

三次元組織解析の最前線 前編

FIB-SEM による 3 次元構造解析

仲野靖孝*

1. はじめに

本稿では, 集束イオンビーム(Focused Ion Beam: FIB)加 工観察装置と走査電子顕微鏡(Scanning Electron Microscope: SEM) 複合装置である FIB-SEM についての解説と FIB-SEM を用いて3次元構造解析を行った結果について述 べる.本技術の特長は、FIB 加工によって試料内部の構造 や欠陥を露出させ,SEM を用いてその構造を観察・分析で きることである. また, FIB 加工と SEM 観察を1つのサイ クルとして複数回行うことで、連続断面 SEM 像を取得する ことができる.この連続断面 SEM 像を 3 次元再構築するこ とで, 試料の内部構造を立体的に解析できる(1). この手法を 用いることで、注目する内部構造、任意の断面画像や介在物 の空間分布を容易に表示でき、かつ表面積や体積などを定量 的に解析することもできる⁽²⁾.電子顕微鏡を用いた3次元 観察手法には,透過電子顕微鏡(Transmission Electron Microscope: TEM) · 走查透過電子顕微鏡(Scanning Transmission Electron Microscope: STEM)を用いた電子線トモグ ラフィー法もある. それぞれに特長はあるが, FIB-SEM を 用いた3次元観察は、試料前処理の簡便さ、3次元再構築で きる領域の広さと数 nm の空間分解との両立が魅力である.

2. FIBとは

FIB 加工観察装置は,集束されたイオンビームを試料に 照射し,表面の原子を弾き飛ばすスパッタリング現象を用い て,目的の箇所を加工する装置である⁽³⁾.また,集束された イオンビームを試料上に2次元で走査して,そこから発生 した2次電子を結像することで,走査イオン顕微鏡(Scanning Ion Microscope: SIM)像を取得することができる. こ れにより, 試料表面を観察することが可能である.

一般的な FIB のイオン源には、Ga⁺ イオンが用いられる. Ga⁺ イオンビームは、数~数十 keV に加速され、そのビー ム径を数~数百 nm まで集束できる. これにより、数 nm オ ーダーの位置精度で微細加工を行うことが可能である⁽⁴⁾. 図 1に、様々な断面加工法・断面加工幅・加工精度の関係図を 示す. 機械研磨は、mm オーダー以上の断面加工に向いてお り、加工精度は50~100 µm である. アルゴンイオンミリン グに代表させるブロードイオンビーム(Broad Ion Beam: BIB)は、機械研磨よりも高い精度での加工が可能で、加工 精度は20~50 µm で断面加工幅は10 mm 以下である. Ga⁺ イオン FIB は、数 nm の加工精度をもち、断面加工幅は数 nm~数百 µm である. また近年は、プラズマ FIB(Plasma

* 株式会社日立ハイテク;技師(〒312-0033 ひたちなか市市毛1040) 3D Structural Analysis by FIB-SEM; Kiyotaka Nakano(*Hitachi High-Tech Corporation, Hitachinakashi) Keywords: *fib: focused ion beam, sem: scanning electron microscope, semiconductor, 3d-ebsd: three dimensions electron backscatter diffraction, carbide drill, principle* 2021年0月24日受照[doi:10.2220/metorin f1.22]

2021年9月24日受理[doi:10.2320/materia.61.22]

Focused Ion Beam: PFIB)やフェムト秒レーザー(以下,「fs レーザー」と略す)を用いた製品も販売されている. PFIB は, Ga⁺ イオン FIB よりも広い 1 mm の断面加工を行うこ とができ,加工精度は,100 nm 程度である.また fs レーザ ーは,100 mm の断面加工を行うことができ,加工精度は10 µm 程度である.このように様々な装置が開発されており, 加工幅や加工精度の用途に合わせて装置を選択する必要があ る.

3. SEM とは

SEM は、収束させた電子線を試料上に2次元で走査し て、そこから発生した信号を結像して画像を取得できる装置 である.図2に、電子線照射により試料から発生する信号の 模式図を示す.電子線を試料に照射した場合,試料からは、 2次電子(Secondary Electron: SE)、後方散乱電子(Backscattered Electron: BSE)、特性X線、蛍光、電子線後方散 乱回折、オージェー電子、吸収電子などの信号が発生する. SEM では、主に、表面情報を有するSE や組成・結晶情報 を有する BSE を像情報形成に用いる.また、特性X線は組 成分析、電子線後方散乱回折は結晶方位計測に用いることが でき、そのための各種分析機器をSEM と組み合わせること で画像取得だけでなく、様々な情報を得ることができる.

4. 連続断面 SEM 像の取得と3次元再構築⁽⁵⁾

図3は、3次元再構築データ取得までの手順を示す模式図 である.試料は、円柱の内部に円錐形がある構造を有す.図 3(a)に、試料の上面像を示す、一定のスライスピッチで矢 印方向に加工を行い、破線(1~9)の断面観察を行うと、図3 (b)に示すような試料の構造に対応した連続断面 SEM 像が 取得できる.スライスピッチを考慮し連続断面 SEM 像を画 像処理ソフトでつなぎ合わせることで、図3(c)のような試 料の3次元構造が再構築される.試料の上面像や一部の断 面像からでは試料内部の円錐形状を把握することは困難であ

図2 電子線照射により試料から発生する信号の模式図.

るが、このような3次元再構築データであれば、外形だけ でなく、内部の構造や、実際に取得したのとは違う任意の方 向の断面を表示することができ、ボリュームレンダリングな ども可能になる.

5. FIB-SEM 装置の構成

FIB-SEM 装置は、FIB と SEM の光軸が試料上で交差す るように設計されており、FIB 加工によって作製された試 料の断面は、即座に SEM 観察することができる.FIB カラ ムと SEM カラムの配置には、大きく分けて斜め配置型カラ

図4 FIB カラムと SEM カラムの位置関係図.

ムと直交配置型カラムの2種類がある.図4にFIBカラム とSEMカラムの位置関係図を示す.図4(a)(b)は,斜め配 置型カラムで,垂直方向にFIBカラムを有し,斜めから SEMカラムを搭載している場合と,垂直方向にSEMカラ ムを有し,斜めからFIBカラムを搭載している場合があ る.図4(c)は直交配置型カラムで,垂直方向にSEMカラ ムを有し,水平方向にFIBカラムを搭載している.

斜め配置型カラムは、様々なサイズの試料を試料室内に挿 入でき, TEM 用の試料作製に用いられている. しかし, 連 続断面 SEM 像を取得した場合, FIB カラムと SEM カラム が斜めの関係で配置されているため、断面 SEM 画像の y 方 向が圧縮された画像になる.また,視野もz方向とy方向の 2方向でズレが生じるため、位置補正量が大きくなる.一 方, 直交配置型カラムは, 試料室内に挿入できる試料サイズ が比較的小さいサイズに限られている.しかし,連続断面 SEM 像を取得した場合, FIB カラムと SEM カラムが直交 の関係で配置されているため、断面 SEM 像は、真上から観 察された圧縮のない像となり、空間分解能に方向による差異 のない画像が取得できる.また,視野は,切削が進む z 方向 にズレが生じるだけで、位置補正量は極めて小さくなる.図 5に斜め配置型カラムと直交配置型カラムのSEM 像を比較 した結果を示す. 試料は 3D NAND メモリーで, 観察条件 は,加速電圧:25 kV,信号:BSE で取得した画像である. 図 5(a)は、斜め配置型カラムで取得した SEM 像で、y 方向 の傾斜補正処理をした画像であり、図5(b)は、直交配置型 カラムで取得した画像である. それぞれの画像を比較した場 合, (a)の方が同心円状にある各層のコントラスト差が低 い. また, 直径を測長した結果, (a)は111 nm, (b)は, 118 nm であり, 計測値にも違いが生じる. このことより, 試料 構造を忠実に反映した連続断面 SEM 像取得の目的には,直 交配置型カラムの方が適していると言える.

6. FIB のスライスピッチ精度

FIBのスライスピッチは、スキャンの条件設定によって 任意に制御することが可能である.スライスピッチが小さい

100 nm

図 5 斜め配置型カラムと直交配置型カラムによる SEM 像.
(a)斜め配置型カラム(配置角度:54° 傾斜補正済み)
(b)直交配置型カラム
試料:3D-NANDメモリー,加速電圧:25 kV

図 6 スライスピッチ精度を確認した Al 配線断面 STEM 像. (a) 0 枚目 (b)57枚目加工後 試料: Al 配線 加速電圧: 25 kV

実験回数	スライス回数		
1回目	57		
2回目	56		
3回目	57		
4 回目	57		
5 回目	57		
平均值	57		
標準偏差	0.71		

表1 スライスピッチ精度の測定結果.

ほど、微細な構造の3次元再構築ができる. スライスピッ チの精度は、3次元再構築データのz方向の分解能に直結 し、その再現性が重要である.図6に、スライスピッチ精度 の測定例を示す. 試料は Al 配線を用い, マイクロサンプリ ング法⁽⁶⁾で摘出した後,厚さ:100 nm の薄膜試料にした. STEM 像から, Al 配線が114 nm 間隔で配線されているこ とが確認できる. FIB 加工を試料右端より矢印方向に2nm のスライスピッチでFIB加工を進め、スライスごとに STEM 像を取得した.スライス回数の理論値は,114 nm を 2nmで除算した57回になる.図6(a)はスライス加工0枚 目,図6(b)は、スライス加工57枚目のSTEM像で、次の Al 配線の手前まで加工されているのが確認できる.表1 は,スライスピッチ2nmで114nm加工を5回行い,その スライス回数の平均と標準偏差を算出した.5回の平均値は 57回,標準偏差は0.71であった.この結果から,2nm スラ イスピッチ精度が確認できた.

7. 超硬ドリル母材の3次元観察

直交型カラム FIB-SEM (Hitachi NX9000)を用いて,超硬 ドリル母材である超硬合金の3次元観察した結果について 述べる.

図7は,超硬ドリル母材の断面 SEM 像である.加速電 E:1kV で SEM 観察した結果を示す.SEM 像(a)から,1

 図8 超硬ドリル母材の3次元構築結果.(オンラインカラー) (a)ボリュームレンダリング (b)WCの3次元分布 (c)Coの3次元分布 (d)Vの3次元分布 試料:超硬ドリル 加速電圧:1kV, スライスピッチ:5nm,スライス枚数:285枚

~2µmの明るいコントラスト粒子と0.1~0.5µmの黒いコ ントラスト粒子が分散していることが確認できる.破線で囲 んだ領域を8倍に拡大した図を(b)に示す.超硬合金の母材 は、タングステンカーバイト(WC),結合剤のコバルト (Co)、添加剤のバナジウム(V)で構成されており、それぞれ 異なるコントラストで観察されている.

図8に,超硬ドリル母材の3次元再構築結果を示す.連 続断面SEM像は,加速電圧:1kV,スライスピッチ:5 nm,スライス枚数:285枚を取得した.3次元再構築ソフト ウェアは,MEDIA CYBERNETICS社製Image-Pro Premier3Dを用いた.図8(a)はボリュームレンダリングで, WC, Co, Vの3次元分布が確認できる.図8(b)(c)(d)は コントラストを3階調に分け抽出した各元素の3次元分布 を示す.各階調ごとにラベリングし,それぞれの体積が求め た.表2に超硬ドリル母材の体積割合を示す.全体の体積は 33.72 µm³ で,WCは25.56 µm³,Coは8.15 µm³,V は0.01

表 2	超硬ド	リル中の体積割合

項目	WC	Co	V	合計
体積(µm ³)	25.56	8.15	0.01	33.72
体積率(%)	75.79	24.17	0.04	100

μm³であることが分かった.この結果より,体積割合は, WC が75.79%, Co が24.17%, V が0.04%であることが分 かる.連続断面 SEM 像の3次元再構築結果は,断面 SEM 像1枚だけでは想像しにくい3次元的な分布が把握でき, 材料ごとの3次元表示,体積や体積割合などを求められる.

8. FIB-SEM と分析装置の組み合わせ

試料がどのような元素で構成されているか,結晶がどの方 向を向いているかを分析するには,SEMに各種分析装置を 組み合わせた測定が必要である。例として,図9に結晶方位 を3次元解析した結果を示す電子線後方散乱回折(Electron backscatter diffraction: EBSD)法は,試料に電子線を照射し たときに発生する菊池パターンを解析することで,結晶方位 や結晶系が測定できる分析手法である。各測定点で図9(a) に示すような EBSD パターンを取得して,解析することで 図9(b)のような結晶方位マップを作製することができる. また,FIB で断面加工して EBSD 分析するサイクルを繰り 返すことで 3D-EBSD データを取得できる。図9(c)に, 3D-EBSD の結果を示す. 試料はニッケル(Ni)で, SEM の 観察条件は,加速電圧:20 kV,スライスピッチ:150 nm, スライス枚数:150枚,1サイクル時間:9 min/枚,総加工 観察時間:22.5 hour である.この手法を用いることで3次 元の結晶方位情報を得ることができ,結晶の配向性や結晶粒 の体積分布の評価に活用できる.また,金属の亀裂部で分析 を行えば,亀裂の3次元的進展と結晶方位の関係を評価で きる.

9. ま と め

FIB-SEM についての解説と FIB-SEM を用いて3次元構 造解析結果について紹介した.FIB-SEM を用いた3次元観 察は3次元的な試料構造を表示するだけでなく,定量的な 計測を行える点に大きな利点がある.一方,FIB 加工や3 次元再構築処理によるアーティファクトが発生する場合もあ るので,前処理や,観察条件に注意する必要がある.今後の 試料解析において,断面画像1枚の2次元解析だけでな く,空間分解能,分析領域,組成情報など目的に合わせた3 次元解析手法を選択する必要性が増加すると思われる.本稿 が、各分野の解析に携わる方々の助けになれば幸いである.

文 献

- (1) B. J. Inkson, M. Mulvihill and G. Möbus: Scr. Mater., 45 (2001), 753–758.
- (2) H. Z. We, S. G. Roberts, G. Möbus and B. J. InKson: Acta Mater., 51 (2003), 149–163.
- (3) R. L. Seliger and W. P. Fleming: J. Vac. Sci. Technol., 10 (1973), 1127.
- (4) T. Ishitani and T. Ohnishi: J. Vac. Sci. Technol., A9(1991), 3084–3089.
- (5) 森川晃成:応用物理学会第, 81(2012), 512-515.
- (6) T. Ohnishi et al.: JAPAN Patent 2774884.

仲野靖孝

2006年 名城大学大学院工学研究科修士課程修了 主な略歴 2006年4月 株式会社 日立ハイテクノロジーズ 入社

2020年4月 株式会社 日立ハイテク 解析ソリュ ーション開発部 所属

専門分野:FIB-SEM・化合物半導体 ◎電子顕微鏡・FIBのアプリケーション技術の研究 開発に従事.
