

1-6-1 はじめに

微細組織の観察や,その組織に対応する構造・組成・電子 状態などを計測できる透過型電子顕微鏡(Transmission Electron Microscope, TEM)は,材料解析・開発には欠くこ とのできない装置です.近年,その性能が格段に向上し,操 作性についても大きく改善され,高い分解能のもとで組織観 察や分析が誰でも簡単にできるようになっています.本稿で は,TEM に関する構造と仕組みについて概説します.具体 的な操作方法や観察事例については次回以降に説明しますの で,合わせて参考にしてください.TEM は,多岐にわたる 観察や分析技法を有していますので,ここで紹介できる内容 は,そのごく一部でしかありません.本稿の最後に教科書を 紹介していますので,ぜひ,それらも参考にして理解を深め てください.なお,本文中で用いられている用語や詳細な構 造などは用いる機種によって異なる場合があります.取扱説 明書などに従うようにしてください.

1-6-2 光学顕微鏡, 走査型電子顕微鏡との違い

反射型光学顕微鏡は,可視光線を試料に照射して,表面から反射してきた光を光学レンズで拡大して像を形成します. 走査型電子顕微鏡(SEM)は,加速したプローブ状の電子線 を試料表面上で走査し,試料表面から発生した2次電子や 反射電子の強度を,プローブ走査と同期させてモニター上に 像を形成します.前者はレンズの屈折作用を用いること,後 者は試料表面とモニター上での走査範囲の比を用いる違いは あるものの,いずれも試料表面の組織を拡大します.一方, 透過型光学顕微鏡は,可視光線を試料に照射し,透過した光 を光学レンズで拡大します.TEM も,基本的には透過型光 学顕微鏡の仕組みと同様¹¹です.加速した電子を,薄片化さ せた物体に照射し,透過した電子を多数の電磁レンズ(磁界 型電子レンズ)群で順次拡大していきます.両者ともに,得 られる像は試料内部の構造を反映しています.ただし, TEM は,透過型光学顕微鏡とは比較できないほど多様な機 能を有しています.

1-6-3 構造の概要

図1に一般的な TEM の外観およびカット図を示していま す.カット図において斜線が付された四角形が,光学顕微鏡 の光学レンズに相当する電磁レンズ(以下レンズ)や,電子線 の傾きや位置などを調整するコイルを表しています.多数の レンズやコイルなどが組み込まれていて,さらには,その調 整や試料駆動のためのダイヤルやボタンが操作パネルに多数 揃えられています.一見,複雑怪奇な構造です.これらすべ ての操作方法を覚えることは非常に手間がかかります.とこ ろが,各レンズなどの機能を整理して理解すると,意外と簡 単に使えるようになります.

図2は電子線の経路を光に置き換えて簡潔に示した模式図 です(電子線の場合にも光学系という表現が用いられます).

^{†1} 電子線を広げた状態で試料に照射して像を観察することを TEM 照射と呼びます.一方,走査透過型電子顕微鏡(Scanning Transmission Electron Microscope:STEM)では,細く 収束した電子線を試料上で走査しながら像を観察します. TEM 照射と区別するために,このときの照射のことを STEM 照射と呼称します.なお,TEM 照射の時には,平行 照射という言葉がしばしば用いられます.この時の電子線照 射は,光軸に対する電子線の角度が変わることなく進行している状態(光軸に対して平行)です(図4(b)を参照ください. C2 レンズ以降は,破線で示した光軸に対して電子線が平行に 進行しています).試料に対して平行照射する,という表現が よく用いられますが,この平行照射とは,上に述べたような 照射状態を指しており,試料に対して平行な方向からの照射 ということではありません。平行照射は,例えば,回折図形 の撮影時などで重要となります.

 ^{*} 名古屋大学大学院工学研究科;1)教授 2)技術補佐(〒464-8603 名古屋市千種区不老町)
Keywords: transmission electron microscope, bright field image, dark field image, electron diffraction, selected area diffraction (透過型電子顕微鏡,明視野像,暗視野像,電子線回折,制限視野回折)
2022年4月4日受理[doi:10.2320/materia.61.346]

図1 TEM の外観およびカット図の例(使用する TEM の機種により構成等は異なります).

カット図では、熱電子放出型の電子銃が搭載された TEM について示しています.まず,試料位置を確認してください.試料ホル ダーと記載されている箇所です.これよりも上方(電子銃の方向)が照射系,試料の直下に設置されているのが対物レンズ,それよ りも下方(蛍光板側)が拡大系です.照射系は,電子銃,その光源(本文図2では点光源A)を調整する電子銃偏向コイル(偏向コイ ル2個が1組),照射系レンズである集束レンズ(コンデンサーレンズ)群,試料への電子線の傾きや位置を調整する偏向コイル, 形状を整える非点補正コイルが並びます.カット図では集束レンズが3段として描かれていますが,その機能は本文で説明する 通り2段の作用として簡略化して考えることができます.集束ミニレンズは試料への収束角度を調整したり,光学系の安定性を 向上させるために設置されていますが,機種に依存します.対物レンズの非点補正コイルは,像質を左右する重要なコイルです. その下段に設置されている偏向コイル(イメージシフト偏向コイル)は,像の位置を電気的に移動させるときに利用します.その下 段の非点補正コイルは、回折斑点の非点を修正します.図に示した機種では、中間レンズが3段構成になっています.その下段 の偏向コイルは、回折斑点の非点を修正します.回折図形の撮影時に調整します.観察される像は蛍光板上に投影されま す.さらに、その細かい情報を見るときには、双眼鏡顕微鏡を用います.像を撮影するときには、この蛍光板を破線で示すように 立てることで、像をカメラ室の方へ通過させます.最近は、フィルムではなく CCD カメラが用いられています.ここに示した構 成や上記の説明は簡易的に述べています.

図中の試料位置を確認してください.これより上方を照射 系,試料の直下にあるレンズを対物レンズ¹²,それよりも下 方を拡大系と大きく分けています.照射系は,電子銃から発 せられた電子線を,電子線の形状(広げるか,収束させる か,明るくするか,暗くするかなど)を調整して試料上に照 射します.対物レンズは,試料を透過した電子線を最初に拡 大します.また,電子線回折図形(以下,回折図形)の観察に も重要な役割を果たします.拡大系レンズ群は,対物レンズ で形成された像や回折図形を適宜拡大して蛍光板に投影しま す.これら大きく3つに分類した各レンズ群に対して,電 子線の傾きや位置などを調整する偏向コイルと,電子線の形 状を整える非点補正コイルがそれぞれセットされている,と まずは覚えてください.

図2の模式図をもう少し詳しく見ていきましょう.電子 銃^{t3}から発せられた電子は,電子銃に付随している静電レン ズでいったん収束されて点光源Aを作ります.この位置を

電子銃の静電レンズ (最初の点光源 Aを形成する)

電子銃の静電レンズで作られる点光源 A

電子銃から発せられた電子線は、電子銃に設置されている静電 レンズによって点光源Aを形成します.集束レンズC1はスポ ットサイズを調整します.集束レンズC2は、試料上への電子 線の大きさや位置などを調整します.試料を透過した電子線 は、対物レンズによって、回折図形、第一中間像を形成しま す.後段の拡大系レンズ群は、この回折図形や第一中間像を拡 大して蛍光板へ投影します.また、これらの光学系には、集束 絞り、対物絞り、制限視野絞りの3種類の絞りが設置されて います.

^{†2} 近年の対物レンズの多くは励磁強度が高くなるように設定されている C/O レンズ構成になっています. C は集束レンズ, O は対物レンズを意味しています. 1-6-6-1項を参照ください.

Gun crossover point と呼称します. この点光源 A は, 最初 の集束レンズである C1 レンズによって、次の点光源 B へと 投影されます. この位置を C1 crossover point と呼びます. C1 レンズの励磁(電流値)を変えると、この点光源 B の明る さ(スポットサイズと呼称される)を変えることができます. C1 レンズで作られた点光源 Bは、次の集束レンズである C2 レンズによって試料上へ投影されます. ここでは集束レ ンズの作用を簡易的に理解するために2つの集束レンズを 用いて説明していますが、2つの集束レンズを連動して調整 したり、図1のカット図に示すように3つの集束レンズを 連動して用いています.使用している機種に依存します. C2 レンズ(最下段の集束レンズ)の励磁を変えると、試料上 に照射される電子線の領域(大きさ)を調整できます. 操作パ ネルの Brightness ダイヤル^{*4}は、この C2 レンズの励磁を変 えています. Brightness ダイヤルを回転させると、蛍光板 上で明るく見える範囲が変化する様子を確認できます. C2 レンズの位置(近傍)には、電子線の径(光軸からの角度)を機 械的に制限するための集束(コンデンサー)絞りが挿入されま す.スポットサイズや集束絞りを用いて, 試料上に照射する 電子線の明るさ(電流量)やプローブ状に細く収束させるとき の最小径などを調整できます.多くの場合,集束絞りの穴径 は、その面積が半分程度ごとに変わるように用意されていま す. 一段小さい絞り径へ変えると, 照射量(電流量)がおよそ 1/2 減少します.

試料を透過した電子線は、対物レンズで拡大されて、最初 の像である第一中間像を形成します.試料へのピント調整 は、対物レンズの励磁を変化させて行います.この調整には Focus ダイヤルを用います.対物レンズは試料の微細構造を 最初に拡大するため、TEMの分解能はこのレンズの性能に 依存します.また、対物レンズの焦点距離の位置(後焦点面) には回折図形が形成され、この位置(近傍)には対物絞りが挿 入されます.絞りの径や位置を調整して、透過波を含むよう にして観察するのが明視野観察法、回折波を用いるときには 暗視野観察法と呼称します(1-6-8 を参照).

拡大系レンズは、図2において一つのレンズとして描か れていますが、実際には複数のレンズで構成されています. 図1のカット図を参照してください.最下段(蛍光板に近い 方)のレンズを投影レンズ,それ以外を中間レンズと呼称し ます.これらのレンズ群は、対物レンズで形成された第一中 間像や回折図形を物体に見立てて、そこにピントを合わせる ようにして拡大し、蛍光板上へと投影します.第一中間像の 位置には制限視野絞りが挿入されます.この制限視野絞りを 用いると,像の必要な箇所を選択し,その箇所からだけの回 折図形を撮影することができます(制限視野回折法,1-6-9 を参照).

以上, 簡潔に述べましたが, 操作パネルに設置されている 各種ダイヤル類の多くは, 照射, 対物, 拡大系の各レンズ群 の励磁調整(集束レンズは Brightness, 対物レンズは Focus, 拡大系は Diff focus), および, それぞれのレンズ群 にセットされている偏向コイル, 非点補正コイルの調整用に 分類されます.まずは大まかに覚えてしまうことが肝要です.

1-6-4 凸レンズの作用

電磁レンズは凸レンズ作用のみを有します¹⁵. この基本を 頭に入れておくと,電子顕微鏡の光学系を理解しやすくなり ます.図3は,焦点距離がfの凸レンズの作用を示していま す.物体側の焦点を前焦点,像側の焦点を後焦点と呼称しま す.レンズからaの距離に置かれた物体(矢印)を距離bの位 置に投影して像を形成しています.f,a,bの間には式(1)の ような近似関係が成り立ちます.

$$1/a + 1/b = 1/f$$
 (1)

図3に示す光線図を参照して、fを変更した時や、物体の位置 a を変えた時の光線図を描いてみると、レンズの結像作用 がよく理解できると思います. 凸レンズは拡大だけではな

図3 凸レンズの基本的な光線図. 凸レンズでは倒立像が形成されます.物体からレンズまでの距 離をa,レンズから像までの距離をb,凸レンズの焦点距離を f,とすると,近似的に、1/a+1/b=1/fの関係式が成り立ち ます.投影される像が拡大されるか(拡大投影),縮小されるか (縮小投影)は、物体と前焦点との位置関係で決まります.凸レ ンズは拡大作用も縮小作用も有しています.TEMでは、物体 の位置を変えずに、電磁レンズの焦点距離fを変化させていま す.図中に赤線で示した光線経路は、Xの位置にある点光源 が、Yの位置へ投影される時の光線経路を示しています.

^{†3} 電子銃には、フィラメントを加熱して電子を放出させる熱電子放出型、および、電界を用いて電子を引き出す電界放出型が用意されています.さらに、電界放出型は、ショットキー型と冷陰極型の二種類に分類されます.熱電子放出型は、電子線量(電流量)が多く、輝度は低く、光源の大きさが大きくなります.対して、電界放出型は、電流量は小さく、輝度は高く、光源の大きさは小さくなります.より小さな領域での分析を行いたいときには、電界放出型が適しています.

^{*4} 本文中に記載されている各調整用ダイヤルの名称には、汎用 性の高い名称を用いています。機種によっては異なる表記が 用いられていることもありますので注意ください。

^{*5 1-6-6-1}項で述べた一般的なラウンド型レンズ(図8)とは異なり、光軸に対して垂直に電磁石を配置したポール型レンズ(例えば、類似する構造は図5に示した構造)は、凹レンズの作用を有します.STEM 照射時に電子線をより細く収束させるために実用化された球面収差補正機には、このポール型電磁レンズが組み込まれています.凸レンズと凹レンズの組み合わせによって、球面収差を大きく低減させています.

表1 加速電圧と電子の波長.

加速電圧/kV	電子の波長/nm
100	0.00370
120	0.00335
200	0.00251
1000	0.00087

く,縮小作用も有していることが分かるかと思います.電磁 レンズの場合も基本的には式(1)に示した関係に従いま す.ただし,TEMでは物体の位置を変えることはできませ んので,レンズに流れる電流を調整して,焦点距離fを変化 させます.fを調整することで像の拡大率を変えたり,縮小 させて電子線を収束させたりします.STEM(^{†1}を参照)で は,常に電子線を細く収束させたプローブ状態で使用します.

図3には、教科書などでよく見かける凸レンズを用いた 点光源投影に関する光線図を赤線で示しています。矢印の根 本(X)から発せられた光線は、その投影位置である矢印の根 本(Y)に収束しています.要は,光軸上に置かれた点光源 が、ピントが合う位置(式(1))へ像点として投影されてい る様子が描かれている図であることが分かります. この投影 された光点は、もとの点光源の大きさ、形状が正しく相似形 として投影されているべきですが、実際にはボケて投影され ます.投影される像は、物体上の各点(点光源)から発せられ た光の合成ですから、ボケて投影された光点の集合で投影像 が構成されることとなります。レンズの分解能は、このボケ の大きさで主に制限されます. ボケを与える要因は収差と呼 称され,回折収差,球面収差,色収差^{*6},がその代表です. その一つの回折収差は、用いている光の波長に依存し、簡易 的には式(2)のように表わされます. 電子線が凸レンズで 投影される時にも同様のボケが生じます.ただし表1に示す ように、電子線の波長は可視光線と比較して非常に短いた め、回折収差の影響は格段に小さくなります.

$$\delta_{\rm d} = \frac{0.61\lambda}{\sin\theta} \tag{2}$$

ここで、 δ_d は回折収差の大きさ、 λ は用いている光(電子)の 波長、 θ は点光源からの光がレンズで像点へと収束する時の 角度にそれぞれ対応しています.

1-6-5 照射系について

図4は照射系レンズ(図2のC2レンズ,もしくは,最下 段の集束レンズ)の励磁を変化させたときの光線模式図を示 しています. TEMを利用するときに頻繁に操作する

^{†6} 回折収差は、図3においてXから発せられた光がYへ収束するときに生じる干渉によって生じます.球面収差は、式(1)の関係が必ずしも成立せずに、図3におけるYの位置以外で光軸を交差するために生じる収差です. 色収差は、用いている光の波長分散に起因する収差です.

図4 C2 レンズの励磁強度と試料上での照射面積の関係. 図では左図から右図方向へC2 レンズの励磁強度が増加してい ます.励磁強度を変更すると,試料に対する電子線の照射方向 (角度)が変化することに注意してください.照射面積が同じで も,試料に対する電子線の傾きが大きく異なります((a)と(d) を比較).平行に近い照射条件((b)の状態)になっているか否 かは,C2 レンズの励磁強度と関係しています.回折図形や像 を撮影するときには,(d)のような照射条件は適していません.

Brightness ダイヤルを調整した時に対応しています. 蛍光 板上で電子線を広げたり収束させたりしているのは、この C2 レンズの励磁強度と関係しています.像を観察するとき には試料に対してなるべく平行に近い状態の電子線を照射す ることが適しています(図 4(a)から(b)のような照射状態). そのため、蛍光板上の明るい領域を広げるときには Brightness ダイヤルの回転方向に注意しなければなりません.図4 に示すように, Brightness ダイヤルを一定方向に回転させ ていくと(C2レンズの励磁を一定に変化させていくこと. (a)から(d)になるほど励磁が増加しています), 蛍光板上で 広がっていた電子線が,徐々に収束し, Crossover 状態を経 て,再度広がっていきます.図4の(a)と(d)を比較する と、蛍光板上(試料上)での照射径はほぼ同じですが、電子線 の経路が全く異なっていることがわかります.回転方向を間 違えると、蛍光板上では同様に広がっているように認められ ても、図のように平行方向とは逆の状態となっていることが あります. Brightness ダイヤルの回転方向とC2 レンズの励 磁変化との関係を確認しておきましょう^{†7}.

上述したように、照射系レンズには非点補正コイルが設定 されています.非点補正コイルは、収差の一つである非点を 調整するための簡易的なポール型レンズの一種です(図5参 照).レンズを通過した時に生じる電子線の形状変化(電子線 の断面形状と考えてよい)などを、真円に調整するために使 用します.図6に照射系レンズの非点の有無を示していま す.非点が存在する状態では電子線が楕円状になっているこ とがわかります(図6(a)).この形状を非点補正コイル(Condenser Stigma)を用いて調整します(図6(b)).一方,偏向 コイルも設置されています.この偏向コイルは図7に示すよ うに電子線を傾けるためのコイル(Deflector)が二対で一組 となっています.図7(b)のように作用させると、試料上の

^{*7} 操作モニターには各レンズの電流値を表示することができます.この表示を見ながら Brightness ダイヤルを回してみると C2 レンズの励磁変化が理解できます.

図5 非点補正コイルの構造概略図. 図の中心部分を紙面に対して垂直方向に電子線が進行します. コイルは、この光軸に対して垂直方向に設置されています.コ イルの励磁方向(N極、S極)を図のように設定すると、中央を 通過する電子線に対して、プロック矢印で示すような形状変化 を与えることができます.図は4極子構成の例を示しています.

電子線位置を変更することなくその傾きを調整できることが 分かります.一方,図7(c)のように作用させると,傾きは 変わらずに位置を変えることができます.前者をTilt,後者 をShift と呼称します.Beam-tilt¹⁸を利用すると,試料に対 する電子線の傾きが変化するので,回折図形の位置が移動し ます(回折条件も変化します).この操作は,後述する暗視野 観察時に必要となります(操作は暗視野モードで行います). また,対物レンズに入射する角度も調整できますので,対物 レンズの電圧中心や電流中心の調整にも用います¹⁹.Beam-Shift は,電子線の照射位置を調整するときに使用します. TEM 使用時には前述の Brightness ダイヤルと同様に頻繁に 使用します.プローブを用いた分析時には,分析したい箇所 へ電子線を移動させるときにも使用します.

 図7 (a) 光軸方向から見た偏向コイル(Deflector),および, 1 対の偏向コイルが,(b) Tilt 操作に対応するとき, (c) Shift 操作に対応するときの模式図.

偏向コイルは、コイルで発生させた磁力を用いて、電子線を一 方向に曲げる作用を有しています.偏向コイルは、二つが一組 として設置されており、両者を連動させて駆動させます. (b)、(c)において、偏向させている角度(赤矢印)の大きさや 向きが異なっていることに注意してください. Tilt や Shift 操 作の時には、これらの角度や向きを連動して変化させています. Tilt の場合には、傾斜させても試料上での位置が変わらないよ うに、また、Shift では移動させても試料に対する傾斜角度が 変わらないように、二つの偏向コイルの励磁割合が適切に調整 されています.図1のカット図も参照ください.

1-6-6 対物レンズ

1-6-6-1 対物レンズの構造

一般的な TEM の対物レンズは,図8に示すように,光軸 に対してドーナツ型にコイルが設置されているラウンド型レ ンズで構成されています.この構造の電磁レンズは,磁界に よるローレンツ力を用いて電子線を光軸方向へ曲げる作用を 有しています.電子線が電磁レンズに入射すると,光軸に対 して螺旋運動を始め,進行とともにその回転半径が小さくな り,やがて,光軸上で収束し,そのまま螺旋運動を続けなが ら再び広がっていきます.光学凸レンズと同様の作用を電子 線に対して与えます.コイルで発生させた磁力(起磁力)を, 透磁率の高い材料で作られたヨークで誘導し,ヨークに付さ れたギャップ(切り欠き)部分に集中させるような構造になっ ています.このギャップ部分に発生する磁場によって,図8 (c)に示すようなレンズが構成されます.近年では,起磁力 が高く,かつ,ギャップ間隔の小さい C/O レンズ構成が一 般的です.Cは集束レンズ(Condenser Lens),Oは対物レ

^{*8} 機種にもよりますが、照射系レンズ群に付随している偏向コイルでのTilt, Shiftは, Beam-tilt, Beam-shiftと呼称されます。他のレンズ群については図2を参照ください。

^{*9} 扱いやすく、もしくは、収差が小さくなる方向に電子線を通過させるための調整が必要となります.電圧中心(HT wobbler)は、加速電圧をわずかに振動させて、その時に生じる像の振動中心のブレが最も小さくなるように調整します.対物レンズの色収差が最も小さくなるような対物レンズの光軸を通過するように調整しています.電流中心(Objective lens wobbler)は、対物レンズの励磁を僅かに振動させて、この時に生じる像の位置振動の中心が蛍光板の中心になるように調整します.対物レンズの励磁を変化させたときに生じる像のズレを小さくすることに有効に作用します.

図8 電磁レンズの構造模式図.

コイルは光軸に対してドーナツ状に設置されています((a),(b)). コイルで発生した磁力は,ヨーク部分のギャップ(切り欠き)に 集中されて電磁レンズが形成されます.高い分解能が要求される対物レンズでは,(b)に示したギャップ中に,より精密加工され たポールピース((c))が設置されています(機種によってこの構成などは変わります).C/Oレンズ型の対物レンズでは,このポー ルピース間のギャップ中に,集束レンズ(第一レンズ)と対物レンズ(第二レンズ)が形成されます.高分解能型になるほど,ギャッ プ間隔は小さく(狭く)なります.これは,レンズの焦点距離が短くなるほど,収差が小さくなる傾向にあるためです. 試料ホルダーは,このギャップ中に挿入されます.試料を機械的に傾斜させるときの角度は,このポールピース間のギャップの大 きさで制限されるため,高分解能型では傾斜許容角度が小さくなります.機種にもよりますが,このギャップ間隔は数 mm 程度 しかありませんので,試料ホルダーの挿入時には十分な注意が必要です.

ンズ(Objective Lens)を意味しています.対物レンズと呼称 されていますが,集束レンズと対物レンズ両者の機能を有し ています.この集束レンズは,照射系レンズ群の最終段レン ズとなります.試料は,この二つのレンズの間(図8(c)のギ ャップ)に挿入されます.高分解能型の対物レンズはギャッ プ間隔が小さいため,試料の傾斜可能角度が小さく制限され ます.

1-6-6-2 対物レンズと回折図形

図9は、対物レンズの作用で重要な回折図形が形成される 仕組みを模式的に示しています.図では、物体を示す太矢印 が、凸レンズによって左右逆方向の拡大像として投影されて います.物体と像とは相似形で拡大されていますので、物体 のある点から発せられた光は、像上の相似形で対応する点へ と投影されます.ここで、物体の太矢印が単結晶であると仮 定します.単結晶を仮定しているため、同じブラッグ回折条 件を満たす電子線は、太矢印のどの位置からも同じ方向へ進 行します.そして、凸レンズによって、像上の対応する位置 へそれぞれ進行します.このときの進行方向を追っていく と、同じブラッグ回折条件を満たした電子線は、レンズの後 焦点面において一点に交わることが分かります.これが、回 折斑点に対応します.

拡大系レンズの物体位置(ピント位置)を第一中間像に合わ せると、蛍光板上にはその像が拡大されて投影されます.一 方,拡大系レンズのピント位置を、この回折図形に合わせた 場合(対物レンズの後焦点位置)には、拡大された回折図形が 投影されることとなります.つまり、拡大系レンズの励磁を 変化させて、そのピント位置を変えることで、像と回折図形 とを切り替えて観察できるということになります.操作パネ ル上にある回折モード切替スイッチは、拡大系レンズ群のピ ント位置を上述したように変えているのです.この切り替え 時には、照射系レンズや対物レンズの励磁は変化していない ことに注意しましょう.

図9 回折図形の形成について.

太矢印は単結晶試料を仮定しています. Y1 と Y2, および, Z1 と Z2 は, それぞれ同じブラッグ回折条件で進行していま す. それぞれの電子線は,投影された太矢印の対応する場所に 向かって進みます. 例えば, Y1 は,太矢印の後端から出てい きますので,像の太矢印の同じ後端位置へと進みます. 同様に 太矢印の先端からブラッグ回折した Y2 (Y1 と平行)は,矢印 の先端へと進みます. 結晶中で同じブラッグ回折を起こした Y1 と Y2 は,後焦点面上の一点で交わる(集まる)ことが理解 できます. この点の配列が回折図形に対応します.

後段の拡大系レンズが,対物レンズの後焦点位置にピントを 合わすと,蛍光板上には,回折図形が拡大されて投影されるこ とになります.この時の拡大率は,カメラ長として表現されま す.

回折図形撮影時には、図4(b)に示すような平行状態の電 子線を照射することが必要です.この条件を正しく合わせる ことは少々厄介です.対物レンズの電流中心を合わせるため のボタンを押します(Objective lens wobbler).すると、対 物レンズの電流値が自動でわずかに増減し、対物レンズの焦 点距離が変化(振動)します.この状態で蛍光板を見ると、試 料上に現れている電子線の径が増減する様子が見えます.こ の変化が最も小さくなるようにBrightnessダイヤルを調整 します.次に,このままの状態で回折モードに切り替えま す.この時に回折斑点がピンボケしているときには,中間レ ンズのピント位置調整(Diff-focusダイヤル)で合わせましょ う.ところで,このピント位置を故意にずらしていくと,回 折斑点の大きさがそのずれに応じて拡大されていきます.こ の拡大された回折斑点の中を観察すると像が見えます.この 時の像は,回折斑点ごとに異なっています.これは,異なる 結晶面から回折した電子線で形成された像となるためです. ぜひ,一度,試してみてください.

さて、この対物レンズにも非点補正コイルが設置されてい ます.対物レンズの非点補正は像質に強く影響します.これ については次回に説明します.ところで、レンズによる回折 図形の形成は、対物レンズのみで生じているわけではありま せん.いずれのレンズにおいても同様に生じています.回折 図形の撮影には、対物レンズで形成された回折図形を利用し ているだけです.

1-6-7 拡大系レンズ群

拡大系レンズの主な役割は、対物レンズで形成される第一 中間像や回折図形を拡大することです.像を蛍光板上へ投影 する時の拡大率を倍率という言葉で表現します. これと同様 に、回折図形の拡大率はカメラ長という言葉で表現します. 倍率の値が大きいほど像が拡大されているのと同様に、カメ ラ長が長いほど,拡大された回折図形を観察できます.拡大 系レンズの非点調整は、主に回折図形の撮影時に調整しま す. 試料の無い箇所で回折図形を観察し, 上述したようにピ ントを合わせます. この時に透過斑点の形状が真円でない場 合には、この非点補正コイルを用いて真円形状になるように 調整します. また, 偏向コイル(PL alignmentダイヤル) は、蛍光板上での回折図形位置を移動させるために使用しま す.透過斑点が蛍光板中心位置に来るように調整します. こ の操作では、試料に対する電子線の傾斜は変更されませんの で、前述(1-6-5)した回折図形の位置移動とは全く異なりま す.注意してください.

1-6-8 対物絞りと観察方法

対物レンズの後焦点面位置には対物絞りが設置されていま す.この絞りを挿入して,透過波(斑点)や回折波(斑点)を適 宜選択して観察を行います.図10に示すように透過斑点を含 めるのが明視野像,透過斑点を含めずに回折斑点のみを含め るのが暗視野像です.明視野像の場合には,透過斑点のみを 用いても構いませんし,径の大きな絞りを用いて透過斑点を 含む複数の回折斑点を同時に含めても構いません(厳密な意 味では異なりますが).回折斑点の数を減らすほど,得られ る像のコントラストは高くなります.コントラストが高いこ とは像質として優れていますが,反面,淡いコントラスト変

図10 (a)対物絞り,制限視野絞りの挿入位置,(b)~(d)対物 絞りを用いた透過斑点,回折斑点の選択,(e)制限視野 絞りを用いた像の選択,に関する模式図.

(b)~(e)において、赤線で示した領域内が絞りで選択できる大 きさに対応しています.赤線の外側の領域は各絞りで遮断され ています. また, (b)~(d)の各回折図形において, 中心に位置 する斑点が透過斑点,それ以外は回折斑点に対応しています. 対物レンズの後焦点面位置には、異なる穴径が複数用意された 対物絞りが設置されています.回折モードにして,回折図形を 見ながら、この絞りを挿入し、必要な回折斑点を選択します。 明視野観察時には、(b)に示すように、基本的には透過斑点の みを選択すべきですが、コントラストの関係から、(c)に示す ように,より径の大きな絞りを用いてもかまいません.穴径が 小さいほど(選択する回折斑点の数が少ないほど)コントラスト は高くなります.淡いコントラストを得たいときには穴径を大 きくします.暗視野観察時には、(d)に示すように、目的とす る回折斑点のみが選択されるように径の小さな絞りを用いま す. 複数の回折斑点を絞りに含めてしまうと, 異なる結晶面か らの回折情報が含まれてしまうこととなるので、暗視野観察と いう観点からは好ましくありません. (d)では回折斑点の位置 が、中心位置からずれていますが、暗視野観察時には、この回 折斑点が透過斑点の位置(蛍光板の中心)に来るように調整して 行います.

制限視野絞りは、対物レンズの第一中間像面に設置されていま す.この絞りを用いる制限視野回折法は、(e)に示すように像 の一部を制限視野絞りで選択し、回折モードに変更すること で、選択した領域内((e)では矢印を付した結晶粒)の回折図形 のみを得る方法です.赤線で示した絞り径の大きさが、矢印を 付した矩形の結晶粒の内側に位置していることに注意してくだ さい.制限視野回折法は、像とその結晶構造に関する情報とを 相関させることができる優れた方法です.

化などが潰れてしまうことがあります(黒とび,白とびなど と表現されます).この様なときには,径の大きな絞りを用 いてコントラストを低くすることも一つの方法です.一方, 暗視野像の場合には,用いる回折斑点のみを選択することが 必要となりますので,できるだけ径の小さな絞りを用いて撮 影することが必要です.暗視野モードに切り替えて,目的と する回折斑点の位置を,透過斑点があったもとの位置へと移 動させます(予め透過斑点の位置を蛍光板の中心位置に調整 しておいて,その位置へ回折斑点を移動させます).この移 動は,Beam tiltダイヤル(照射系レンズ群の偏向コイル)を 用います.拡大系レンズ群の偏向コイルである PL alignment ダイヤルではありませんので注意してください.

高分解能である対物レンズを搭載している機種では,透過 波と複数の回折波を径の大きな絞りに入るようにして高倍率 で撮影すると,原子位置を反映した高分解能像や結晶面の位 置を反映した格子像を撮影することもできます.この観察方 法や前述した暗視野観察法については,次回以降に説明しま す.

1-6-9 制限視野回折法

TEM の大きな特徴の一つは, 試料の微細組織とその結晶 情報とを相関させられることです. この方法にはいくつかあ りますが, 最も用いられているのが制限視野回折法です. こ れは, 対物レンズで形成される第一中間像に制限視野絞りを 挿入して, 任意の箇所を選択し, その回折図形を得る方法で す(図10(e)を参照).像と回折モードを適宜切り替えて, 目 的とする試料箇所での結晶情報を得ることができます. ただ し, この方法で回折図形を得ることのできる最小の領域は, 制限視野絞りの最小径で制限されます. それよりも小さい領 域の回折図形を撮影するためには次項のナノビーム回折法を 用います.

1-6-10 ナノビーム回折法

数10 nm 程度以下の領域から回折図形を得る場合には,前 項の制限視野回折法を用いることはできません. この時には 分析時と同様に収束させたプローブ状の電子線を用いて回折 図形を取得するナノビーム(電子線)回折法(Nano Beam (electron) Diffraction: NB(E)D, 以下 NBD)を用います. この方法を用いると、結晶情報が得られる空間的な大きさ を、プローブの大きさ程度まで小さくすることが可能です. これまで述べてきた回折図形の取得時には原則として試料に 対して平行な照射条件を用いてきましたので、回折斑点は点 状でした(図9を参照). これに対して NBD では, 試料上へ 電子線を収束させているため、得られる回折図形にはその収 束角度の効果が現れます¹¹⁰. 図11に示すように回折斑点が ディスク状(円板状)になります.回折斑点の位置関係から結 晶情報を解釈するときには,回折ディスク径が大きすぎると 互いに重なりが生じてしまうために、解析が困難になること があります. これを避けるためには、より小さな集束絞り径 を用いるなどの工夫が必要となります.ただし、明るさとの

- 図11 ナノビーム回折(Nano Beam Diffraction)の模式図(電子 線の進行方向を横向きで示しています).電子線は,照 射系レンズ群で調整され試料上に収束させています. 試料に対する電子線の収束角度が存在するために,回 折斑点はディスク状(円板状)になります.このディス ク径は,収束角度に依存します.
- †10 収束角をより大きくして回折ディスクを撮影する収束電子回 折法(Convergent Electron Beam Diffraction, CBED)と呼ば れる結晶の対称性や歪,格子定数の精密測定などを行う優れ た方法もあります.興味のある方は,ぜひ参考文献(1)(3)を 参照してください.

兼ね合いともなりますので適宜選択してください.

撮影時には,目的とする個所にプローブを移動させて,回 折モードに切り替えます.回折モードへの切り替え時には, 拡大系レンズの励磁が変化していることに注意してくださ い.励磁が変化すると,周囲に影響する磁場(漏えい磁場)も 変わりますので,その影響を受けてプローブ位置が意図せず に移動してしまうことがあります.目的としていた箇所とは 異なる箇所からの回折図形を撮影していたということがしば しば生じてしまいます.この影響は用いている電子顕微鏡ご とに異なりますので,厳密には,予め確認しておく必要があ ります.

1-6-11 おわりに

TEM の構造や仕組みについて概観しました. TEM を用い ると様々な情報を得ることができます. ここで紹介した内容 は,そのごく一部でしかありません.また本文中に用いた用 語なども使用している機種によって変わる場合もあります. ご注意ください.参考文献に紹介しました書籍をぜひ参考に してください.なお,具体的な使用方法などの説明は,次回 を予定しています.ぜひ,その説明も参考にしてください.

文 献

本稿では透過型電子顕微鏡法について概略しか述べていません. より詳細な内容を知りたい場合には下記の優れた教科書等の購入を 強く勧めます.

- David B. Williams and C. Barry Carter: Transmission Electron Microscopy, Springer, USA (2009).
 この教科書は4分冊で構成されており,内容も豊富で説明 も非常に平易に記述されています.また,原理だけではな く,本体の構造も含めた周辺機器類についても十分に説明さ れています.必ず所有すべき教科書の一つです.
- (2)坂 公恭著:結晶電子顕微鏡学,内田老鶴圃,(1997). この教科書では,結晶を観察するときに必要となる種々の 知識が集約されています.
- (3)田中通義,寺内正己,津田健治著:やさしい電子回折と初等 結晶学一電子回折図形の指数付け,収束電子回折の使い方 一,共立出版,(2014).
- 結晶の構造決定についてわかりやすく解説されています. (4) 今野豊彦 著:物質からの回折と結像一透過電子顕微鏡法の基礎,共立出版,(2003). 物質において生じる電子線の回折現象について,詳細に, かつ,理解しやすく記述されています.回折を勉強したい場合には,必ず一読することを勧めます.

上記以外にも例えば電子顕微鏡メーカーの解説ページ https://www.jeol.co.jp/words/などが参考になります.

 ★★★★★★★★★★★★★★★★★★★★★
1989年 東京大学大学院工学系研究科修士課程修了
1997年 博士(工学)取得
2011年6月 現職
専門分野:セラミック材料学
②セラミック材料の焼結・組織・機能制御や,結晶粒 界・界面の原子構造・電子状態制御・解析に関する 研究に従事.

山本剛久