構造として理解 できる⁽¹⁸⁾.

LPSO 型・MFS 型 Mg 合金に形成されたキンク界面の構 造は、a転位を伴うナノスケールのhcp-Mg構造もしくは SESF 構造の導入として理解できる.特に LPSO 型 Mg 合 金において硬質層に相当する SESF 上に転位が存在するこ とは興味深い結果である. 観察された転位構造から, 高温下 でのキンク界面の形成においては、H-Bモデル⁽⁹⁾にて想定 される底面転位の運動に加えて、溶質元素の拡散や転位の上 昇運動といった、熱活性化過程を含む構造変化が起きている ことが示唆される.この考察は、室温下で加工を施した LPSO型 Mg 合金では異なる偏析挙動を示すキンク界面が形 成されていることとも対応する(19).また,近年の調査で は、キンク変形後の試料に対して熱処理を施した場合に、非 底面方向の成分を含む転位構造の導入によるキンク界面構造 の緩和が示唆されており、キンク変形組織の安定性に強く影 響を及ぼすと考えられる、今後、加工条件の異なるキンク界 面構造の解析および,キンク変形過程の動的観察等により, キンク界面の構造を支配する微細構造因子および力学特性へ の影響が検討されることと期待される.

セラミックス材料: MAX 相におけるキンク組織・構造

MAX 相とは Ti₃SiC₂に代表されるように M: 遷移金属元 素,A:Al,Si,Ga,Ge など,X:Cまたは Nの組合せからな る三元系化合物であり,セラミックス材料および金属材料の いずれにも類する特異な特性を有する材料として注目されて いる. MAX 相の結晶構造の特徴として,結合様式の異なる 層により構成される積層構造を取ることが知られている.例 えば Ti₃SiC₂の場合,Ti および C により構成される共有結 合性の強い硬質層とSi 元素からなる金属結合性を示す軟質 層から構成されており,一種のミルフィーユ構造であるとみ なすことができる.MAX 相の詳細については下記文献を参 照されたい⁽²⁰⁾.

MAX 相は高温下での優れた耐酸化性といったセラミック スに特有の特徴を示す一方で,高い電気伝導率といった金属 に類似の特徴も示す.特に,配向制御した MAX 相では, 一般的なセラミックス材料では困難な室温下での塑性変形が 可能である⁽⁵⁾.この塑性変形能については,キンク変形が変 形素子として寄与していることが示唆されている.

図4 (上段)Ti₃SiC₂室温圧縮材 TEM 明視野像および(下段) 変形領域の模式図.文献⁽⁵⁾から許諾を得て一部改変して 転載.

図4に室温変形後のTi₃SiC₂より取得したTEM明視野 像⁽⁵⁾を示す.Mg合金の場合と同様に,結晶回転を伴うキン ク界面が複数導入されており,像コントラストよりキンク界 面に転位が配列していると推定される.MAX相におけるキ ンク組織の特徴として,キンク界面が導入された領域近傍に おいて,微小な層間剥離(デラミネーション)を伴うことが挙 げられる.このような空隙の形成はTEM 観察等の薄膜試料 に特有の現象ではなくバルク状態でも確認されている.

MAX 相におけるキンク組織・構造の詳細については,近 年岸田らによる精力的な研究成果が報告されている⁽²¹⁾.キ ンク界面の微細構造について,HAADF-STEM 観察による 解析結果を図5(a)に示す.バーガース解析により,界面上 に存在する欠陥は稠密構造における底面 a 転位と同定され, 硬質層(Ti-C)と軟質層(Si)の境界に存在することがわか る.また,上記転位は1nm 程度の幅でわずかに拡張してい るが,当該領域における元素偏析等は確認されない.図5 (b)に示す,より回転角度の大きい,すなわち GN 転位密度 の高いキンク界面における転位分布についても,転位の存在 する原子層および拡張幅はほぼ一定であることが確認できる.

MAX 相で観察されるキンク界面構造は H-B モデルの描 像とおおよそ一致している.ただし,H-B モデルのみでは, MAX 相のキンク変形に伴うデラミネーションの導入につい ては説明が困難である.そこで,H-B モデルの拡張として, Stroh により提案されているモデル⁽²²⁾に基づくキンク界面 の分布による組織変化を考える.キンク界面が結晶粒などの 変形体内部で連続的に分布している場合(図6(a)),H-B モ デルで表されるように GN 転位列として表現することがで きる.しかし,キンク界面が不連続に分布する場合には,結 晶回転量の不連続に起因して,空隙の形成(図6(b))もしく は,非底面方向のせん断を担う欠陥の導入による緩和が必要 となる.それぞれの組織は,MAX 相におけるデラミネーシ ョンの形成および,Mg 合金における c 成分を含む転位構造 の導入,に対応している.

一般に構造材料において空隙の形成は破壊起点として働く ため、図6(b)に示すような緩和形態は変形素子として働く ことは困難であると捉えられている. Barsoum らによる と⁽²³⁾, MAX 相ではキンク界面を形成した領域ではデラミ ネーションも同時に導入される. デラミネーションを含む領 域では、周囲の拘束を受けないことに起因して結晶回転に相

図5 室温圧縮を施した Ti₃SiC₂ キンク界面近傍 HAADF-STEM
像. 文献⁽²¹⁾から許諾を得て転載.(オンラインカラー)

図6 キンク界面分布による組織変化模式図.

当する弾性変形(バックリング)が誘起され、キンク界面の形 成がより促進される.結果として、外部応力はバックリング およびキンク界面の形成による緩和に用いられることとな り、空隙の拡大には寄与せず、塑性変形が進展する、とされ ている.このような塑性変形に寄与する非底面方向のせん断 もしくは空隙については、層状構造物質特有の変形素子: Ripplocation として提唱されている⁽²³⁾.

5. 高分子材料:液晶性ブロック共重合体におけるキ ンク組織・構造

(1) 高分子材料はミルフィーユ構造の宝庫

高分子材料には硬質層と軟質層が交互に積層したミルフィ ーユ構造が多くみられる⁽²⁴⁾.ポリエチレン(PE)もその1つ である. PE は薄板(ラメラ)状の結晶と非晶が10 nm スケー ルで交互に積み重なった積層構造を形成する.ラメラ状結晶 の融点はラメラ厚に依存して130~140℃の範囲にある一 方,非晶が柔らかくなるガラス転移温度(T_g)は-30℃であ る.したがって PE は室温で結晶が硬質層,非晶が軟質層の ミルフィーユ材料になっている. PE をはじめとする結晶性 高分子は、ラメラ状の結晶と非晶が交互に積層した形態を形 成する.結晶の融点が100℃以上である一方、非晶の T_g が 室温よりも十分低ければ、室温でミルフィーユ構造を形成す る.

ミルフィーユ構造を形成するもう1つの高分子材料群と して2種の高分子鎖A,Bが共有結合したブロック共重合体 がある.一般に高分子どうしは混ざりにくく(仲が悪く),2 種の高分子が結合しているブロック共重合体は分子鎖の大き さ(10 nm)スケールでミクロ相分離する.相分離形態は2種 の高分子の分子量比(厳密には体積比)に依存し,分子量比が 1:1程度であるとラメラ状にミクロ相分離する.例えば, ポリスチレン(PS,ガラス転移温度 $T_g=100$ °C)とポリブタ ジェン(PB, $T_g=-100$ °C)からなるブロック共重合体を, 分子量比を制御して合成し、ラメラ状ミクロ相分離させれ ば、室温で PS はガラス状態の硬質層(弾性率は10⁹ Pa)、PB はゴム状態の軟質層(同10⁶ Pa)を形成し、ミルフィーユ構造 ができる.

ミルフィーユの積層方向が全体にわたって一方向に揃った 単一ドメイン試料を用いると,試料を変形したときの構造変 形(キンク形成)や応力応答が明確に捉えられる.本節では, 容易に単一ドメイン試料が調製できる液晶ブロック共重合体 での研究例を紹介する.液晶ブロック共重合体は構成ブロッ クの1つを液晶性高分子とした共重合体である.

(2) 液晶ブロック共重合体が形成するミルフィーユ構造

液晶ブロック共重合体 B5-x-EMA-yは、液晶性ポリエス テル BB-5(3-Me)の両端にポリ(エチルメタクリレート) (PEMA)が結合した ABA 型ブロック共重合体である(図 7(a))^{(25)~(30)}. ここで xは BB-5(3-Me)の分子量(kg mol⁻¹), yはPEMAの体積分率(%)である.BB-5(3-Me)はベンゼ ン環2つが連結したビフェニルと柔軟なアルキル鎖がエス テル結合を介して交互に連結されたポリエステル(高分子)で ある.液晶性高分子には剛直棒状の液晶構造を形成するメソ ゲンが含まれる.BB-5(3-Me)はメソゲンであるビフェニル が一方向に並ぶ(配向する)とともに,層状に凝集してスメク チック(Sm)液晶構造を形成する⁽³¹⁾.分子鎖中にあるメソゲ ンが配向することでそれらを連結するスペーサーは伸びた形 態をとる.このSm液晶は結晶化せず,T_g=35℃でガラス 転移, 150℃で液体に相転移する.一方, PEMA は非晶性で, T_gは70℃である.BB-5(3-Me)のSm層法線方向のヤング 率 *E*は27 MPa, PEMA の*E*は1.4 MPa(100℃, 周波数1 Hzの動的粘弾性測定)であり、この液晶ブロック共重合体 がラメラ状ミクロ相分離すると、100℃では液晶ブロックが 硬質層, PEMA ブロックが軟質層のミルフィーユ構造とな る.

B5-x-EMA-yは y が20~50の幅広い組成範囲でラメラ状

図7 B5-x-EMA-yの(a)化学構造式,B5-29-EMA-22フィルム試料の(b)SAXS像,(c)TEM像と(d)構造モデル.
(b),(c)の矢印は延伸方向.(d)の黒い楕円体はメソゲンを示している.文献⁽³⁰⁾から許諾を得て一部改変して転載.(オンラインカラー)

特 集

ミクロ相分離する⁽²⁷⁾⁽²⁸⁾. B5-29-EMA-22を溶媒に溶かし た溶液をシャーレに入れ、ゆっくりと溶媒を蒸発させてフィ ルムを調製する. そのフィルムを160℃で延伸, BB-5(3-Me)が液晶状態になる100℃で熱処理して試料を調製した. 小角 X 線散乱(SAXS)像と TEM 像から、フィルム試料内で ラメラが延伸方向に積層していることが確認できる(図7 (b), (c)). また, 広角 X 線散乱で BB-5(3-Me)のメソゲン が凝集した Sm 層がラメラに平行に積層していることがわか る.以上からフィルム試料内での分子の凝集構造は図7(d) のように描くことができる.液晶ブロック共重合体を用いる ことで溶融物を延伸、熱処理するだけで、ラメラ構造が延伸 方向に積層した単一ドメイン・ラメラ構造のフィルム試料が 調製できる.熱処理中,延伸で付与された液晶セグメントの 配向は維持される一方、非晶成分は移動してミクロ相分離構 造が再配向、試料内で一様となって単一ドメインが形成され る(26).

(3) 伸長変形によるキンク形成と応力応答

B5-29-EMA-22フィルム試料を100℃に昇温すると,BB-5(3-Me)からなる硬質層とPEMAからなる軟質層が一方向 に積層した単一ドメイン・ミルフィーユとなる.フィルム試 料を100℃で積層方向に延伸しながら、ミルフィーユ構造の 変形を放射光 SAXS で観察した(図8(a)-(e)).延伸比 λ の 増加に伴い、SAXS 像は次のように変化した:反射の数と 強度が増加し(図8(b))、反射が方位角方向に広がったのち (図8(c))、4点にスプリットした(図8(d),(e)).所定の λ に延伸後、25℃に急冷した試料のTEM像(図8(f)-(h))か ら、X線反射の方位角方向への広がりと、4点スプリット が、それぞれミルフィーユ層の波うちと折れ曲がり(キンク) に対応することが分かる⁽²⁹⁾⁽³⁰⁾.

ミルフィーユ構造の間隔 d と傾き角 θ_{LAM} を SAXS 像から

図8 B5-29-EMA-22フィルム試料の(a)-(e)SAXS像(伸長方 向は上下)および(f)-(h)TEM像(矢印は伸長方向,スケ ールバー:500 nm).各パネルの右下の数字は延伸比 λ の値.文献⁽³⁰⁾から許諾を得て一部改変して転載.(オン ラインカラー)

決定し、 λ に対してプロットした(図9). λ =1.0(未延伸)で も θ_{LAM} が20°であるのは構造の揺らぎによる. $\lambda < 1.7$ で θ_{LAM} は25°までの増加にとどまる一方、dは31 nm から44 nm に増加する. $\lambda > 1.7$ では、 θ_{LAM} は60°に急増(SAXS は 4 点スポット像に変化)したのち80°に漸近する. 一方、増加し たdは減少し、 $\lambda = 2.8$ で $\lambda = 1.0$ での値に回復する. SAXS 像と同時測定した応力-延伸比(σ - λ)曲線(図10)で、公称応 力 σ は弾性領域を経て $\lambda = 1.15$ で最大値0.95 MPa をとり、 その後 λ が1.6から3に至るまで一定値0.75 MPa をとる平 坦領域を示す. 以上から、弾性領域はラメラ間隔の拡大に、 σ が最大値から一定値に減少する領域はミルフィーユ構造の 波うちに、平坦領域はミルフィーユ構造の折りたたみと θ_{LAM} の増加に対応していることが分かる. 高分子ミルフィ ーユ構造に波うちや折りたたみが生じる(キンクが導入され る)と、 σ は降伏したのち一定値を保つ.

 図 9 B5-29-EMA-22フィルム試料の(○)ラメラ間隔 d, (△)
ラメラ法線が伸長方向となす角 θ_{LAM}のλに対する変化.
●は B5-29-EMA-44延伸フィルム試料の d. 値は SAXS で決定した. 文献⁽³⁰⁾から許諾を得て転載.

図10 (a) B5-29-EMA-22および(b) B5-29-EMA-44フィルム 試料の σ-λ 曲線. 温度100℃,引張速度 5% min⁻¹で測 定. 文献⁽³⁰⁾から許諾を得て転載.(オンラインカラー)

(4) 硬質層の広さに依存するミルフィーユの変形と応力

図10には B5-29-EMA-44の σ - λ 曲線も示してある. B5-29-EMA-44は B5-29-EMA-22の2倍の非晶体積分率 (PEMA 分子量)を持ち、ラメラ構造を形成する. これら2 つのブロック共重合体の σ - λ 曲線は弾性領域では重なるも のの、B5-29-EMA-22の σ が最大値をとって減少するのに 対し、B5-29-EMA-44の σ は、増加率は小さくなるものの 増加し続け、 λ =2.8では B5-29-EMA-22の σ の2倍にもな る. この応力応答の違いの要因は何であろうか.

B5-29-EMA-44のミルフィーユ構造は,広さの狭い硬質 層からなっている.ラメラ状ミクロ相分離構造に由来する SAXS 反射は B5-29-EMA-22の反射に比べると,ラメラ方 向に広がっている(図11(a)).このようなラメラ方向への反 射の広がりは広さの狭いラメラ層の積層と対応する.狭いラ メラは TEM 像で BB-5(3-Me)鎖が凝集したラメラ(黒色の ストライプ)が所々切断されていることから確認できる(図 11(f)).切断されたラメラの間には PEMA 鎖が存在する.y が大きな B5-x-EMA-y 共重合体に見られる分断ラメラ構造 である⁽²⁷⁾.

硬質層が分断されたミルフィーユ構造を積層方向に伸長し ながら測定した SAXS 像では、 λ の増加に伴って反射位置 が小角側に移動してゆく(図11(b)-(e)).反射位置から決定 したラメラ間隔は55 nm から120 nm(SAXS 分解能の限界) 以上まで広がる(図10).延伸でラメラが波うちや折りたた み(キンク形成)なしに間隔を広げる様子は TEM 像(図11 (g)-(i))でも確認できる.

応力は高分子鎖が引っ張られて増加するのだろうか.高分 子鎖が十分に長く絡み合っていればそうかもしれない.しか し,B5-29-EMA-44でBB-5(3-Me)の両端から1本ずつ成 長している PEMA の分子量(10500)は PEMA が絡み合う臨 界分子量12000よりも小さく,PEMA 鎖が絡み合っている ことはない.

図11 B5-29-EMA-44フィルム試料の(a)-(e)SAXS 像(伸長 方向は上下)および(f)-(i)TEM 像(矢印は伸長方向,ス ケールバー:500 nm).各パネルの右下の数字は λ の 値.文献⁽³⁰⁾から許諾を得て一部改変して転載.(オンラ インカラー)

ラメラ厚 $d_{LC}(●)$ と非晶ブロックラメラ厚 $d_{am}(\blacktriangle)$ の λ に対する変化.白抜き印は B5-29-EMA-22の値.(b) 伸長変形に伴う d, d_{LC} , d_{am} の変化.マークは(a)と同 じ.文献⁽³⁰⁾から許諾を得て転載.(オンラインカラー)

SAXS 強度プロファイルを二相ラメラ構造モデルの散乱 強度理論式でフィッティングして、BB-5(3-Me)と PEMA のラメラの厚さ(d_{LC} , d_{am})を決定した(図12(a)). λ の増加に 伴い d_{LC} に比べて d_{am} が顕著に増加する. このことは延伸前 のラメラ厚との比($d_{LC}/d_{LC,0}$, $d_{am}/d_{am,0}$)で見るとより明確に なる(図12(b)). B5-29-EMA-22では $d_{LC}/d_{LC,0}$ の値と $d_{am}/d_{am,0}$ の値は一致しているのに対して、B5-29-EMA-44では λ の増加に伴い $d_{am}/d_{am,0}$ の値は $d_{LC}/d_{LC,0}$ の値の2倍以上に なり、 d_{am} が d_{LC} よりも顕著に増加していることが分かる. TEM 像を見ても明るいストライプ(PEMA 層)のほうがよ り厚くなっている. 厚くなった PEMA 層はより伸長した PEMA 鎖で充填される. 応力の増加はPEMA鎖が伸長する ことで失ったエントロピーに起因すると考える.

(5) まとめ

液晶ブロック共重合体が形成する単一ドメイン・ミルフィ ーユを積層方向に伸長変形させながら SAXS と σ の同時測 定を行い,ミルフィーユの変形(キンク導入)と応力応答との 関係を調査した.キンク導入(ラメラ層の波うち)は σ の降 伏を伴った. σ が降伏後一定値をとる間,層はより大きく傾 いた.硬質層が狭いミルフィーユでは、 λ の増加に伴いキン クが導入されないまま、dは拡大、 σ は増加し続けた.この σ の増加は、硬質層よりも顕著に厚さを増加させる軟質層を 形成する高分子鎖のエントロピー損失に由来すると考えた.

6. おわりに

金属材料・セラミックス材料・高分子材料の代表的なキン ク組織・構造の解析現状を概説した.金属材料・セラミック ス材料から発案された「ミルフィーユ構造」「キンク強化」 であったが、その視点から改めて高分子材料を捉えたとき、 built-in での微視的ミルフィーユ構造の形成や、多数の系で のキンク形態の報告例等、宝の山であったことは本稿で述べ られている通りである.結晶性高分子材料では、ミクロなせ ん断変形(すべり面)が分子鎖方向に限定されていることを考 えると、元々キンク変形を生じやすい物質であるとも言え る.変形素過程の基礎的理解も含めて,互いに学ぶべきところは非常に多いと実感する⁽³²⁾.元来,軽量構造材料の開発は3大材料に共通する主要課題である.領域研究を通して,真に分野横断的な学理連携に基づく新しい展開をもたらしたい.

文 献

- (1) http://www.mfs-materials.jp/:新学術領域研究「ミルフィー ユ構造の材料科学」
- (2) E. Orowan: Nature, **149**(1942), 643–644.
- (3) Y. Kawamura, K. Hayashi, A. Inoue and T. Masumoto: Mater. Trans., **42**(2001), 1172–1176.
- (4) E. Abe, Y. Kawamura, K. Hayashi and A. Inoue: Acta Mater., 50(2002), 3845–3857.
- (5) M. Barsoum, L. Farber and T. El–Raghy: Met. Mater. Trans. A, **30**(1999), 1727–1738.
- (6) A. Argon and E. Orowan: Philos. Mag., $\boldsymbol{9}(1964)$, 1003–1021.
- (7) H. Hawthorne and E. Teghtsoonian: J. Mater. Sci., **10**(1975), 41–51.
- (8) R.B. Meyer: Philos. Mag., 27(1973), 405-424.
- (9) J.B. Hess and C.S. Barrett: JOM, 1(1949), 599–606.
- (10) V. Volterra: Ann Sci De L'école Normale Supérieure, 24 (1907), 401–517.
- (11) A.E. Romanov: Mater. Sci. Eng. 164(1993), 58-68.
- (12) M. Oh, M. Cho, D. Chung, I. Park, Y. Kwon, C. Ophus, D. Kim, M. Kim, B. Jeong, W.X. Gu, J. Jo, J. Yoo, J. Hong, S. McMains, K. Kang, Y.–E. Sung, P.A. Alivisatos and T. Hyeon: Nature, 577 (2020), 359–363.
- (13) M. Murayama, J. Howe, H. Hidaka and S. Takaki: Science, 295 (2002), 2433–2435.
- (14) Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang and M. Dresselhaus: Nat. Mater., **11**(2012), 759–763.
- (15) E. Abe, A. Ono, T. Itoi, M. Yamasaki and Y. Kawamura: Phil. Mag. Lett., **91**(2011), 690–696.
- (16) M. Egami, I. Ohnuma, M. Enoki, H. Ohtani and E. Abe: Mater. Design, 188 (2020), 108452.
- (17) D. Egusa, M. Yamasaki, Y. Kawamura and E. Abe: Mater. Trans., 54(2013), 698–702.
- (18) D. Egusa, R. Manabe, T. Kawasaki, S. Harjo, S. Sato and E. Abe: Mater. Today Commun., **31**(2022), 103344.

- (19) X.H. Shao, Z.Z. Peng, Q.Q. Jin and X.L. Ma: Acta Mater., 118 (2016), 177–186.
- (20) M.W. Barsoum: Prog. Solid State Chem. 28(2000), 201–281.
- (21) M. Higashi, S. Momono, K. Kishida, N.L. Okamoto and H. Inui: Acta Mater., 161 (2018), 161–170.
- (22) A.N. Stroh: Proc. R. Soc. London A, **223**(1954), 404–14.
- (23) J. Aslin, E. Mariani, K. Dawson and M.W. Barsoum: Nat. Commun., 10(2019), 686.
- (24) 高分子学会編:基礎高分子科学第2版,東京化学同人, (2020),210-220,247-253.
- (25) R. Ishige, T. Ishii, M. Tokita, M. Koga, S. Kang and J. Watanabe: Macromolecules, 44 (2011), 4586–4588.
- (26) M. Koga, K. Sato, S. Kang, K. Sakajiri, J. Watanabe and M. Tokita: Macromol. Chem. Phys., 214(2013), 2295–2300.
- (27) M. Koga, K. Abe, K. Sato, J. Koki, S. Kang, K. Sakajiri, J. Watanabe and M. Tokita: Macromolecules, 47(2014), 4438– 4444.
- (28) 古賀舞都, 戸木田雅利:高分子論文集, 71(2014), 501-507.
- (29) J. Kuribayashi, R. Ishige, M. Hayashi and M. Tokita: Macromol. Chem. Phys., 221 (2020), 2000042.
- (30) S. Yagi, M. Oguro and M. Tokita: Macromol. Chem. Phys., 223(2022), 2100399.
- (31) K. Osada, M. Koike, H. Tagawa, M. Tokita and J. Watanabe: Macromol. Chem. Phys., 205(2004), 1051–1057.
- (32) 成沢郁夫:日本金属学会会報, 27(1988),650-656.

- 2014年 東京大学大学院工学研究科博士課程修了 2014年4月-2017年9月 株式会社 UACJ 勤務員
- 2017年10月 現職

専門分野:材料科学

◎電子顕微鏡法による材料組織・微細構造の解析を中心に、高機能軽量材料 (Mg・Al 合金)の特性解析および新規材料の開発に従事.

戸木田雅利

阿部英司