講義ノート

金属製錬の熱力学(第3回)

11. 平衡状態図

金属製錬反応の考察には、温度と相の間の平衡関係を示す 平衡状態図が不可欠である.多くの反応は大気圧下(大気圧 近傍)で起こるので、報告されている多くの状態図は、1 atm での、温度と組成の平面図中に安定相が示されている.平衡 状態図上では、平衡状態の物質の相関係が示されているの で、そこに表される相関係は、相律をはじめ熱力学の法則に 従っていなければならない.状態図を読み取るには、どの相 とどの相が平衡しているかを見いだすと理解しやすくなる.

熱力学データが十分に測定されていれば,状態図を作製す ることができる.逆に,平衡状態図は,熱力学データを集大 成して図示したものであるから,測定された平衡状態図から 熱力学データを推定することが可能である.近年,計算状態 図の分野は非常に発展している.

非常に単純な二元共晶系状態図を例として説明する. 複雑 な状態図でも,また三元系等の成分が増えた場合でも,相の 間の化学ポテンシャルが等しいということに基づいた考え方 は同じである.

図9で表される非常に単純なA-B二元共晶系を考える. 共晶温度以上で,純物質固相であるAまたはBと液相Lが 平衡しているとする.純物質固相Aと液相が温度Tで平衡 しているので,液相のAの化学ポテンシャル

$$\mu_{\rm A}^l = \mu_{\rm A}^{\circ l} + RT \ln a_{\rm A}^l \tag{122}$$

と固相のAの化学ポテンシャル

$$\mu_{A}^{\circ} = \mu_{A}^{\circ} + RT \ln a_{A}^{\circ} = \mu_{A}^{\circ}$$
(固相純物質 $a_{A}^{\circ} = 1$) (123)
は等しい.

$$\mu_{\rm A}^l = \mu_{\rm A}^s \tag{124}$$

$$RT \ln a_{\rm A}^{l} = -(\mu_{\rm A}^{\circ l} - \mu_{\rm A}^{\circ s})$$

= -[($H_{\rm A}^{\circ l} - H_{\rm A}^{\circ s}$) - T($S_{\rm A}^{\circ l} - S_{\rm A}^{\circ s}$)]
= -[$\Delta H_{\rm Af}^{\circ} - T\Delta S_{\rm Af}^{\circ}$] (125)

月

橋

文

孝*

ここで $\Delta H_{A_f}^{\circ}$ はAの溶融熱, $\Delta S_{A_f}^{\circ}$ はAの溶融のエントロピー変化である. Aの融点 T_{Am} では

$$T_{\rm Am} = \frac{\Delta H^{\circ}_{\rm Af}}{\Delta S^{\circ}_{\rm Af}} \tag{126}$$

であるので,

$$RT\ln a_{\rm A}^{l} = -\Delta H_{\rm Af}^{\circ} \left(1 - \frac{T}{T_{\rm Am}} \right) \tag{127}$$

となる.理想溶液を仮定すれば(y_A=1),

$$RT\ln x_{\rm A}^{l} = -\Delta H_{\rm Af}^{\circ} \left(1 - \frac{T}{T_{\rm Am}}\right) \tag{128}$$

となる. 純物質 A の溶融熱と融点から,液相の A の組成 x_A^t と温度 Tの関係,すなわち液相線が推算できる. 成分 B に ついても同様の関係

$$RT\ln x_{\rm B}^l = -\Delta H_{\rm Bf}^{\circ} \left(1 - \frac{T}{T_{\rm Bm}}\right) \tag{129}$$

が得られ、成分 B 側の液相線が得られる.両者の交点から、共晶組成と共晶温度が推定できる $(x_{\rm B}^{\rm l}+x_{\rm B}^{\rm s}=1)$. これは 理想溶液を仮定し液相線のみを考慮した推算であるので、実 測の平衡状態図からのずれがある.逆にいえば、実測の状態

Thermodynamics of Metal Smelting (III); Fumitaka Tsukihashi (Emeritus Professor, The University of Tokyo, Tokyo) Keywords: thermodynamics metal smelting chamical potential equilibrium activity solution blass diagram chemical potential

Keywords: thermodynamics, metal smelting, chemical potential, equilibrium, activity, solution, phase diagram, chemical potential diagram, basicity, capacity of slag

2020年10月16日受理[doi:10.2320/materia.60.572]

よって,

^{*} 東京大学名誉教授

図10 正則溶液近似による異なる温度での活量の推算.

図とのずれは理想溶液からのずれを表すので、状態図から活 量を推算できる.

図10の液相線から、均一液相となっている温度 T_{II} での活量を推定する方法を説明する.式(127)から、A の液相線上で組成 x_k での液相線温度 T_I から、温度 T_I ,組成 x_k での液相の活量 $a_A^l(T_I)$ を求めることができ、そのときの活量係数

$$\gamma_{\rm A}(T_{\rm I})\left(=\frac{a^l_{\rm A}(T_{\rm I})}{x_k}\right)$$

を求められる.

温度 T_{II} での活量 $a_{A}^{i}(T_{II})$ を組成の関数として求めるに は,通常 \bar{H}_{A}^{M} が測定されていないので,式(130)の正則溶液 近似により,温度 T_{I} での活量係数 $y_{A}(T_{I})$ を温度 T_{II} での 活量係数 $y_{A}(T_{II})$ に換算し,活量 $a_{A}^{i}(T_{II})$ を得る.

 $\bar{H}_{A}^{M} = RT_{I} \ln \gamma_{A}(T_{I}) = RT_{I} \ln \gamma_{A}(T_{I})$ (130) 同様に A の液相線上で共晶組成までの組成範囲で温度 T_{II} での A の活量 $a_{A}^{i}(T_{II})$ を求めることができる.

共晶組成より B 成分側では,同様に式(129)により温度 T_{II} での B 成分の活量係数を組成の関数として求める. Gibbs-Duhemの関係を用いて, B 成分の活量係数から A 成分の活量係数を求め, A 成分の活量を得る.

純A組成から共晶組成までと,共晶組成から純B組成ま での両者の活量を合わせて,全組成範囲での活量を推算する ことができる.

12. 均一液相内および不均一相間の化学反応

一般に化学反応を

 $\nu_1 A_1 + \nu_2 A_2 + \nu_3 A_3 + \dots + \nu_r A_r = 0$ (131) とする. A_i を化学種, ν_i を化学量論係数とする. 反応系の 化学量論係数を負,生成系の化学量論係数を正として,反応 系を左辺,生成系を右辺にまとめれば,通常の化学反応式の 形となる.生成系から反応系へ変化したときの系の化学ポテ ンシャル変化は

$$\Delta \mu = \sum_{i=1}^{r} (\nu_i \,\mu_i) \tag{132}$$

となる.化学平衡となる条件は,反応系と生成系の化学ポテンシャルが等しいことであるので,

$$\Delta \mu = \sum_{i=1}^{r} (\nu_i \, \mu_i) = 0 \tag{133}$$

が条件である.第i成分の化学ポテンシャルは前述のように, $\mu_i = \mu_i^\circ + RT \ln a_i$ (43)

により成分の純物質基準の活量で書き換えることができる. これを上式に代入すると,

$$\sum_{i=1}^{r} (v_i \mu_i) = \sum_{i=1}^{r} (v_i \mu_i^\circ) + RT \sum_{i=1}^{r} \ln a_i^{v_i}$$
$$= \sum_{i=1}^{r} (v_i \mu_i^\circ) + RT \ln \prod_{i=1}^{r} a_i^{v_i}$$
(134)

となる.ここで,

 $\sum_{i=1}^{r} (\mathbf{v}_i \, \boldsymbol{\mu}_i) \, (= \Delta \boldsymbol{\mu})$

は反応による化学ポテンシャルの変化, $\sum_{r}^{r} (v_{i} \mu_{i}^{\circ}) (= \Delta \mu^{\circ})$

は純物質の反応による化学ポテンシャルの変化である.

$$RT\ln\prod_{i=1}^{r}a_{i}^{\gamma_{i}}(=RT\ln K(T,P))$$

は平衡定数 K(T, P)で表されるので,

$$\Delta \mu = \Delta \mu^{\circ} + RT \ln K \tag{135}$$

である.ここで $\Delta \mu^{\circ} = \Delta G^{\circ}$ と表し、反応の標準 Gibbs エネ ルギー変化という.ここで ΔG° の値は Gibbs エネルギーで なく、単位物質量あたりの Gibbs エネルギー(単位 J/mol)で あることに注意する必要がある.

$$\Delta G = \Delta G^{\circ} + RT \ln K \tag{136}$$

において、化学平衡の条件 $\Delta \mu = \Delta G = 0$ (1

では

$$\Delta G^{\circ} = -RT \ln K \tag{138}$$

が得られる.この関係式により,金属製錬反応を含め種々の 化学反応で反応の標準 Gibbs エネルギー変化から平衡定数 を求めることができ,製錬プロセスの解析で実用的に大変重 要な式である.

金属製錬反応で生じる金属液相とスラグ液相の間の反応の 平衡を取り扱うには,異なる相間の化学ポテンシャルが等し いこと(式(121))を利用して,同一相内にあるものとして取 り扱うことで,式(138)を利用して平衡状態を予測すること ができる.

化学反応が右向きに進行するか、左向きに進行するかは ΔG° ではなく ΔG の値で判断する. $\Delta G < 0$ であれば反応は 正反応の向きに、 $\Delta G > 0$ であれば逆反応の向きに反応は進 行する. ΔG° は標準状態にある化合物の反応が進行するか の指標であり、 $\Delta G^{\circ} > 0$ であっても、活量係数比の項を小さ くして $\Delta G < 0$ とする条件を整えることにより、反応を進行 させることができる.

Gibbs-Helmholtzの式(式(139))から,式(140)のvan't

(137)

Hoff 式が得られる.
$$\frac{d\left(\frac{\Delta G^{\circ}}{T}\right)}{dT} = -\frac{\Delta H^{\circ}}{T^{2}}$$
(139)

$$\frac{d\ln K}{dT} = \frac{\Delta H^{\circ}}{RT^2}$$
(140)

この式より吸熱反応($\Delta H^{\circ} > 0$)では,温度の上昇に伴い平衡 定数は大きくなり反応は進行する.発熱反応($\Delta H^{\circ} < 0$)で は,温度の上昇に伴い平衡定数は小さくなり反応は進まなく なる.このことはルシャトリエの原理に対応している.

先に述べたように Gibbs エネルギー変化 ΔG は、1 mol あたりのエネルギーである示強性状態量(単位は J/mol)であり、示量性状態量である Gibbs エネルギー(単位は J)と異なる.

同じ記号で示強性状態量と示量性状態量を混用して用いて いる場合があるので,注意が必要である.

Gibbs エネルギーの値は、比熱やエンタルピー、エントロ ピー値のデータから求めることできるが、データ集には Gibbs エネルギーの値も載っているので、求めたい反応に関 与する化合物の Gibbs エネルギーから計算することができ る.

標準生成 Gibbs エネルギーは多くの化合物について測定 されデータ集にまとめられているので、化合物の生成反応を 組み合わせて、求めたい反応の Gibbs エネルギー変化を計 算できる.また、反応の Gibbs エネルギー変化がわかって いれば、反応の平衡定数を求めることができ、各成分の平衡 組成、平衡分圧の見積もりに用いられる.

13. 化学ポテンシャル状態図

酸化反応

を考えると,
$$\frac{2x}{y}$$
 M+O₂(g) → $\frac{2}{y}$ M_xO_y (141)

$$\Delta \mu^{\circ} = \Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = -RT \ln K$$
$$= -RT \ln \left(\frac{a_{M,O_{\gamma}}^{2/y}}{a_{M}^{2/y} \cdot P_{O_{\gamma}}} \right)$$
(142)

の関係から,成分の化学ポテンシャルと温度をパラメータと して,共存する相の安定領域を示す図をつくることができ る.相の安定領域が温度,雰囲気を変数として図上でわかる ので,反応プロセスの解析に非常に有用である.組成と温度 で表される通常の状態図と基本的に同じであり,状態図を別 の切り口から眺めたものと考えればよい.

(1) Ellingham 🗵

金属製錬では原料が酸化物であることが多いので酸化物を 例として説明する.単体,化合物のMが $1 \mod OO_2$ ガス と反応して酸化物 M_xO_y が生成する反応は式(141)で表され る.

平衡状態では式(142)より、反応の標準 Gibbs エネルギー

図11 酸化物の標準生成 Gibbs エネルギーと温度の関係(Ellingham 図).

変化は

$$\Delta \mu^{\circ} = \Delta G^{\circ} = -RT \ln \left(\frac{a_{M,O_y}^{2/y}}{a_{M}^{2M'y} \cdot P_{O_2}} \right) = RT \ln P_{O_2}$$
(143)

となる. ここで M, M_xO_y は純物質でその活量基準を純物質 とする.

 $RT \ln P_{0_2}$ を酸素ポテンシャルという.酸素ポテンシャル は $RT \ln P_{0_2}$,酸素分圧は P_{0_2} であり、異なる量であるが、 しばしば両者を混用して P_{0_2} を酸素ポテンシャルと呼んでい ることがあるので、用語の間違いのないように注意が必要で ある.

Δμ°は温度の関数であるので、各種物質について測定され ている酸素ポテンシャルと温度の関係を示す Ellingham 図 とよばれる図11⁽¹⁾が得られる.

ここに示される標準 Gibbs エネルギー変化は,式(141)の ように酸化物が生成するときの酸素 O_2 1 mol あたりの値で ある.この図は各種酸化物の安定性を示しており,図11の 線の上側では酸化物 M_xO_y が安定,下側では M が安定相で ある.下方にある反応ほど酸素ポテンシャルが小さく,酸化 物が安定に存在する.いいかえれば下方にある物質 M は酸 素との親和力が大きく,上方にある酸化物を還元することが できる.

鉄鋼製錬の製鋼反応で,溶鋼中に含まれる酸素を取り除く 脱酸プロセスの脱酸材として用いられる Ca, Mg, Al, Ti の線 は,図11の下方にあり,酸素との親和力が大きいため脱酸 材として用いられることがわかる.

反応(141)の Gibbs エネルギー変化は式(144)のように表

される.

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} \tag{144}$$

図11の各線は、相変態のない温度範囲で、標準 Gibbs エネ ルギー変化は元素の種類に関わらずほぼ直線で表されている ことから、反応のエンタルピー変化 *ΔH*^o,エントロピー変 化 *ΔS*^oの温度による変化が非常に小さいことがわかる.式 (144)より、図の直線の傾きは反応のエントロピー変化にマ イナスの符号をつけた値になる.線の傾きはほぼ等しいこと から、反応によるエントロピー変化がほぼ等しいことを示し ている.それぞれの線の表す反応が 1 mol の気体 O₂ が消滅 する反応であり、気相のエントロピーが固相、液相のエント ロピーに比べ非常に大きいために、気相のエントロピー変化 が反応のエントロピー変化に大きく寄与していることを表し ている.

図の温度範囲で反応物が気相に変態する Ca, Mg では, 沸 点以上で気体として反応するために, エントロピーの減少変 化量が大きくなり, 線の傾きは大きくなる.

図11の左側の縦軸は温度0Kである.式(144)より,各線 と0Kでの縦軸との交点は反応のエンタルピー変化 *ΔH*°と なる.図11からわかるように,各反応の *ΔH*°の値は負の値 となっており,反応は発熱反応である.各反応の酸化反応が 発熱反応であることと一致する.

反応

$$C(s) + O_2(g) \longrightarrow CO_2(g)$$

では $1 \mod 0$ 気体 O_2 が $1 \mod 0$ 気体 CO_2 となるため, 直線 の傾きはほぼ 0 となる.

反応

$$2C(s) + O_2(g) \longrightarrow 2CO(g)$$
 (146)

(145)

では $1 \mod 0$ 気体 O_2 が $2 \mod 0$ 気体 CO となるため,エン トロピーは増加し,図11では負の傾きで示される.傾きの 大きさの絶対値は $1 \mod 0$ 気体 O_2 が消滅する反応の線の傾 きとほぼ同じである.

反応の酸素ポテンシャルは式(143)で表されるので、金属 および酸化物の活量を1と仮定すると、標準Gibbsエネル ギー変化から各温度での反応の平衡酸素分圧 P_{0_2} を計算でき る. Ellingham 図では周囲に酸素分圧の軸が書かれており、 酸素分圧を図から直接、読みとることができる.

0K でのO点(左上)は酸素ポテンシャル $\Delta G^{\circ} = RT \ln P_{O_2}$ が0であるので、O点を通る直線上では酸素分圧 P_{O_2} が一定となる.その酸素分圧の値が、図の外側の P_{O_2} の軸として示されている.

例えば、1200℃でのSiとSiO₂の反応Si+O₂(g)→SiO₂ の平衡酸素分圧を求めるには、Si+O₂(g)→SiO₂の線上の 1200℃の点と左側の絶対温度0Kの軸上のO点を結び、延 長して酸素分圧の軸との交点の値を読みとればよい.図12に 読み取り方を示す.酸素分圧はおおよそ10⁻²²と読み取れる.

金属製錬では還元剤として H₂, CO ガスが用いられ,反応は式(147),(148)で表される.

$$\frac{x}{y}\mathbf{M} + \mathbf{H}_2\mathbf{O}(\mathbf{g}) \longrightarrow \frac{1}{y}\mathbf{M}_x\mathbf{O}_y + \mathbf{H}_2(\mathbf{g})$$
(147)

$$\frac{x}{y} \mathbf{M} + \mathbf{CO}_2(\mathbf{g}) \longrightarrow \frac{1}{y} \mathbf{M}_x \mathbf{O}_y + \mathbf{CO}(\mathbf{g})$$
(148)

図11の Ellingham 図上では、反応が平衡になる H_2/H_2O 比、 CO/CO₂ 比を読み取ることができるように、 H_2/H_2O 比、 CO/CO₂ 比の軸も図の周りに示されている. H_2/H_2O 比、 CO/CO₂ 比の読みとり方は酸素分圧の場合と同様であり、 H_2/H_2O 比を求めるには 0 K の左側の軸上の H 点と図上の 反応のある温度での点を結んで、 H_2/H_2O 比の軸との交点の 値を読めばよい.

同様に、CO/CO₂比を求めるには、0Kの左側の軸上のC
 点を起点として直線を引き、CO/CO₂比の軸との交点の値を
 読めばよい。
 H点、C点は

$$2CO(g) + O_2(g) \longrightarrow 2CO_2(g) \tag{149}$$

$$RT\ln P_{O_2} = \Delta G^\circ - 2RT\ln\left(\frac{P_{CO_2}}{P_{CO_2}}\right)$$
(150)

$$2\mathrm{H}_{2}(\mathrm{g}) + \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2\mathrm{H}_{2}\mathrm{O}(\mathrm{g}) \tag{151}$$

$$RT \ln P_{O_2} = \Delta G^\circ - 2 RT \ln \left(\frac{P_{H_2}}{P_{H_2O}}\right)$$
 (152)

の反応の線の0Kの左側の軸との交点である.

ただし、ここで得られた酸素分圧は、反応物および酸化物 が純物質で、それらの活量が1という条件での値であり、 合金やスラグ中の酸化物などのように、成分によりその活量 が1より小さい場合にはその補正が必要である.

$$\Delta \mu^{\circ} = \Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = -RT \ln \left(\frac{a_{M,O_{\gamma}}^{2M'}}{a_{M}^{2m'} \cdot P_{O_{2}}} \right)$$
(142)

より

$$RT\ln P_{O_2} = \Delta H^\circ + T\left(\frac{2R}{y}\ln a_{M_xO_y} - \frac{2Rx}{y}\ln a_M - \Delta S^\circ\right)$$
(153)

となるので、図13に示すように M の活量が1より小さくなる場合は線の傾きが大きくなり、 M_xO_y の活量が1より小さくなる場合には線の傾きが小さくなる.実操業の解析を行うときには、メタル、スラグの成分を考慮して、Ellingham 図上の線に活量の影響を考慮した線で考える必要がある.

図14⁽²⁾に破線で示した $Al - Al_2O_3$ の平衡の線は,純 Al ~ cはなく,溶鉄中の Al 濃度の Al と平衡するように換算した 線である. 純 Al の線に比べて, Al の活量が小さくなり,線 の傾きが大きくなる.

図13 線の傾きに及ぼす活量変化の影響.

酸化物だけでなく,硫化物(図15)⁽²⁾,窒化物(図16)⁽²⁾など の化合物についても同様の線図があり,金属製錬反応の考察 に利用されている.

図14 Ellingham 図の応用. 鉄鋼便覧 第3版, 第1巻基礎 図2.7.

図15 硫化物の標準生成 Gibbs エネルギーと温度の関係. 鉄鋼便覧 第3版, 第1巻基礎 図1.3.

図16 窒化物の標準生成 Gibbs エネルギーと温度の関係. 鉄 鋼便覧 第3版, 第1巻基礎 図1.2.

図17 Fe-C-O系の還元平衡図(全圧1atm). 鉄鋼便覧 第3 版, 第1巻基礎 図2.8.

(2) 化学ポテンシャル状態図

式(142)より

$$\log P_{0_2} = -\frac{\Delta S^{\circ}}{2.303R} + \frac{\Delta H^{\circ}}{2.303R} \cdot \frac{1}{T}$$
(154)

の関係が得られる. Ellingham 図では酸素ポテンシャル RT ln P_{O_2} と温度 Tの関係が示されている. 酸素分圧と温度とに 分けて log P_{O_2} と温度 (1/T)の関係を示すのが化学ポテンシャル状態図である. 安定な相が領域として示される.

図17⁽²⁾は鉄鋼製錬における酸化鉄の還元反応で用いられる Fe-C-O系の酸化還元平衡図である.縦軸はP_{CO}/(P_{CO}+ P_{CO₂})比,横軸は温度の化学ポテンシャル状態図である. 反応

$$\begin{split} & 2\text{CO}(\text{g}) + \text{O}_2(\text{g}) \longrightarrow 2\text{CO}_2(\text{g}) \\ & \Delta G^\circ = -562000 + 171T \text{ J/mol} \end{split} \tag{155}$$
から、 $P_{\text{CO}}/(P_{\text{CO}} + P_{\text{CO}_2})$ 比は酸素分圧 P_{O_2} に換算できる.

0 3 CaSO₄(s) -10 CaS(s) log P_{S2} (atm) -20 (5 (4) -30 (2) CaO(s) -40 (1) Ca(I) -50 -40 -20 -10 -30 -50 log P_{O2} (atm)

図18 1273 K での Ca-S-O 系化学ポテンシャル図.

この図は全圧が1atm での図である.全圧が増加した場合,

 $2CO(g) \longrightarrow C(s) + CO_2(g)$ (156) の平衡反応を表す線は、ルシャトリエの平衡移動の法則か ら、全圧の増加を緩和する方向、すなわち右向きの反応が起 こるので、図17上で線は右側に移動する.

酸化物と硫化物が共存するような場合,二つの成分(酸素 と硫黄)のポテンシャルをパラメータとして安定領域を示す 化学ポテンシャル状態図を書くことができる.

ー成分系は温度と成分分圧を軸とする二次元の平面で表せ るが、二成分系になると温度と二成分の三次元の立体となる ので、立体的に理解するのは難しくなる.そこで一定の温度 断面での、二成分の分圧を縦軸と横軸として平面上で安定相 を表す化学ポテンシャル状態図が用いられる.

例として Ca の化合物として酸化物,硫化物,硫酸化物の 存在する Ca-S-O 系を示す. 温度 1273 K での化学ポテンシ ャル状態図は図18となる. 図中の各直線①-⑤はそれぞれ式 (157)-(161)の反応を表しており,安定相の境界を示してい る.

- (1) $2Ca(1) + O_2(g) = 2CaO(s)$ $\Delta G^\circ = -1280000 + 217T \text{ J/mol}$ (157) (2) $2Ca(1) + S_2(g) = 2CaS(s)$
- $\Delta G^{\circ} = -1096000 + 207T \,\text{J/mol}$ (158)
- (3) $CaSO_4(s) = CaS(s) + 2O_2(g)$ $\Delta G^\circ = 915500 - 315.2T J/mol$ (159)
- (4) $2CaO(s) + S_2(g) = 2CaS(s) + O_2(g)$ (160)
- (5) $2CaSO_4(s) = 2CaO(s) + 3O_2(g) + S_2(g)$ (161)

式(160), (161)の ΔG° は,式(157)-(159)式の ΔG° から 求めることができる.

各線を表す式は、反応の Gibbs エネルギーデータから求 めることができる.例えば直線④の反応

$$2CaO(s) + S_2(g) = 2CaS(s) + O_2(g)$$
(160)

の平衡定数は

$$K = \frac{a_{CaS}^2 \cdot P_{O_2}}{a_{CaO}^2 \cdot P_{S_2}} = \frac{P_{O_2}}{P_{S_2}}$$
(162)

である. CaO, CaS はそれぞれ固相で存在するので活量を1 とする. ある温度で平衡定数は一定であるので($\Delta G^{\circ} = -RT \ln K$),

$$\log P_{\rm S_2} = \log P_{\rm O_2} + \text{constant} \tag{163}$$

となり、図18では $\log P_{S_2} - \log P_{O_2}$ 平面上で傾き1の直線④ で表される. 定数値は ΔG° の値から求められる. このよう にして、図18の $P_{O_2} - P_{S_2}$ 系化学ポテンシャル状態図が得ら れる. Ca-S-O系では P_{O_2}, P_{S_2} 分圧が大きくなると硫酸カル シウムが安定相になることがわかる.

熱力学データベースソフトウェアーを用いれば元素と温度 を指定して化学ポテンシャル状態図を容易に描くことができ る. (つづく)

文 献

- (1)日本金属学会,金属化学入門シリーズ1金属物理化学, (1996),81.
- (2)日本鉄鋼協会,鉄鋼便覧 第3版,第1巻 基礎,丸善, (1981),図1.2,図1.3,図2.7,図2.8,図3.26,図3.38.
- (3)日本金属学会,講座・現代の金属学製錬編2非鉄金属製錬, (1980), 84.
- [本稿で熱力学データを引用した文献]
- 本稿中で使用した熱力学データは、下記文献より引用した.
- Steelmaking Data Sourcebook, The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking(日本 学術振興会製鋼第19委員会), Gordon and Breach Science Publishers (1988).
- (2) E. T. Turkdogan: Physicalchemistry of High Temperature Technology, Academic Press (1980).
- [参考書:本稿の執筆に当たり参考にさせていただいた]
- J. G. Kirkwood, I. Oppenheim(関 集三, 菅 宏訳):化学熱 力学, 東京化学同人(1965).
- (2) I. プリゴジース, R. デュフェイ(妹尾 学訳):化学熱力学1,
 2,みすず書房(1966).
- (3) 久保亮五:大学演習熱学統計力学, 裳華房(1998).
- (4)松下幸雄,盛利貞,不破祐,館充,森一美,瀬川 清:冶金物理化学,丸善(1970).
- (5) 増子 曻:化学ポテンシャル状態図の作り方,使い方,電気 化学,38(1970),153,236,307.
- (6) 大谷正康:鉄冶金熱力学,日刊工業新聞社(1971).
- (7) F. D. Richardson, Physical Chemistry of Melts in Metallurgy, vol. 1,2, Academic Press (1973).
- (8)大谷正康,水渡英昭,早稲田嘉夫:冶金物理化学演習,丸善 (1975).
- (9) C. H. Lupis: Chemical Thermodynamics of Materials, North-Holland (1983).
- (10) O. Kubaschewski, C. B. Alcook and P. J. Spencer: Materials Thermochemisty 6th edition, Pergamon Press (1993).
- (11) E. T. Turkdogan: Fundamentals of Steelmaking, The Institute of Materials (1996).
- (12) 佐野信雄:エリンガム図と化学ポテンシャル状態図、ふぇらむ, 1(1996), 847.

- (13) N. Sano, W. Lu, P. V. Riboud and M. Maeda: Advanced Physical Chemistry for Process Metallurgy, Academic Press (1997).
- (14) H. Lee: Chemical Thermodynamics for Metals and Materials, Imperial College Press, (1999).
- (15) 伊藤公久:マテリアルサイエンスの基礎 熱力学,八千代出版(2000).
- (16) イリヤ・プリゴジン,ディリプ・コンデプディ:現代熱力学,朝倉書店(2001).
- (17) D. askell: Introduction to the Thermodynamics of Materials, Fifth Edition, Taylor & Francis (2008).
- (18) 早稲田嘉夫,大藏隆彦,森 芳秋,岡部 徹,宇田哲也編: 矢澤彬の熱力学問題集,内田老鶴圃(2011).
- (19) P. Atkins, J. de Paula 著, 中野元裕, 上田貴洋, 奥村光隆, 北河康隆訳, アトキンス物理化学(上)第10版, 東京化学同人 (2017).
- (20) 伊藤公久,平田秋彦,山本知之:基礎材料科学,コロナ社 (2020).

[熱力学データ集]

- (1) J. F. Elliott, M. Gleiser and V. Ramakrishna, Thermochemistry for Steelmaking, Pergamon Press (1963).
- (2) R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley and D. D. Wagman: Selected Values of the Thermodynamic Properties of the Elements, Am. Soc. Metal. (1973).
- (3) R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary alloys, Am. Soc. Metal. (1973).
- (4) G. K. Sigworth and J. F. Elliott: Metal Science, 8(1974), 298.
- (5) O. Knacke, O. Kubaschewski and K. Hesselmann: Thermochemical Properties of Inorganic Substances Second Edition, Springer Verlag (1977).
- (6) NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph No.9, American Institute of Physics and American Chemical Society, (1998).
- (7) Steelmaking Data Sourcebook, The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking(日本 学術振興会製鋼第19委員会), Gordon and Breach Science Publishers (1988).
- (8) Y. Kawai and Y. Shiraishi: Handbook of Physico-chemical Properties at High Temperatures, Iron Stel Inst. Japan (1988).
- (9) S. Ban-ya and M. Hino: Chemical Properties of Molten Slags, Iron Stel Inst. Japan (1991).
- (10) I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft mbH (1993).
- (11) M. Hino and K. Ito: Thermodynamic data for steelmaking, Tohoku University Press (2010).
