半導体粒界における局所物性の解析に

新疆氯额

向けた機械学習型原子間ポテンシャル

1. はじめに

多結晶材料は多数の結晶粒から構成されるため,結晶粒ど うしの界面である結晶粒界が存在する.そして粒界から数ナ ノメートル範囲内での化学組成や原子配列の変化に起因し, 多結晶の材料特性は著しく変化する.またバイクリスタルを 用いた実験や理論計算による先行研究では,結晶粒どうしの 結晶方位差や粒界面の格子面といった結晶学的性質に応じ, 粒界の原子配列や特性は様々であることが示されている.よ って粒界特性を精緻に制御して高機能な多結晶材料を創成す るためには,粒界の結晶学的性質,原子構造,粒界特性の有 機的な理解が求められる.

多結晶シリコンをはじめとする半導体多結晶は、太陽電池 材料や熱電変換材料として広く研究・開発が行われている. これらの材料でも、粒界の特異な原子構造は電気伝導性や熱 伝導率に影響を及ぼすことが示されている.半導体の粒界構 造とその特性を原子・電子レベルで明らかにするため、先行 研究では Density functional theory (DFT)計算により解析が 行われてきた⁽¹⁾⁻⁽³⁾.しかし粒界の原子レベルモデリングに は、完全結晶に比べて多数の原子を要するため、DFT 計算 では莫大な計算時間・計算機資源が必要となる、そのため、 先行研究では単純な原子構造をもつ低Σ値の傾角粒界に限 定されており、その知見が実多結晶中の一般粒界に適用でき るかは未だ不明である.他方,経験的原子間ポテンシャルに よる大規模かつ系統的な計算も行われているが⁽⁴⁾⁽⁵⁾,その調 整パラメータは一般に粒界の原子環境を考慮せずフィッティ ングされる.そのため、粒界では計算精度が著しく低下する ことが多々ある.このように既存の計算手法では、粒界に対

し計算時間と計算精度の維持が困難な場合が多い.

構

井

湷

上記に対し著者は、近年盛んに研究されている DFT 計算 データを学習させた機械学習型原子間ポテンシャル⁽⁶⁾⁽⁷⁾に着 目し、粒界に対しても精度を維持する原子間ポテンシャルの 構築を行ってきた.特に人工ニューラルネットワーク(Artificial Neural Network: ANN)を用いた原子間ポテンシャル を構築し、構造緩和や分子動力学法といった分子シミュレー ションと統合した.その結果、学習データに含まれない粒界 に対しても精度を維持することを示した.また計算時間は、 通常の DFT 計算に比べて少なくとも3桁程度高速であるこ とを示した.本稿ではシリコン(Si)に対して行った研究⁽⁸⁾に ついて述べる.

2. ANN 原子間ポテンシャル

(1) ANN 原子間ポテンシャルの構成と学習条件

図1はBehlerの構成⁽⁹⁾にもとづき実装したANN原子間 ポテンシャルの概略図である.このANNは、入力層、2層 の隠れ層、出力層で構成されるフィードフォワード型ネット ワークである.入力は結晶構造データを用いる.しかし原子 の座標や格子定数を入力層に直接与えるのではなく、各原子 周りの原子環境を反映し、並進、回転、同種元素の交換に対 して不変である記述子を用いて入力値に変換する.本研究で はBehlerにより提案された対称関数⁽⁹⁾を用いている.原子 *i*に対する二体間、三体間の対称関数*G*² と*G*³*i*は、それぞれ 以下の関数で与えられる.

$$G_i^2 = \sum_{j=1}^{\infty} e^{-\eta_2 (R_{ij} - R_s)^2} \cdot f_c(R_{ij})$$
(1)

$$G_i^3 = 2^{1-\zeta} \sum_{j \neq i} \sum_{j \neq i} \sum_{k \neq i, j} \left[\{1 + \cos(\theta_{ijk} - \theta)\} \zeta \right]$$

$$e^{-\eta_{3}(R_{ij}^{2}+R_{ik}^{2}+R_{jk}^{2})} \cdot f_{c}(R_{ij}) \cdot f_{c}(R_{ik}) \cdot f_{c}(R_{jk})] \qquad (2)$$

* 名古屋大学大学院工学研究科 物質科学専攻; 助教(〒464-8603 名古屋市千種区不老町)
Machine-learning Interatomic Potential for Predicting Grain Boundary Properties in Semiconductors; Tatusya Yokoi(Department of Materials Physics, Nagoya University, Nagoya)
Keywords: machine-learning interatomic potential, grain boundary, semiconductor

shinshinkiei

矢*

図1 本研究で実装した ANN 原子間ポテンシャルの構成.

ここで η_2 , R_s , ζ , θ , η_3 は関数形を決めるハイパーパラメ ータである.これらの値の異なる対称関数を複数用いること で、異なる原子環境を区別することが可能となる. R_{ij} , R_{ik} , R_{jk} はそれぞれ原子 ij, ik, jkの原子間距離, θ_{ijk} は原子 ij と jkの結合間の角度である.対称関数の合計の数は入力層の ノード数と同じである.Siの場合は、32個の対称関数を用い た. f_c はカットオフ関数であり、下記の関数を用いた.

$$f_{\rm c}(R_{ij}) = \begin{cases} \frac{1}{2} \left[\cos\left(\frac{\pi R_{ij}}{R_{\rm c}}\right) + 1 \right] (R_{ij} \le R_{\rm c}) \\ 0 & (R_{ij} > R_{\rm c}) \end{cases}$$
(3)

 $R_{\rm c}$ はカットオフ半径であり、本研究では $6Å(0.6\,{\rm nm})$ に設定した.

学習データとして、DFT 計算から得られる系のエネルギ ーと原子にかかる力を使用した.それらの値を ANN の出力 値と原子位置に対する出力値の微分にそれぞれ対応させ、教 師あり学習を行った.学習アルゴリズムには Levenberg-Marquardt 法によるバッチ学習を用いた.多様な原子環境 を学習データに含めるため、完全結晶だけでなく、点欠陥 (Si 空孔や侵入型 Si)、表面も考慮した.さらに[001]および [Ī10]回転軸の対称傾角粒界 5 種類も考慮した.学習データ は、ある計算セルの原子位置やセル形状をランダムに変化さ せて、それを一点計算および構造緩和した結果や、MD 計算 の結果を用いて作製した.このような操作により系のエネル ギーは21440データ、原子にかかる力は1030080データを収 集して ANN に学習させた.

DFT 計算は, VASP⁽¹⁰⁾⁽¹¹⁾に実装された平面波基底 PAW 法⁽¹²⁾⁽¹³⁾を用いて行った.平面波のエネルギーカットオフは 500 eV に設定し,ダイヤモンド構造に対する k 点メッシュ 数は 6×6×6 に設定した.交換相関エネルギーは GGA-PBEsol⁽¹⁴⁾を用いて評価した.また系のエネルギーの収束条 件は10⁻⁶ eV に設定した.

ここで,ANN 原子間ポテンシャルによる分子シミュレー ションの計算速度について,DFT 計算と比較して説明す る.例えば,構造緩和計算や分子動力学計算を行う際に系の エネルギーや原子にかかる力といった値が必要となる.これ らの値を得るために,DFT 計算ではある原子配置に対し, その都度コーン―シャム方程式を数値的に解く必要がある. 一方,ANN では,従来の経験的原子間ポテンシャルと同様

図2 学習データに対する ANN の誤差. (a)系のエネルギー, (b)原子にかかる力.

図3 学習データに対する ANN と経験的原子間ポテンシャル の比較. (a) Σ3(112)/[Ī10]粒界, (b) Σ5(210)/[001].

に、ANN 自体がポテンシャルエネルギー表面を近似した解 析的な関数となる.よって、ある入力(ここでは結晶構造デ ータ)に対し、関数の値として直ちに系のエネルギーや原子 にかかる力が得られる.結果として ANN を用いた分子シミ ュレーションの計算時間は、通常の DFT 計算に比べて数桁 高速となることが期待される.

(2) 学習データおよびテストデータに対する誤差

まず図2に学習データに対する誤差を示す. 横軸が DFT 計算結果,縦軸が ANN の出力であり,データ点が対角線に 近い程, DFT 計算に対する ANN の誤差が小さいことを示 している. 系のエネルギー(図2(a))と原子にかかる力(図2 (b))ともに,全ての学習データで致命的な誤差は見られ ず,対角線付近にデータ点が分布していることが分かる.ま た学習データ全体に対する平均絶対誤差(Mean absolute error, MAE)は,系のエネルギーが5.7 meV/atom,原子にか かる力が111 meV/A であった.この結果より,通常の分子 シミュレーションが可能な程度まで誤差は低下していること が分かる.

図3は学習データに対し、ANN と経験的原子間ポテンシ ャル⁽¹⁵⁾⁻⁽¹⁹⁾の誤差を比較した結果である.図3(a)の学習デ ータは、粒界近傍にダングリングボンドを含むΣ3(112)/ [110]対称傾角粒界をもとに、一点計算および構造緩和する

ことで作製した.この図よりANNのMAEは学習全体の MAE と同程度であるのに対し、経験的原子間ポテンシャル の MAE は ANN に比べて 4 倍以上大きいことが分かる.一 番右の図は, Tersoff ポテンシャルと ANN について DFT 計算との原子にかかる力の誤差を示している. ANN では全 てのデータ点が対角線付近に分布しているが, Tersoff ポテ ンシャルでは DFT 計算の値を大きく過大評価している.ま た図3(b)は、Σ5(210)/[001]対称傾角粒界におけるDFT-MD 計算(1400 K)から作製した学習データの誤差である. ANNの MAE は学習データ全体の値に対してやや大きい値 をとるが、このような高温下の MD 計算結果も十分学習可 能であることが分かる.一方,経験的原子間ポテンシャルの MAEはANNより4倍以上大きく、最もMAEの小さい Tersoff ポテンシャルでも DFT 計算結果を大きく過大評価 している.以上のように従来の経験的原子間ポテンシャルで は精度が低下する粒界計算においても、適切な学習データが あれば ANN では学習可能であることがわかる.

図4は、学習後のANNを用いて評価したテストデータに 対する系のエネルギーの誤差である. テストデータの作製に は、学習データに含まれていない対称傾角粒界とねじり粒界 を用いた.これらの粒界に対し、上記 2(2)で述べた操作によ りデータを収集した. その結果, Σ11(113)/[110]粒界(図4 (d))以外の粒界では、全てのデータ点は対角線付近に分布 しており、MAE も学習データと同程度である.よって学習 後の ANN は、学習データに含まれない粒界に対しても高い 予測能力を維持することが分かる. Σ11(113)/[110]粒界に ついても対角線から大きく逸脱した点は見られないが、全体 的に過小評価する傾向があり, MAE はテストデータの2倍 程度であった.今回は5種類の対称傾角粒界のみを学習デ ータに用いたが、より複雑な原子構造をもつ粒界に対しても 予測能力を維持するためには、学習データの原子環境を更に 充実させる必要があると予想される. それが実現できれば, 一般粒界の原子構造およびエネルギー的安定性の高精度予測

も期待できる.

(3) ANN による分子シミュレーション

前節では、ANN は学習データに含まれない粒界に対して もエネルギー的安定性を予測可能であることを示した.しか し DFT 計算に先んじて ANN のみで粒界の安定構造を予測 するためには、ANN から得られた粒界構造のエネルギーの 大小関係が、DFT 計算でも保たれている必要がある.

上記を検証するため、学習後の ANN を構造緩和計算に組 み込んだ.本稿ではテスト計算として選択した $\Sigma5(310)/$ [001]対称傾角粒界の結果を述べる.まず剛体変位を考慮し て複数の初期構造を作製し、それらを ANN で構造緩和し て、緩和後の粒界構造をもとに DFT 計算により一点計算と 構造緩和計算を行った.その結果を図5に示す.この図は ANN から得られた $\Sigma5(310)/[001]$ の粒界を、粒界エネルギ ーが低い順に並べた結果である.これより4番目の構造以 外は、ANN と DFT 計算で本ネルギーの大小関係が同じで あり、さらに DFT 計算で構造緩和した結果も ANN と近い ことが分かる.つまり ANN で予め構造緩和した時点で、 DFT 計算における緩和構造に近い構造が得られているとい える.よって今回構築した ANN を用いることで、DFT 計 算に先んじてエネルギー的に安定な粒界構造を絞り込めるこ とが示された.

一方で、4番目の構造は ANN と DFT の誤差は大きく、 また DFT 計算で構造緩和した結果は、ANN の緩和構造と 異なる原子配列であった.これは ANN では局所解に対応す る構造が DFT では局所解とはならないことを示している. このような誤差は、学習データを単純に大規模化するだけで は恐らく回避できないと予想される.なぜなら ANN のエネ ルギー表面に沿った構造緩和の結果得られた局所解であり、 そのような構造は DFT 計算ベースで収集した学習データに は含まれない可能性が高いためである.今回のような誤差を 無くし、ANN の予測能力を高めるためには、予め ANN で

[001], (b) $\Sigma_{23}(430)/[001]$, (c) $\Sigma_{41}(340)/[001]$, (d) $\Sigma_{11}(113)/[\overline{1}10]$, (e) $\Sigma_{21}(154)/[111]$ 対称傾角粒 界, (f) Σ_{5} ねじり粒界.

図5 Σ5(310)/[001]対称傾角粒界を対象に、ANNにより構 造緩和し、得られた構造をDFT計算で一点計算および 構造緩和した結果.

粒界構造を求めて DFT 計算との誤差を評価し, 誤差の大き い構造をベースに学習データセットを構築する必要があると 予想される. そのような手順を反復して ANN の学習を繰り 返すことで, 最終的に複雑な粒界構造も高精度で予測できる ANN が構築されることが期待される.

最後に,図6にANNによる分子動力学(MD)計算の計算 時間を示す.MD計算の計算時間は10⁴ステップに設定した この計算には64コアの計算機(Intel Xeon Gold 6130 processors@2.1 GHz)を使用した.この結果より,約15000原子で も2.7時間程度であった.また1000原子の計算セルを用いて, DFT計算と計算速度を比較した結果,ANNが3桁程度高 速であることが分かった.

本稿では Si の結果を述べたが,著者は金属や酸化物に対しても粒界特性が予測可能な ANN 原子間ポテンシャルの構築を進めている.これらの原子間ポテンシャルを用いることで,様々な物質に対し一般粒界を想定した大規模計算が,現実的な計算時間・計算機資源で可能になることが期待される.

本研究は、JST-CREST「多結晶材料情報学による一般粒

界物性理論の確立とスマートシリコンインゴットの創製」 (グラント番号: JPMJCR17J1)の一環として行われた.

文 献

- (1) B. Ziebarth, M. Mrovec, C. Elsässer and P. Gumbsch: Phys. Rev. B, 91(2015), 035309.
- (2) D. Zhao and Y. Li: J. Alloys Compd., 712(2017), 599–604.
- (3) D. Zhao and Y. Li: Compt. Mater. Sci., 143(2018), 80–86.
- (4) J. Zhang, C.-Z. Wang and K.-M. Ho: Phys. Rev. B, **80**(2009), 17402.
- (5) L. Wang, W. Yu and S. Shen: J. Mater. Res., 34(2019), 1021– 1033.
- (6) J. Behler and M. Parrinello: Phys. Rev. Lett., 98(2007), 146401.
- (7) A. P. Bartók, M.C. Payne, R. Kondor and G. Csányi: Phys. Rev. Lett., **104**(2010), 136403.
- (8) T. Yokoi, Y. Noda, A. Nakamura and K. Matsunaga: Phys. Rev. Mater., 4(2020), 014605.
- (9) J. Behler: Int. J. Quantum Chem., 115(2015), 1032-1050.
- (10) G. Kresse and J. Furthmüller: Comput. Mater. Sci., 6(1996), 15–50.
- (11) G. Kresse and J. Furthmüller: Phys. Rev. B, 54(1996), 11169– 11186.
- (12) P. E. Elöchl: Phys. Rev. B, **50**(1994), 17953–17979.
- (13) G. Kresse and D. Joubert: Phys. Rev. B, **59**(1999), 1758–1775.
- (14) J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou and K. Burke: Phys. Rev. Lett., **100** (2008), 136406.
- (15) F. H. Stillinger and T. A. Weber: Phys. Rev. B, **31**(1985), 5262–5271.
- (16) J. Tersoff: Phys. Rev. B, 38(1988), 9902–9905.
- (17) M. Z. Bazant and E. Kaxiras: Phys. Rev. B, 56(1997), 8542– 8552.
- (18) B.-J. Lee: Calphad, **31**(2007), 95–104.
- (19) A. C. T. van Duin, S. Dasgupta, F. Lorant and W. A. Goddard III: J. Phys. Chem. A, **105**(2001), 9396–9409.

横井達矢