Nateria Japan Scos Vol.60 MEREZ 60 (3) 145 ~ 202 (2021)

https://jim.or.jp/ https://www.jim.or.jp/journal/m/ [オンラインジャーナル] 日本金属学会会報 2021年3月1日発行 (毎月1回1日発行) Vol.60 No.3 ISSN 1340-2625 新しい分野に飛び込みたい、 もっと自分の基礎力・応用力を鍛えて世界で活躍したい、 そんな みなさんへ

大学院大学で先端的な研究を。

物理・化学・バイオを根幹とした JAIST マテリアルサイエンス あなたの研究成果が、社会の課題を解決する鍵となる可能性を秘めています

応用物理学 環境・エネルギー 物質化学 知能ロボティクス 生命機能工学

マテリアルサイエンス系研究室 オンライン紹介イベント 3/29(月)

全学オープンキャンパス 5/21(金), 22(土)

*オンラインでの進学相談会も随時開催中

開催内容や日程に変更が生じる可能性があります 最新情報や詳細はウェブサイト : https://www.jaist.ac.jp/ms/ をご覧ください

Materia Japan

https://www.jim.or.jp/journal/m/

ていの

No. 15 ネオジム (まてりあ60巻記念企画 特別編) 金属素描 竹田 修 ………145

C₆₀・ナノチューブ研究の30年と今後の展望(まてりあ60巻記念企画) プロムナード

特集「水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦」

企画にあたって

佐藤豊	豊人 弓	▶ 海文	近藤亮太	佐藤紘一	田中秀明	宮崎秀俊	吉矢真	人	151
高密度	水素に	こよる超	B機能材料	の合成	折茂慎一				152
局在水	素にし	、るヘラ	・ロ界面機	能の強化	一杉太郎	;			156
高速移	動水素	素による	6次世代創	蓄電デバ	イスの設	計 宮武健	*治		161
高速・	局所移	多動水素	そと電子と	のカップ	゚リングに	よる新発	想デバ	イスの設	計
森衫	刃果								165
電気化	学的才	k素化を	和用した	新反応プ	ロセス	山内美穂 …			169
水素の	先端言	†測法の)開発とそ	れによる	水素機能	の高精度的	解析 [福谷克之…	172
水素の	先端詞	†算によ	、る水素機	能の高精	度解析	常行真司 …			176

講義ノート 化学反応速度が律速する場合の反応速度の記述方法を解説、溶鋼の脱窒素を例に物質移動速度との混合律速の場 合も紹介.

物質からの回折と結像―透過電子顕微鏡法の基礎― 今野豊彦(著) 佃 諭志 ……186 思い出の教科書、この一冊!

はばたく

卵殻膜を用いた銅(Ⅱ)イオンの吸着 スポットライト

会誌·欧文誌3号目次……199 本会記事

付録

今月の表紙写真 有機金属錯体の呈色を活用して,水素濃度分布を検出する例.水素透過前と水素透過後.(東北大学・秋山英二研究室より提供) 一杉太郎 著 158頁 図5(b)(c)より掲載)

表紙デザイン:ビーコン コミュニケーションズ株式会社 グラフィックスタジオ 複写をご希望の方へ 本会は、本誌掲載著作物の複写に関する権利を一般社団法人学術著作権協会に委託しております。本誌に掲載された著作物の複 写をご希望の方は、(一社)学術著作権協会より許諾を受けて下さい、但し、企業等法人による社内利用目的の複写については、 当該企業等法人が社団法人日本複写権センター((一社)学術著作権協会が社内利用目的複写に関する権利を再委託している団体) と包括複写許諾契約を締結している場合にあっては、その必要はありません。(社外頒布目的の複写については、許諾が必要です。) 権利委託先 一般社団法人学術著作権協会 〒107-0052 東京都港区赤坂9-0-641 乃木坂ビル 3F FAX 03-3475-5619 E-mail: info@jaacc.jp http://www.jaacc.jp/

複写以外の許諾(著作物の引用, 転載, 翻訳等)に関しては, 直接本会へご連絡下さい.

元素名:Neodymium,原子番号:60,質量数:144.24,電子配置:[Xe]4f⁴6s²,密度:7.000 Mg·m⁻³(293 K),結晶構造: α-Nd 二重六方(~1142 K),β-Nd 体心立方(1142~1298 K),融点:1298 K,沸点:3400 K⁽¹⁾,地殼存在量:20 μg·g⁻¹⁽²⁾ 【写真】ネオジム塊,純度99% (写真提供 株式会社 三徳)

まてりあの60巻刊行を記念して,原子番号60のネオジム (Nd)を取り上げる.和名の「ネオジム」は,ドイツ語の "Neodym"に由来する.商業的に「ネオジウム」と誤用さ れていることが見られるが,注意されたい.

ネオジムは,1885年,C.A. von Welsbach によって,ジ ジミアと呼ばれた酸化物から単離された.語源は,ギリシャ 語の「新しい(neos)」と「双子(didymos)」である.この双 子の相方は,原子番号59のプラセオジム(Pr)である.プラ セオジムの語源は,ギリシャ語の「緑(prasios)」と「双子 (didymos)」である.ネオジムとプラセオジムは化学的性質 が酷似しており,分離が難しい.そのため,後述するよう に,混合していても製品の機能に大きな支障をきたさない場 合は,混合物として利用されることがある.なお,ネオジム の結晶は通常の最密六方(hcp)ではなく,最稠密面を ABAC の順に4層ずつ繰り返す二重六方(dhcp)という特殊な構造 をとる.原子番号の近いプラセオジム,セリウム,ランタン もそうである.

ネオジムは希土類金属(Rare earth metal)の一つである. 希土類金属は、スカンジウム($_{21}$ Sc)、イットリウム($_{39}$ Y)、 ランタノイド($_{57}$ La \sim_{71} Lu)の17元素からなる.化学的性質が 似ているため、スカンジウムを除き地殻中に共存して賦存 し、鉱石として同時に産出される.ネオジムを含む希土類金 属の主たる鉱石は、炭酸塩あるいはフッ化炭酸塩であり、鉱 石を選鉱した後、酸あるいはアルカリで溶解し、溶媒抽出等 の分離操作を経たあと、中間原料の酸化物にされる.酸化物 を溶融フッ化物に溶解させ、溶融塩電解で金属を製造するの が一般的である.

希土類金属は化学的性質が似ているため,元素間の分離操 作が容易でない.そのため,最初期の工業的応用である発火 石には,鉱石から同時に抽出される希土類化合物を混合させ たまま還元したミッシュメタル(Mischmetal)が用いられ た.ミッシュメタルは、ランタン、セリウム、プラセオジ ム、ネオジムなどの合金である.希土類金属は還元力が非常 に強いため、鉄鋼の脱酸剤や組織改質剤として添加された が、これもミッシュメタルとしてであった.また、LaNi₅を 代表とする希土類系水素吸蔵合金にも、ランタン単体ではな く、ミッシュメタルが用いられている.

ネオジムが単名で一躍有名になったのは、Nd-Fe-B系永 久磁石の発明⁽³⁾⁽⁴⁾による. 佐川ら⁽³⁾は焼結磁石として, Croat ら⁽⁴⁾は急冷アモルファス磁石として,同時期に開発し た.Nd-Fe-B系磁石は、それまで最強の永久磁石であった Sm-Co磁石の性能を凌駕し、社会に急速に普及した. 工業 化初期は、ハードディスクのボイスコイルモーターに採用さ れ、ハードディスクの小型化に大きく寄与した. ノート型パ ソコンなどの小型化は、Nd-Fe-B系磁石の発明が無ければ 達成しえなかったと考えられる. さらに、ハイブリッド車の 駆動用モーターに採用されて工業生産が増大した. 現在,温 室効果ガスである CO₂の抜本的削減を目指して、自動車の 電動化の流れが世界的に強まっている. 真の意味で CO₂ を 削減するには、単純な電動化だけでは済まないが、電気自動 車や燃料電池車等、Nd-Fe-B系磁石の活躍の場が増すこと は間違いない.

ー風変わった使われ方として,古い岩石の固化年代を調べる絶対年代決定法のサマリウムーネオジム法がある.親核種の¹⁴⁷Sm がα壊変して娘核種の¹⁴³Ndになることを利用したものである.ネオジムは,時を教えてくれる元素でもある.

献

(1)金属データブック改訂4版,日本金属学会,丸善,(2004).

文

- (2) R. L. Rundnick and S. Gao: "The Crust", Elsevier Ltd., (2004), 1–64.
- (3) M. Sagawa, S. Fujimura, M. Togawa and M. Matsumura: J. Appl. Phys., 55(1984), 2083–2087.
- (4) J. J. Croat, J. F. Herbst, R. W. Lee and F. E. Pinkerton: J. Appl. Phys., 55(1984), 2078–2082.

次号 金属なんでもランキング! No. 13 超伝導転移温度

MKG 公益社団法人 日本金属学会 The Japan Institute of Metals and Materials

〈刊行物のご案内〉

●日本金属学会誌(月刊) https://www.jim.or.jp/journal/j/

オンラインジャーナルは、全論文フリーダウンロード可能. 投稿・掲載費用無料. 各種データ ベース搭載(Web of Science, CrossRef..). レビュー・オーバービューの定期的な掲載. 速報 論文等早期公開のカテゴリも充実(受付から掲載まで最短45日で公開).

●共同刊行欧文誌: Materials Transactions (月刊) https://www.jim.or.jp/journal/e/

材料系 14 学協会での共同刊行を実施. 公開から 6ヶ月経過した論文は、フリーダウンロード 可能(J-STAGE). さらに、2018年2月より、公開後すぐにフリーダウンロード可能となるサー ビスを開始. 各種データベース登載 (Web of Science, CrossRef...). Review・Overview の定 期的な掲載. Express Rapid Publication 等早期公開のカテゴリも充実(受付から掲載まで最短 39日で公開).

●日本金属学会会報「まてりあ」(月刊) https://www.jim.or.jp/journal/m/

会員の情報交換や啓発・教育を目的とした会報誌「まてりあ」. 啓発を促す「最近の研究」・「講 義ノート」,若手の活躍を紹介する「新進気鋭」「はばたく」「スポットライト」記事,大学・企 業の現場を紹介する「研究室紹介」などバラエティに富んだ内容を毎月お届けしております. そ の他.「金属素描」「金属なんでもランキング!」など『金属』に視点を当てた記事も掲載してお ります. オンラインジャーナルでの閲覧も出来ます. 是非, ご活用下さい.

〈学術図書類出版案内〉

- ●金属化学入門シリーズ ●金属工学シリーズ
- ●講座・現代の金属学 材料編

●セミナーテキスト

- ●講座・現代の金属学 製錬編
- ●シンポジウム予稿集

●単行本

◇日本金属学会春秋講演大会 開催予定◇

★2021年3月16日(火)~19日(金) オンライン開催 ★2021年9月2日(木)~4日(土) 名城大学

〈多彩な学会活動〉

- 講演大会(年2回) · 調査研究活動
- ●セミナー/シンポジウム・研究会・若手研究グループ活動
- ●支部活動(全国7支部)
- ●表彰事業(論文賞/金属組織写真賞etc・・)
- World Materials Day Award 事業
- 等 ●男女共同参画活動

~ ご入会をお待ちしております. https://jim.or.jp/~

熱気溢れるポスター発表

プロムナード

C₆₀・ナノチューブ研究の30年と 今後の展望

齋藤 理一郎*

『まてりあ』60巻記念企画として、60にまつわる炭素分子 C₆₀とナノチューブ研究の30年と展望をお話する.2020年は、 1970年に大澤英二がC₆₀を理論的に予言して50年になる. また今年2021年は、1991年に飯島澄男がナノチューブを発 見して30年になる.金属学会にもなじみのあるC₆₀とナノチ ューブの研究の歴史を振り返り、今後の展望を述べる.

1. C₆₀とナノチューブの発見

C₆₀は60個の炭素原子からなる,人工的に合成された分子 である.C₆₀は,直径が1nmであり,1つの分子は12個の5 員環と20個の6員環からなる球状の分子である(図1). 1985年,英国で星間物質を研究するクロトーは,米国のラ イス大学に赴き,グラファイトをレーザ蒸発して星間分子ク ラスターを作る実験を行った.その結果,炭素原子数が60 のクラスターだけが大量にできたが,その形はわからなかっ た.共同研究者のライス大学のスモーリーは,冷蔵庫からビ ールを取り出しTVのサッカーの試合を観戦したときに, 原子数60の分子がサッカーボールと同じ構造であろうこと を直感的に見出した.つまり,安定な分子の構造であるなら ば,サッカーボールのような対称性の高い形であると考えた のである.大胆にも彼らは,芝生の上にサッカーボールを置 き写真を撮り,その写真を図1とする論文を投稿し, Nature に発表した.

カーボンナノチューブは、炭素原子の6方格子を円筒形 に丸めてできた1次元の固体である(図2).ナノチューブの 直径も1~3 nm ぐらいであるが、長さは最大10 cm にもな るので、分子と呼ぶには長すぎる物質である.1991年10 月、電子顕微鏡で微粒子を研究する NEC の飯島澄男は、 C_{60} を合成するためのアーク放電(大気圧下での放電、高温

図1 C₆₀分子.

図2 カーボンナノチューブ.端は閉じている.

になる)装置に使われていた負極電極を観察して,多層カー ボンナノチューブを発見,論文を Nature に発表した.アー ク放電の電極にはグラファイトが用いられていて,放電によ りグラファイトが蒸発して得られた煤の中に C₆₀ 分子があっ た.当時の学生は,鼻の穴の中を真っ黒にしながら煤を集め C₆₀ を精製していた.直流のアーク放電では,正極は蒸発と ともに短くなるが,負極は短くならず,逆に付着物があっ

 ^{*} 東北大学理学研究科; 教授(〒980-8578 仙台市青葉区荒巻字青葉 6-3)
 Perspective of C₆₀ and Nanotube Research; Riichiro Saito(Department of Physics, Tohoku University, Sendai)
 Keywords: *fullerene, carbon nanotubes, nano-carbon, perspective* 2020年12月22日受理[doi:10.2320/materia.60.147]

図3 バックミンスターフラーの建築物(写真は2010年の著者).

た. 飯島は,名城大の研究室に捨てられていた使用済み負極 の付着物を観測し,ナノチューブを発見したのである.

本解説では、この2つの科学の発見が、その後どういう 展開をしたかをお話しする.科学の発見は、長い時間の研究 の果てに得るものは少なく、むしろ経験を積んだ科学者の直 感によることが多い.上に述べた2つの発見の経緯も、決 して偶然ではなく『ごく普通の科学の発見』といえるのであ る.また、すべての科学の発見は必ず過去からの科学の延長 上にあり、発見前にも必ず歴史がある.まずは、2つの物質 の歴史も遡ってみよう.

2. C₆₀発見以前の歴史

1985年の C_{60} 発見から, C_{70} 分子やその他の閉曲面分子が つぎつぎと発見された.これらの分子構造は,ドーム型の建 築にすでに使われていて(図3),ドーム型の建築家の名前, バックミンスターフラーをとって,フラーレンと呼ばれた. フラーレンは有機溶媒に溶かすことができ,液体クロマトグ ラフィーによって分離精製できるので,多くの研究者が,ゴ ールドラッシュのように新しい分子の発見と精製を目指して いた.これに拍車をかけたのが,1990年のクレッチマーら による,抵抗加熱法である.この方法は,真空容器中でグラ ファイトに電流を流し,加熱して得られる煤から C_{60} を効率 的に得る方法である.さらにこの方法は,前述のアーク放電 法によって,より高効率な合成ができるようになった.

スモーリーらは、Webページ上に世界の研究の展開を載 せて、急速に発展する研究を把握しようとした。特に、 C_{60} が1985年の発見以前に研究されていないかどうかを調べた ところ、1970年に大澤英二が理論的に C_{60} 分子構造の電子 状態を計算して、日本語で論文を発表していることを見出し た。1970年当時1 nm の分子の合成などは想像もできなかっ たであろうが、分子化学の延長として C_{60} の理論的研究が発 見の15年前にあることは驚くべきことである。さらに歴史 を遡れば、1825年のファラデーによる環状分子ベンゼンの 研究が源流になる(Faraday: M. Phil. Trans. R. Soc. Lond. (1825)、115、440. ダウンロード可能.)環状分子ベンゼンの 発見は、『端が無い輪状の分子』に色々な分子を自由な位置 に修飾することを可能にし、無数の新規有機分子を創生し た.フラーレンも、多種の機能分子の修飾が可能な『端が無 い球状の分子』であり、フラーレンの発見は、新たな有機化 学の扉を開いたのである.

3. ナノチューブの発見以前の歴史

ナノチューブの発見以前を遡ると, カーボンファイバー (炭素繊維)の研究がある.炭素繊維は、細長く強靭な繊維と して今日広く応用されている工業製品である. 細長いという 意味ではナノチューブと同じであるが、原材料によっては、 微視的な構造は円筒形とは限らない. 1961年,大阪工業試 験所の進藤昭男は PAN(ポリアクリロニトリル,化学繊維) ファイバーと呼ばれる代表的な炭素繊維を発見した. PAN を高温処理(炭化)し、水素原子などを脱離し炭素繊維を得た. PAN ファイバーの結晶性は高いが、円筒形の構造ではない. 1971年, 信州大学の遠藤守信らは, 炭化水素を鉄触媒で熱 分解して得られた炭素繊維(気相成長炭素繊維, VGCF)を発 表した. VGCFは、高温で炭素原子が鉄触媒と合金化した 後、冷却に伴い析出してできた炭素繊維であり、多層の円筒 構造をしている.1976年,フランスに行った遠藤は,電子 顕微鏡像から構造が円筒形であると論文で主張した. 電子顕 微鏡像は,電子線が通る方向に原子が並ぶと黒く映るので, 円筒構造であれば、1層に対して1対の平行線という形で見 える. 平行線が本当に円筒形であると言うためには、検証が 必要であるが、円筒形の実験的検証は、前述の飯島の論文で なされることになる.ちなみに、炭化によって炭素繊維をつ くる試みは、1892年エジソンによる京都の竹を炭化した白 熱電球のフィラメントや、1890年ショツンバーガーの気相 成長炭素フィラメントの研究まで遡る.

飯島の発見の直前に、1990年12月のワシントンDCでの ワークショップで、MITのミルドレッド ドレッセルハウ スが炭素繊維のレビューをしたとき、スモーリーが、『直径 が C₆₀ に匹敵する炭素繊維があるか?』という問いを投げか けた.翌1991年8月のフィラデルフィアの研究会で、ドレ ッセルハウスは C₆₀ を半分に切ってその間を円筒形のグラフ ェン(グラファイトの1原子層)をまいた構造に関する理論 的報告をしている.

4. C₆₀研究の展開

さて、フラーレン研究は発見直後から、大きく3つの展開があった.1つめは、前述のフラーレンを分子修飾する有 機化学である.フラーレン誘導体と呼ばれる物質群は、今日 までどれぐらい合成され応用されたか想像もつかないぐらい 多数ある.2つめはフラーレン内部(真空)に金属原子を入れ る内包フラーレンの物理化学である.閉曲面によって、分子 内部と外部という2つの空間ができるようになった.フラ ーレン合成時に、金属原子を入れる手法が開発され、金属の

図4 立体構造で分離精製したナノチューブ(産総研 片浦弘 道先生,都立大 蓬田陽平先生の許可を得て転載).

電荷をフラーレンに移動したイオン化フラーレンや、化学的 に反応性の高い(有害)な原子を封じ込めたりする機能をもた らした.3つめは、フラーレン分子性固体の物理学である. フラーレン分子間には、ファンデルワールス力のような弱い 結合があり、分子を凝縮させると、分子性固体(分子が構成) 単位になる固体)を作る. 例えば C60 固体は, 室温では分子 が固体の中で回転をしていることが NMR の測定などでわか っている.NEC(現東工大)の斎藤晋らは、C60 固体の電子状 態を計算し、半導体であることを見出した. さらに NEC(現 東北大名誉教授)の谷垣勝己らは C60 固体アルカリ金属をド ープして、30Kを超える超伝導体を発見した.炭素材料系 の超伝導は、1980年代のグラファイト層間化合物(GIC)の超 伝導以来である.ちなみに著者の博士論文(1985年)はGIC の研究であり、この頃から著者が直接見聞きした話になって くる.金属学会「まてりあ」にもフラーレン内包ナノチュー ブ(2001)やフラーレンナノウィスカー(2005)の解説記事が あるので、馴染みが多いことであろう.

5. ナノチューブ研究の展開

1991年10月,著者はボストンの MIT に赴いた.当時は文 部省在外研究という制度があり,10カ月間海外で研究がで きた. MIT での10カ月の研究は,著者の人生を変えること になった.著者は,同じく在外研究で来た藤田光孝(筑波 大・故人)とともに,単層のナノチューブの電子状態を計算 し,ナノチューブは立体構造に依存して,金属にも半導体に もなることを見出した.特に半導体になることは,その後の ナノチューブ研究において重要な知見となった.この成果 は,同時に NEC の浜田典昭ら,京大の田中一義らも見出し ている.

1993年,飯島らは理論で予想した単層ナノチューブを合成した.1996年スモーリーらによって,化学気相合成 (CVD)によってナノチューブの大量合成が成功し,サンプ ルは多くの研究者に提供された.1998年,オランダのデッ カーらは,操作トンネル顕微鏡を用いて,『単層ナノチュー ブが立体構造に依存して金属にも半導体にもなる』という理 論予想を実証した.1998年,著者らはナノチューブに関す

図5 日本ゼオン㈱徳山工場・単層カーボンナノチューブ ZEONANO®SG101の製造プラント外観(許可を得て転載).

る本を出版.ナノチューブ研究は,2000年を境に一気に拡大した.

21世紀に入ると、特定の立体構造のナノチューブが精製 できるようになり、金属・半導体ナノチューブの分離、特定 の立体構造のナノチューブの物性が測定できるようになった (図4).分離と精製技術では、単層カーボンナノチューブに 界面活性剤をつけ(図4右上)水溶液中に溶かし、液体クロ マトグラフィーで分離することで得られる(図4左上).ナ ノチューブの立体構造は、2つの整数(n,m)で記述される が、図4下にあるように立体構造で分離したナノチューブ は、さまざまな色を示す.これはエネルギーギャップが、ナ ノチューブの直径に反比例しているからである.

世界各国では実用化に向け,ナノチューブの大量合成が始 まり,日本ゼオン(図5)をはじめ,多くの企業がナノチュー ブを製品として工業的に供給するようになった.その結果, 多くの企業が参入し応用研究が展開した.中国精華大学のフ ァンらは,ナノチューブ薄膜を合成し,スマホのタッチパネ ルに応用した.1000万台を超えるスマホにナノチューブタ ッチパネルが使われた.この結果,透明電極であるITO タ ッチパネルに用いられてた希少金属インジウムの価格に影響 を与えた.

名古屋大の大野雄高らは、プラスチック上に半導体ナノチ ューブなど、すべて炭素材料で出来た集積回路を作成した (図6).図6のような平面でない構造の上に集積回路がうっ すら見える.さらに皮膚の上など、柔軟な構造上にも集積回 路を作ることができ、シリコンデバイスにない特徴を有して いる.2019年マックスは半導体ナノチューブを用いた16ビ ット CPU を制作した.現有の64ビット CPU に比べれば規 模も速度も小さいが、今後ナノチューブデバイスがシリコン デバイスの微小限界を超えて展開できる可能性を見せたこと は、大きな歴史の一歩といえる.

6. ナノカーボン研究の展望

C₆₀ もナノチューブも,物質の単体としての性質より,素材として非常に多くの応用の可能性を秘めた材料である.東京大学の丸山茂夫らは,**C**₆₀ とナノチューブをそれぞれホー

図6 立体構造のプラスチック上に成形されたオールカーボ ン集積回路(名古屋大学 大野雄高先生からご提供).

ルと電子の輸送層とした太陽電池を作成した(図7). 従来の 太陽電池は,透明電極など特殊な材料が必要であったが,炭 素材料を使うことにより,材料の枯渇の心配が無く,再利用 が可能な形のデバイスができることは,実用上大きい成果で ある.

この30年の研究は、電子顕微鏡と理論研究から始まり、 合成手法の開発,合成から精製へ,精製から応用へ確実に展 開し,新しい研究者の参入によって,幅広い研究分野と成長 した. さらに, 最近は企業による研究が進み, 工業化製品と してのフラーレンやナノチューブを用いた実用化研究が、多 彩な研究分野における特許競争となっている.これに拍車を かけたのが2004年のグラフェンの発見と原子層物質の2次 元科学の台頭である.フラーレンやナノチューブの主要な骨 格は炭素からなる6員環であり、原子層1層の6方格子の グラフェンは、より基本的な構造であるといえる. グラフェ ンの概念は、1949年からあったが現実の材料として発見さ れたのが歴史的に一番後である点が面白い.異なる原子層物 質を積層したり, ナノチューブの中に内包フラーレンを入れ たり、さまざまなアイデアで立体構造を設計し、従来にない 性質の材料や製品を創造することが、今日の戦略である.1 nmの半導体デバイスから、3万5千kmの宇宙エレベータ の素材として、本稿で説明できなかったテーマが非常に多い ことも指摘しつつ、将来に続く発展に期待したい.

最後に30年の歴史を書いて気づいたことをお話したい. 多くの発見は,他の研究室に赴き得られた!ということであ る.日常の雑事から離れた他の研究室では,一日中研究に集 中することができ,さらに通常の発想と異なる人との出会い がある.これが発見をもたらした,と考えている.著者にと って,1991年から1992年にかけて MIT で充実した研究がで きたことと,その後,生涯ドレッセルハウス教授夫妻と共同 研究できたこと,またさらに多くの研究仲間とも出会えたこ とで今日がある(図8).多くの共同研究者に感謝し,筆をお くことにする.

図7 C₆₀ とナノチューブを用いた,ペロブスカイト太陽電池 (東京大学 丸山茂夫先生からご提供).

図8 ドレッセルハウス夫妻と著者(後列中央3人).後列左 端は,信州大学 遠藤守信先生.他も共同研究者.

- **文献**:本解説の詳細は下記一般書が詳しい.本文で言及した発表論文 の文献は,(1)-(3)から探すことができます.
- (1) 篠原久典著:ナノカーボンの科学(2007),ブルーバックス, 講談社. 2000年までの主な文献も記載.
- (2) 齋藤理一郎著:フラーレン・ナノチューブ・グラフェンの科学(2015),物理科学最前線,共立出版.
- (3) R. Saito *et al.*: Physical Properties of Carbon Nanotubes Imperial College press (1998), ナノチューブの英語の教科書.
- (4) 遠藤守信著:野原の奥,科学の先(2004),分屋文庫.

水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦

企画にあたって

佐藤豊人*1 李海文2 近藤亮太3 佐藤紘一4 田中秀明5 宮崎秀俊6 吉矢真人7

水素は、将来の水素社会におけるエネルギーキャリアとし て注目される元素である.また、地球上で最も軽い元素であ り、多くの物質と反応して、化合物を形成するが(物質中に 水素原子として含有)、物質中での水素は、水素周りの元素 種、配列、水素-金属の化学結合等に応じて、電荷中性、イ オン性(プロトン、ヒドリド)、共有結合性と多様な結合状態 で存在している.これらの結合状態に起因して、様々な機能 性が出現されることから、将来の水素社会におけるエネルギ ーキャリアとしてだけではなく、機能性材料研究においても 重要な元素のひとつとなっている.そのため、水素は、エネ ルギー利用から物理的・化学的な特性制御まで、幅広く利用 されている.一方、物質中の水素の位置や結合状態を評価す ることが困難であることに加え、金属を脆化(水素脆性)させ る要因にもなりうる元素である.このようなことから将来の 水素社会を実現させるためには、水素を効率的、かつ安全に 有効利用し、物質中の水素の高精度評価と理解が不可欠とな っている.

そこで、本特集では、物質中での水素にフォーカスした新 学術領域研究「ハイドロジェノミクス」(2018-2022年度)を 取り上げて、水素による高機能化とその革新材料・デバイ ス・プロセスの創製、及びそれらを支える最先端計測・計算 技術などの進展について、最近の成果も交えてご解説いただ いた.

「ハイドロジェノミクス」の領域代表の折茂慎一教授(東北 大学)には、「高密度水素による超機能材料の合成」と題して、 「ハイドロジェノミクス」の全体説明、及び材料中での水素 の高密度化により、水素化物超イオン伝導材料・超伝導材料 等の超機能材料の創製を目指す研究画に関して、ご執筆いた だいた.

ー杉太郎教授(東京工業大学)には、「**局在水素によるヘテ ロ界面機能の強化**」と題して、水素を材料界面等に局在化さ せることによる電子的機能や力学特性の強化に関して、ご執 筆いただいた.

宮武健治教授(山梨大学)には,「高速移動水素による次世 代創蓄電デバイスの設計」と題して,水素の「高速移動機能」 を極限まで高める革新的技術の創出と次世代創蓄電デバイス の設計を目指す学理構築に関して,ご執筆いただいた. 森初果教授(東京大学)には、「高速・局所移動水素と電子 とのカップリングによる新発想デバイスの設計」と題して、 有機系,無機系,生体系物質を対象とした水素と電子のカッ プリングによる機能創出,新発想デバイス設計,および学理 構築に関して,ご執筆いただいた.

山内美穂教授(九州大学)には,「電気化学的水素化を利用 した新反応プロセス」と題して,電気化学的水素化反応を利 用した高効率のアミノ酸合成と新規の熱電変換に関して,ご 執筆いただいた.

福谷克之教授(東京大学)には、「水素の先端計測法の開発 とそれによる水素機能の高精度解析」と題して、様々な物質 における水素の状態を精密計測する先端計測法の開発に関し て、ご執筆いただいた.

常行真司教授(東京大学)には、「水素の先端計算による水 素機能の高精度解析」と題して、物質・材料の研究を支える 第一原理シミュレーション手法の現状を紹介するとともに、 実験的観測が困難な水素を含む物質・材料の結晶構造の可能 性を絞るために実験データを利用するデータ同化構造探索手 法に関して、ご執筆いただいた.

本特集では、将来の水素社会において重要な元素である水 素に着目し、基礎研究から応用研究までの内容を分かりやす くご解説して頂いている.本特集で将来の水素社会を担う 「水素」を知るきっかけになって頂ければ幸いです.

最後に,ご多忙の中,ご執筆頂きました先生方に対し,こ の場を借りて厚く御礼申し上げます.

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★ 佐藤豊人

2006年6月 Stockholm University, Department of Physical, Inorganic and Structural Chemistry(スウェーデン)博士課程修了

2006年7月 Arizona State University, Department of Chemistry and Biochemistry (アメリカ) 博士研究員

2007年4月 東北大学金属材料研究所 研究支援者

2009年3月 東北大学原子分子材料科学高等研究機構 助教

2012年11月- 現職

専門分野:材料科学

◎水素化物を利用した水素貯蔵材料に関する合成,特性評価,及び結晶構造 解析に従事.

*1東北大学金属材料研究所 水素機能材料工学研究部門(〒980-8577 仙台市青葉区片平2-1-1)

²九州大学エネルギー研究教育機構(元),³関西大学化学生命工学部,⁴鹿児島大学大学院理工学研究科,⁵産業技術総合研究所エネルギー・ 環境領域,⁶名古屋工業大学,⁷大阪大学大学院工学研究科

Preface to the Special Issue on Challenging of a New Materials Science of Hydrogen (Hydrogenomics) ; Toyoto Sato¹, LI Haiwen², Ryota Kondo³, Koichi Sato⁴, Hideaki Tanaka⁵, Hidetoshi Miyazaki⁶ and Masato Yoshiya⁷

Keywords: hydrogenomics, hydrogen, hydride, energy device, advanced measurement methods, computer simulations 2021年1月27日受理[doi:10.2320/materia.60.151]

水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦

高密度水素による超機能材料の合成

折茂慎一*

1. はじめに:ハイドロジェノミクスの研究概要

本特集では、"水素を使いこなすためのサイエンス"の構築を目指す新学術領域研究「ハイドロジェノミクス」に関して紹介させていただく、本領域の設置や運営に際して多面的

にご指導・ご支援下さっている領域内外の多くの先生方に, この誌面をお借りして心より御礼を申し上げたい.

水素は、最も変幻自在な元素といえる. すなわち, ppbの オーダーから数質量%に至る実に1千万倍以上の極めて広 い濃度範囲で材料中に存在し、周囲の環境に応じて、原子に 近い状態 H⁰,共有結合性 H^{COV.},イオン性(しかもプロトン

* 東北大学材料科学高等研究所(WPI-AIMR);所長,金属材料研究所;教授(〒980-8577 仙台市青葉区片平 2-1-1) Synthesis of Super-functional Materials Using High Densification Ability; Shin-ichi Orimo(WPI-AIMR/Institute for Materials Research, Tohoku University, Sendai)

Keywords: hydrogenomics, higher-order hydrogen functions, proton, hydride, covalent bonding, hydrogen cluster, super-ionic conductivity, super-conductivity, high-pressure synthesis

2020年10月31日受理[doi:10.2320/materia.60.152]

H⁺ とヒドリド H⁻ の両極性),そしてそれらの中間状態に もなり,さらには各状態で水素自体の大きさも劇的に変化す る(図1下段).

これら水素固有の性質は、材料中での水素の高密度化・界 面局在・高速移動・高活性化などの"水素機能"として発現 する.その一部は実社会において、例えば燃焼や燃料電池反 応などを介したエネルギー源や有用物質の原料として、さら には材料中に出入りすることによる材料特性向上を目的とし て、様々活用されている.これらの社会的重要性から、工 学・化学・物理学・生物学などの各学問分野において個別の 水素機能を追求する研究が鋭意進められてきた.

本会関係では,春秋講演大会において長年にわたり水素セ ッションを設置するとともに,科学研究費補助金特定領域研 究(当時)「サブナノ格子物質におけるプロチウム新機能 (1998-2002年度,領域代表:東北大学・岡田益男教授」で 関連研究を強力に推進してきた.また,2008年からは,公 募シンポジウム「水素エネルギー材料」をシリーズ開催する とともに,まてりあや Materials Transactions での特集企 画,さらに2014年からは「水素化物に関する次世代学術・ 応用展開研究会」も組織して活動を進めている.

注目すべき最近の状況は、新たな水素科学の萌芽である. 合成・解析技術の進歩により高密度水素化物やヒドリド置換 化合物の報告例が増加するとともに、LiBH₄やH₂Sなどの 既知の水素化物でも超イオン伝導や超伝導といった現象が新 たに観測されている.水素化物ルネサンス⁽¹⁾とされるこの萌 芽の本質は、複数の水素機能の関与、即ち複数の水素機能の 相乗効果による、従来は顕在化しなかった"高次水素機能" の誘起にある.この誘起により,個別の水素機能だけでは実 現困難な革新的材料・デバイス・反応プロセスの創成が期待 される.例えば,材料中の水素が「高密度凝集して水素クラ スターを形成する機能」と「高速移動する機能」との高次水 素機能の誘起により,新規超イオン伝導材料や新発想デバイ スなどの創成が期待できる.実際に,多彩な高次水素機能を 誘起するためには,「学問分野の枠を超えて有機的に連携」 した新たな視点の水素科学が必要となるであろう.

このような学術的背景から、「ハイドロジェノミクス:高 次水素機能による革新的材料・デバイス・反応プロセスの創 成(2018-2022年度,領域代表:折茂」を設置,工学・物理 学・化学・生物学など幅広い学問分野の研究者が連携して変 幻自在な水素がもつ多様な物性・機能性に関わる連携研究を 進めることで,水素を高度に"使いこなす"ためのサイエン ス,すなわちハイドロジェノミクス(hydrogen(水素)-omics (学術体系))の構築を目指す.これは世界でも類を見ない, 初めての挑戦といえる(図1上段).

本領域研究は、学問分野の枠を超えた7つの多彩な計画 研究で構成されている(図2).

A01「高密度水素による超機能材料の合成(計画研究代表: 折茂)」では,材料中での水素の高密度化により,画期的な 機能をもつ材料を創成している.

A02「局在水素によるヘテロ界面機能の強化(同:東京工 業大学・一杉太郎教授)」では,水素を材料界面などに局在 化させることで電子的機能や力学特性を強化する研究を進 め,太陽電池や鉄鋼材料の研究者との連携を展開している.

A03-1「高速移動水素による次世代創蓄電デバイスの設計

図2 新学術領域研究「ハイドロジェノミクス」の計画研究メンバー. (オンラインカラー)

図3 遷移金属の周囲に複数の水素が配位した錯イオン(水素 クラスター)での水素配位数と電子状態との相関.(オン ラインカラー)

(同:山梨大学・宮武健治教授)」とA03-2「高速・局所移 動水素と電子とのカップリングによる新発想デバイスの設計 (同:東京大学・森初果教授)」では,水素の高速移動や電子 とのカップリングを利用して,新発想の燃料電池やヒドリド を駆使した新たなデバイスを開発している.

A04「高活性水素の精密制御による新規反応プロセスの創 出(同:九州大学・山内美穂教授)」では、水素の高活性化に より医薬品や燃料などの有用物質をつくるための新たな反応 プロセスを創出している.

そして, A05-1の「水素の先端計測による水素機能の高 精度解析(同:東京大学・福谷克之教授)」とA05-2「水素 の先端計測による水素機能の高精度予測(同:東京大学・常 行真司教授)」では,材料中の水素を精密計測・計算するこ とで,革新的材料・デバイス・反応プロセスの創成の効率化 を目指す.特に,先端計測によって得られたデータを「デー タ同化」と呼ばれる手法を用いてシミュレーションに適用, 解析・予測精度を高めている.

これらに加えて,第一期公募研究として19名の気鋭の研 究者が参画するとともに,150名を超える若手研究者が領域 活動に参画している.

以下,A01「高密度水素による超機能材料の合成」に関して,高密度水素を含む錯イオン(以下,水素クラスター)を用いた新たな超伝導・超イオン伝導材料の合成や次世代電池の設計について紹介する.

2. 超伝導性を示す高密度水素化物の合成

まず,遷移金属の周囲に複数の水素が配位した水素クラス ターを含む高密度水素化物に注目して,その電子構造の制御 による水素由来の超伝導の誘起について紹介する.

この水素化物の電子状態は,基本的には遷移金属 spd 軌道 と水素 1s 軌道の軌道混成により理解できる.例えば,図3 の水素6配位の水素クラスターでは,遷移金属の9つの spd

図4 大きな籠状の錆イオン(水素クラスター)を含む高密度 水素化物でのリチウム超イオン伝導性とその全固体電 池への応用.(オンラインカラー)

軌道のうち6つが水素の6つの1s軌道と混成し,6つの結 合性軌道と6つの反結合性軌道を形成するとともに残りの3 つが非結合性軌道となる.電気陰性度の比較から,結合性軌 道においては水素からの寄与が大きく,また非結合性軌道で はその逆となるであろう.ゆえに,図3のように下から6 つが水素由来の電子軌道,その上に遷移金属由来の9つの 電子軌道が重なると予測できる⁽²⁾.さらにこの電子状態は水 素配位数とともに系統的に変化する.すなわち,7配位,8 配位と増加するにつれて水素の電子軌道は浮上し,9配位に なるとフェルミ準位に到達するであろう.これらの水素化物 は,常圧下では3eV前後のバンドギャップをもつ絶縁体で あるが,高圧下でバンドギャップが閉じれば,水素由来の超 伝導状態が実現することが期待される.

実際に,水素が9配位した[MoH₉]³⁻を含む高密度水素化物Li₅MoH₁₁を高圧合成し,大阪大学基礎工学研究科附属極限科学センター・清水研究室のダイヤモンドアンビルセルを用いた超高圧下での電気抵抗測定を進めた結果,160GPa(160万気圧)において最高6.5Kで超伝導相に転移することが実証された⁽²⁾⁽³⁾.

リチウム超イオン伝導性を示す高密度水素化物の 合成とその全固体電池への応用

次に、大きな籠状の水素クラスターを含む高密度水素化物 に注目して、その原子構造の制御による陽イオンの高速(超) イオン伝導の誘起と次世代電池への応用について紹介する.

次世代電池の代表として世界的に研究が進められている全 固体電池では,充放電速度・エネルギー密度・寿命などの電 池特性を決定付ける固体電解質の開発が重要であり,その一 つの指標がイオン伝導率である.先行する硫化物や酸化物 系,ポリマー系固体電解質に加えて,最近では大きな籠状の 水素クラスターを含む高密度水素化物における各種の陽イオ ン伝導性が国内外で注目されている.

その代表例である Li₂(B₁₂H₁₂)は, 355℃付近で低温相か

特

ら高温相へと構造相転移する.高温相では,籠状の水素クラスター $[B_{12}H_{12}]^{2-}$ が自由回転に近い状態になる結果,これら4つの水素クラスターで形成される大きな四面体サイト内のリチウムイオンの位置が多様化(positional disorder)する.このため,三次元のイオン伝導チャンネルが形成され,リチウムイオン伝導性が急激に上昇する.

最近、2種類の水素クラスターを使いこなすことで、この 現象を室温で実現することに成功した⁽⁴⁾. すなわち、一価の $[CB_9H_{10}]^-$ を含む Li(CB_9H_{10})に対して、類似の構造および 同じ価数を有する $[CB_{11}H_{12}]^-$ を部分置換することで、0.7Li $(CB_9H_{10})^-0.3Li(CB_{11}H_{12})$ の組成で均質な水素化物を合成す ることが可能となった. この組成では既に室温でも高温相が 安定化されており、その結果、25℃において 6.7×10⁻³ S cm⁻¹というこれまで報告されてきた水素化物のなかで最も 高い、液体電解質と同程度のリチウムイオン伝導を示した. さらに、リチウム負極に対する高い化学的・電気化学的安定 性を示すことも判明した. これらの特性により、高密度水素 化物を新たな固体電解質として用いたリチウム一硫黄系全固 体電池(図 4)において、2500 Wh kg⁻¹以上もの高いエネル ギー密度が安定して得られることも実証された⁽⁴⁾.

4. まとめ

新学術領域研究「ハイドロジェノミクス」では現在,領域 内連携により,超イオン伝導や超伝導,さらに水素貯蔵機能 などを示す高密度水素化物での,水素も含めた詳細な原子・ 電子構造の解明を進めている.また,高圧・成膜・液相合成 プロセスなども含めた合成技術の多様化を図ることでさらな る特性向上を目指した研究も進めており,特に高圧合成技術 に関してはコバルトーチタン系をはじめとする従来に無い水 素化物群の合成に成功して注目されている⁽⁵⁾.またイオン伝 導性に関しても,モリブデン系高密度水素化物でのリチウム 超イオン伝導性⁽⁶⁾やマグネシウムなどの2価イオン高速イ オン伝導性⁽⁷⁾に関する成果を得ている.

ほぼ全ての物質中に存在する元素である水素を"使いこな す"ことができれば、身近な環境や安全安心、有用物質合成 プロセスや地球規模でのエネルギー問題などに対して、極め て大きな貢献ができるであろう。新学術領域内外の多くの水 素科学の研究者とも連携して、"水素を使いこなすためのサ イエンス"としてのハイドロジェノミクスの構築を目指した い.

本稿に関する多くの共同研究者の皆様方に厚く御礼申し上 げる.

文 献

- (1) R. Mohtadi and S. Orimo: Nat. Rev. Mater., 2(2016), 16091.
- (2) S. Takagi, Y. Iijima, T. Sato, H. Saitoh, K. Ikeda, T. Otomo, K. Miwa, T. Ikeshoji and S. Orimo: Sci. Rep., 7(2017), 44235.
- (3) D. Meng, M. Sakata, K. Shimizu, Y. Iijima, H. Saitoh, T. Sato, S. Takagi and S. Orimo: Phys. Rev. B, 99 (2019), 024508.
- (4) S. Kim, H. Oguchi, N. Toyama, T. Sato, S. Takagi, T. Otomo, A. Dorai, N. Kuwata, J. Kawamura and S. Orimo: Nat. Commun., 10(2019), 1081.
- (5) H. Saitoh, M. Morimoto, T. Watanuki, T. Sato, S. Takagi and S. Orimo: Int. J. Hydrogen Energy, 45(2020), 33675–33680.
- (6) S. Takagi, T. Ikeshoji, T. Sato and S. Orimo: Appl. Phys. Lett., **116**(2020), 173901.
- (7) K. Kisu, S. Kim, R. Yoshida, H. Oguchi, N. Toyama and S. Orimo: J. Energy Chem., 50(2020), 424–429.

折茂慎一

水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦

局在水素によるヘテロ界面機能の強化

一 杉 太 郎*

1. はじめに

これまで金属元素と水素を含む化合物(本稿では金属水素 化物と呼ぶ)は、水素貯蔵やエネルギー材料としての研究が 精力的に進められてきた⁽¹⁾.そして昨今、「水素ならでは」 の特徴的な新機能が注目を集めている。例えば、カチオンの 高速伝導⁽²⁾⁽³⁾やヒドリド(H⁻)伝導⁽⁴⁾⁽⁵⁾、そして、超高圧下 における高温超伝導⁽⁶⁾⁻⁽⁸⁾が報告され、活発な研究が展開さ れている.

これらの新機能の起源をたどると、水素の原子番号が1 であることに行き着く、水素は適度な電気陰性度(ポーリン グの定義で2.2)を有することから、周囲の環境に応じて-1 から+1までの荷電状態を変幻自在に変化させることができ る.それに応じて、半径(H⁻:2.08Å,H⁰:0.53Å,H⁺: -0.03Å)⁽⁹⁾や結合様式(H⁻:イオン結合,H⁰:金属結合性, H⁺:共有結合性)が柔軟に変化する、これにより、非化学量 論的な幅広い水素組成や、物質中への容易な可逆的脱挿入が 実現し、水素脱挿入を伴った電子物性制御⁽¹⁰⁾⁽¹¹⁾や触媒作用 が発現⁽¹²⁾⁻⁽¹⁴⁾する、さらに、室温超伝導⁽⁸⁾や量子拡散⁽¹⁵⁾で は水素の軽さが鍵を握っている、このように、水素の原子番 号が1である特徴が、金属酸化物や金属窒化物では発現し 得ない特徴的な物理的、化学的特性を引き起こす。

以上のような水素の特徴は、界面ではどのように発揮され るのだろうか.我々はそれを理解し、新しい学術とデバイス 創製につなげたい.前述のように、固体中の水素密度は、低 い極限からその百万倍もの高密度に至るまでを連続的に変化 させることが可能となる.したがって、表面・界面を通じて 水素を固体中にスムーズに脱挿入する技術や、電子状態を制 御して界面での水素移動を抑制する技術を開発することによ

基版からのストレイン、元素導入 高圧合成、新薄膜作製手法の導入

図1 水素種を界面でスムーズに通過させ,超低密度から超 高密度まで水素密度を制御する.(オンラインカラー)

り[図1],超低消費電力デバイスや太陽電池,超高強度鋼な どの水素機能を活用した高度なデバイス・材料の実現が可能 となるだろう.

以下,新学術領域研究「ハイドロジェノミクス」における 計画研究 A02「局在水素によるヘテロ界面機能の強化」に

* 東京工業大学物質理工学院応用化学系;教授(〒152-8552 東京都目黒区大岡山2-12-1)

Emergence of Novel Functions at Hydride Hetero Interfaces; Taro Hitosugi(School of Materials and Chemical Technology, Tokyo) Institute of Technology, Tokyo)

Keywords: hydrogen, metal hydride, epitaxial thin film, electronic property, hydrogen detection, hydrogen embrittlement, steel, solar cell, interface 2020年11月16日受理[doi:10.2320/materia.60.156]

関して取り組みを紹介する.局在水素とは界面近傍の水素密 度に着目することであり、その密度を自在に制御する技術や 原理について研究を行っている.そして,異種物質の界面, つまりヘテロ界面における新機能発現を目指している.

2. 金属水素化物薄膜を合成する際の難しさ

界面制御や界面における水素の挙動を探る上で,精緻な界 面を作り出すことが必須である.そのために,薄膜合成技術 が重要となる.そこで,反応性スパッタ法やパルスレーザー 堆積法による金属水素化物エピタキシャル成膜技術の確立を 目指した⁽¹⁶⁾⁽¹⁷⁾.エピタキシャル薄膜は結晶方位が制御され ており,本質的な物性を引き出し,定量的な研究を進めるた めの舞台となる.

金属水素化物薄膜の合成技術には,金属水素化物ならでは の難しさが存在する.そのため,本研究開始前の時点で金属 水素化物エピタキシャル薄膜の合成例は希土類元素の水素化 物(YH₂, ErH_x)⁽¹⁸⁾⁻⁽²⁰⁾に限られていた.これまで筆者らが進 めてきた金属酸化物薄膜研究の知見と比較した金属水素化物 薄膜研究の難しさを4点説明する.

① 金属水素化物の結晶成長が困難であること

金属水素化物は金属酸化物や金属ハロゲン化物などと比較 すると熱的に不安定で,分解しやすい.例えばLi化合物で は,Li₂OとLiFの標準生成ギブズエネルギーがそれぞれ 561.2 kJ/mol,587.73 kJ/molであるのに対し,LiHはそれ らの1/8 程度の68.37 kJ/molである.そのため,合成時に は分解を防ぐため,通常,数MPa以上の水素雰囲気が用い られる⁽²¹⁾.しかし,薄膜成長は一般に真空容器内で行うた め十分な水素分圧を確保できず,薄膜結晶を作製することが 難しい.

② 反応性が高いために特殊な環境が必要であること

多くの金属水素化物は水や酸素との反応性が高く,大気中 で化学的に不安定である.そのため,ターゲットの準備から 薄膜成長,評価までを一貫して大気非曝露で行う必要があ る⁽²²⁾.昨今では,リチウムイオン電池研究の進展から大気 非曝露で物性評価できる設備が整ってきており,それらのイ ンフラを活用することが不可欠である⁽²³⁾⁽²⁴⁾.

③ 薄膜内の水素含有量の制御と評価が不可欠であること

本稿の冒頭で述べたように,固体中の水素含有量は幅広い 値を取り得る.したがって,薄膜という極微体積中の水素量 を正確に定量する必要がある.バルク類似の定量手法である 昇温脱離法(Thermal Desorption Spectroscopy: TDS)⁽²⁵⁾, 薄膜試料を対象とした定量法である核反応分析(Nuclear Reaction Analysis: NRA)⁽²⁶⁾,弾性反跳検出分析(Elastic Recoil Detection Analysis: ERDA)⁽²⁷⁾や,2次イオン質量分 析法(Secondary Ion Mass Spectrometry: SIMS)などを組み 合わせて定量する必要があるが,手軽に使える環境ではない.

④ 水素位置を含めた薄膜の結晶構造評価が困難であること

水素は電子数が少ないため、電子と相互作用を示すX線 に対する応答が極めて弱い.したがって、バルク体の金属水 素化物における水素位置を含めた結晶構造評価には、原子核 と相互作用し、電子数に依らない応答を示す中性子が用いら れる.しかし、中性子は、X線や電子線と比べて入射ビー ム強度を稼げないことや、侵入長が大きいことから厚み数十 nmの薄膜試料を対象とする際には極めて大きな面積の薄膜 を用意する必要がある.最近、ミュオンを用いた薄膜中の水 素のふるまいに関する研究が報告されている⁽²⁸⁾.今後、第 一原理計算とともに複数の計測技術を組み合わせることによ り、薄膜構造の解明が進むことが期待される.

3. 金属水素化物薄膜の合成

以上の課題を克服しつつ,様々な薄膜と界面を形成した. 絶縁体基板上にTiH₂,NbH,MgH₂,YH₂,EuH₂等のエピタ キシャル薄膜作製に成功し⁽²⁹⁾⁻⁽³²⁾,遷移金属やアルカリ金 属などの幅広い金属水素化物薄膜研究が可能になった. さら に、数種類の陰イオンを含む化合物のエピタキシャル薄膜成 長についても成功している(YO₄H₉,Ca₂NH,LiBH₄等⁽²²⁾).

薄膜技術を活用した界面形成の一例として、反応性スパッ タ法で作製した TiH₂ エピタキシャル薄膜と Al₂O₃ 基板の界 面について紹介する.走査透過型電子顕微鏡を用いた TiH₂ (111)/Al₂O₃(001)の界面を図2に示す.TiH₂薄膜は1層目 から、Ti 原子が "ABCABC"という秩序を有して積層され ている.これは TiH₂ の蛍石構造における Ti の fcc 副格子 を反映しており、Ti 金属の hcp 構造("ABAB")とは異なる ことから、界面の1層目から水素化された相として形成さ れていることを示している.このように、薄膜界面は原子レ ベルで急峻に制御されており、これは金属水素化物の積層構 造を用いた界面物性研究が可能であることを示している.

図2 走査透過型電子顕微鏡を用いた TiH₂(111)/Al₂O₃(001) の界面.(オンラインカラー)

4. 金属水素化物の物性

金属水素化物はエネルギー応用として長い研究の歴史があ るので、多くの物性が明らかになっていると筆者は思ってい た.しかし、研究を始めてみて、筆者の専門の一つである金 属酸化物研究と比較すると、いまだ多くの物性が明らかにな っていないことがわかった.

ここでは二つ例を紹介する.前述の通り,金属水素化物は 幅広い水素組成をとることができることから,TiH_xを用い て水素組成が構造や電子物性に与える影響を調べた⁽³³⁾.な お,TiH_x薄膜の水素組成制御は,成膜中の水素分圧や結晶 の成長方位制御により行い,水素組成の定量には NRA⁽²⁶⁾⁽³⁰⁾を用いた(東大・福谷グループとの共同研究).

まず,水素組成とホール係数の関係を調べた[図3(a)]. ホール係数が正の時は正孔伝導,負の時は電子伝導を示す. 実験の結果, *x*≈1.7を境に符号が反転し,伝導キャリアが変 化することが分かった.さらに X 線回折から求めた構造(格 子面間隔)とホール係数の関係を調べたところ,ユニットセ

図3 (a) TiH_xの水素組成と4Kにおけるホール係数の関係.(b) TiH_xのユニットセル体積と4Kにおけるホー ル係数の関係.(オンラインカラー)

図 4 光照射後の YO_xH_y の電気抵抗の温度依存性.(オンライ ンカラー)

ル体積とホール係数に強い相関があることを見出した[図3(b)]. この現象を理解するために,大阪大学・濱田が理論 計算を行ったところ,ユニットセル体積の減少に伴って TiH_xの正方晶性(c軸の格子定数/a軸の格子定数)が大きく なり,それに伴った Ti t_{2g} 軌道の縮退度合いの変化が伝導キ ャリアの符号反転をもたらしていることが分かった.以上の ように,水素組成や構造を制御することにより,TiH_xの電 子物性をチューニングできることが分かった.

2つ目の例は、金属水素化物の光に対する応答である. YO_xH_y多結晶薄膜は、光照射により電気抵抗が一桁程度低下することが知られていた⁽³⁴⁾. そこで、YO_xH_yエピタキシャル薄膜を作製し、光照射したところ、電気抵抗率が7桁減少して「金属化」することを見出した[図4]. ここで、金属化とは、電気抵抗の温度依存性が金属性を示すことである.このような現象は過去に報告はなく、メカニズムの解明が期待される.現在のところヒドリドがプロトンになることにより電子を放出し(H⁻→H⁺+2e⁻)、それが伝導電子になると考えている.

5. 鉄鋼材料中の水素濃度分布の可視化

金属工学と錯体化学という異分野の融合によって,新たな 水素検出(定量化と分布観察)技術が生まれつつある.具体的 には,Ir系金属錯体の水素化反応に伴う色彩変化を利用し て,東北大・秋山グループは,鉄中を透過した水素の可視化 に成功した.

図5 有機金属錯体の呈色を活用して、水素濃度分布を検出 する例.(a)金属錯体の分子構造と色変化.水素透過前 (b)と水素透過後(c)の写真.右側半分にだけ水素が到 達するようにしている.実際に色が変化していること がわかる.(オンラインカラー) (東北大学・秋山英二研究室より提供)

水素と反応して色が変化する Ir 錯体 (aqua (2,2'-bipyridine-6,6'-dionato) (pentamethylcyclopentadienyl) iridium (III))⁽³⁵⁾が京大・藤田グループにより合成された[図5(a)].水素と結合する前は黄色の粉末だが,水素と結合するとオレンジ色の粉末になる.この錯体分子をPd めっきした金属片の表面に塗布した.そして,裏面から金属中に侵入して透過した水素による Ir 錯体の色変化を調べた.図5(b)は水素透過前の写真であり,褐色を呈していることが分かる.その後,右側の領域だけ水素が金属中を透過するようにした.すると,図5(c)に示すように,右側の領域だけ濃い褐色を呈する.この色の変化量が水素の透過量に対応していることを確認した.この金属片の左側は水素が透過していないため,透過前の図5(b)と同じ色である.

空間分解能の向上のためには均質薄膜が必要であり、より 洗練された薄膜合成技術を活用する予定である.このような 研究は、水素脆化抑制プロセス創成へと発展していくだろう.

界面における水素結合状態制御による太陽電池性 能の向上

太陽電池において,界面の特性向上を通じて発電効率を向 上することが急務である⁽³⁶⁾.名古屋大・宇佐美グループは 酸化チタン(TiO_x)/結晶シリコン(c-Si)ヘテロ界面に対して 水素プラズマ処理(HPT)を実施し,ヘテロ界面に水素を局 在させることで表面パッシベーション機能を向上させた.そ れにより,優れた高効率Si系太陽電池の設計指針を得た.

効率的な伝導電子の輸送が期待できる TiO_x/c-Si ヘテロ接 合に対して HPT を行うと, c-Si に対する表面パッシベーシ ョン性能の向上が期待できる.これはヘテロ界面近傍におけ る c-Si 表面の未結合手に水素を付加し, Si-H 結合を作るこ とによって伝導電子をトラップするサイトを電気的に不活化 するためと考えられる.

図 6(a)は、マイクロ波光導電減衰法で測定した TiO_x/c-Si ヘテロ接合の光伝導減衰曲線を,三種類の試料に対して比較 したものである(製膜直後,フォーミングガスアニール (FGA)後,そして,HPT後).なお,光伝導度が1/eに減 衰する時間である実効キャリアライフタイムは表面パッシベ ーション性能の指標となる. HPT により表面パッシベーシ ョン性能が向上することが、実効キャリアライフタイムの大 幅な向上により明らかである.図6(b)は、東大・福谷グル ープのNRA⁽²⁶⁾を用いて測定した水素密度の空間分布であ り,図中の縦線は、TiO_x表面とそれぞれの試料のTiO_x/c-Si 界面の位置を示す. HPT 後には, TiO_r/c-Si 界面に水素が 高濃度に局在していることが明らかとなった(37).また,表 面パッシベーション性能が向上した試料に対して、東北大・ 秋山グループの TDS 装置で評価を行ったところ、水素が関 与する結合エネルギーが増加し、安定な Si-H 結合が形成さ れていることを実証した(38).以上により、水素がヘテロ界 面に局在することによる界面機能の高度化を明らかにした. 今後は、実際に太陽電池を作製して性能を評価し、水素局在 化による太陽電池の高性能化を目指す.

7.展望

筆者は金属酸化物薄膜合成と物性研究を長らく進めてき た.その経験から金属水素化物薄膜研究,および,界面研究 を見ると,物質科学の見方を変える大きな可能性を強く感じ る.水素は固体中に広く存在するため,これまで金属酸化物 等の界面で見出されてきた物性について,実は水素が関与し ていた可能性もある.界面は多くの研究で共通のキーワード になっており,界面における化学反応や電子状態の制御,あ るいは,界面をまたぐイオン伝導など,今後解明すべきこと は多々ある.

今後、独自の薄膜合成技術・評価技術を活用し、電子状態

図6 (a) TiO_x/c-Si ヘテロ構造の光伝導減衰曲線.(b) 核反応分析法で測定した水素分布を示す y 線収率曲線.(オンラインカラー) (名古屋大学・宇佐美徳隆研究室より提供)

や構造を制御する材料設計指針を構築して,新しい水素科学 (=ハイドロジェノミクス)の開拓を進める.そして,革新的 水素化物エレクトロニクスデバイスや新化学反応デバイスの 創製へとつなげたい.

本研究は清水亮太准教授(東京工業大学),大口裕之教授 (芝浦工業大学),秋山英二教授(東北大学),字佐美徳隆教授 (名古屋大学)をはじめ,多くの新学術領域「ハイドロジェノ ミクス」メンバーとの共同研究により進められました.ま た,本稿をまとめるにあたり,笹原悠輝君(東京工業大学)に 大変お世話になりました.そして,新学術領域研究ハイドロ ジェノミクスに参画する研究者をはじめ,多くの共同研究者 に心より御礼申し上げます.

文 献

- (1) R. Mohtadi and S. Orimo: Nat. Rev. Mater., 2(2016), 16091.
- (2) M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa and H. Takamura: Appl. Phys. Lett., 91 (2007), 224103.
- (3) S. Kim, H. Oguchi, N. Toyama, T. Sato, S. Takagi, T. Otomo, D. Arunkumar, N. Kuwata, J. Kawamura and S. Orimo: Nat. Commun., 10(2019), 1081.
- (4) M. C. Verbraeken, C. Cheung, E. Suard and J. T. S. Irvine: Nat. Mater., 14(2015), 95–100.
- (5) G. Kobayashi, Y. Hinuma, S. Matsuoka, A. Watanabe, M. Iqbal, M. Hirayama, M. Yonemura, T. Kamiyama, I. Tanaka and R. Kanno: Science, **351** (2016), 1314–1317.
- (6) M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin and R. J. Hemley: Phys. Rev. Lett., **122**(2019), 027001.
- (7) A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz and M. I. Eremets: Nature, 569 (2019), 528–531.
- (8) E. Snider, N. Dasenbrock–Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat and R. P. Dias: Nature, 586 (2020), 373–377.
- (9) 深井 有,田中一英,内田裕久,水素と金属 次世代の材料学,内田老鶴圃(1998),17.
- (10) J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot and N. J. Koeman: Nature, 380 (1996), 231–234.
- (11) H. Zijlstra and F. F. Westendorp: Solid State Commun., 7 (1969), 857–859.
- (12) K. Soga, H. Inamura and S. Ikeda: J. Phys. Chem., 81(1977), 1762–1766.
- (13) M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara and H. Hosono: Nat. Commun., 6(2015), 1–9.
- (14) M. Kitano, Y. Inoue, H. Ishikawa, K. Yamagata, T. Nakao, T. Tada, S. Matsuishi, T. Yokoyama, M. Hara and H. Hosono: Chem. Sci., 7(2016), 4036–4043.
- (15) Y. Fukai and H. Sugimoto: Adv. in Phys., 34(1985), 263–326.
- (16) 清水亮太, 大口裕之, 一杉太郎:応用物理, 89(2020), 20-24.
- (17) R. Shimizu, H. Oguchi and Taro Hitosugi: 89(2020), 051012.
- (18) J. Hayoz, Th. Pillo, M. Bovet, A. Zuttel, St. Guthrie, G. Pastore, L. Schlapbach and P. Aebi: J. Vac. Sci. Technol. A, 18 (2000), 2417–2431.
- (19) B. Dam, A. C. Lokhorst, A. Remhof, M. C. R. Heijna, J. H. Rector, D. Borsa and J. W. J. Kerssemakers: J. Alloys Compd.,

356-357(2003), 526-529.

- (20) D. P. Adams, M. A. Rodriguez, J. A. Romero, P. G. Kotula and J. Banks: Thin solid films, 520(2012), 6145–6152.
- (21) 大角泰章:水素貯蔵合金, 与野書房(1985), 18.
- (22) H. Oguchi, S. Kim, S. Maruyama, Y. Horisawa, S. Takagi, T. Sato, R. Shimizu, Y. Matsumoto, T. Hitosugi and S. Orimo: ACS Appl. Electron. Mater., 1(2019), 1792–1796.
- (23) M. Haruta, S. Shiraki, T. Ohsawa, T. Suzuki, A. Kumatani, Y. Takagi, R. Shimizu and T. Hitosugi: Solid State Ionics, 285 (2016), 118–121.
- (24) M. Haruta, S. Shiraki, T. Suzuki, A. Kumatani, T. Ohsawa, Y. Takagi, R. Shimizu and T. Hitosugi: Nano Lett., 15(2015), 1498–1502.
- (25) T. Hanna, H. Hiramatsu, I. Sakaguchi and H. Hosono: Rev. Sci. Instrum., 88(2017), 053103.
- (26) M. Wilde and K. Fukutani: Surf. Sci. Rep., 69 (2014), 196–295.
- (27) D. Sekiba: Compendium of Surface and Interface Analysis, ed. by The Surface Science Society of Japan Chap. 12 (Springer, 2018).
- (28) K. M. Kojima, M. Hiraishi, H. Okabe, A. Koda, R. Kadono, K. Ide, S. Matsuishi, H. Kumomi, T. Kamiya and H. Hosono: Appl. Phys. Lett., 115(2019), 122104.
- (29) R. Shimizu, Y. Sasahara, H. Oguchi, K. Yamamoto, I. Sugiyama, S. Shiraki, S. Orimo and T. Hitosugi: APL Mater., 5 (2017), 086102.
- (30) Y. Sasahara, R. Shimizu, H. Oguchi, K. Nishio, S. Ogura, H. Morioka, S. Orimo, K. Fukutani and T. Hitosugi: AIP Adv., 9 (2019), 015027.
- (31) R. Shimizu, T. Kakinokizono, I. Gu and T. Hitosugi, Inorg. Chem., 58(2019), 15354–15358.
- (32) Y. Komatsu, R. Shimizu, M. Wilde, S. Kobayashi, Y. Sasahara, K. Nishio, K. Shigematsu, A. Ohtomo, K. Fukutani and Taro Hitosugi: Cryst. Growth Des., **20** (2020), 5903–5907.
- (33) R. Shimizu, Y. Sasahara, I. Hamada, H. Oguchi, S. Ogura, T. Shirasawa, M. Kitamura, K. Horiba, H. Kumigashira, S. Orimo, K. Fukutani and Taro Hitosugi: Phys. Rev. Research, 2 (2020), 033467.
- (34) T. Mongstad, C. Platzer–Björkman, J. P. Maehlen, L. P. A. Mooij, Y. Pivak, B. Dam, E. S. Marstein, B. C. Hauback and S. Zh. Karazhanov: Sol. Energy Mater. Sol. Cells, **95**(2011), 3596–3599.
- (35) R. Kawahara, K. Fujita and R. Yamaguchi: Angew. Chem. Int. Ed., 51 (2012), 12790–12794.
- (36) A. Cuevas, Y. Wan, D. Yan, C. Samundsett, T. Allen, X. Zhang, J. Cui and J. Bullock: Sol. Energy Mater. Sol. Cells, 184 (2018), 38–47.
- (37) S. Miyagawa, K. Gotoh, S. Ogura, M. Wilde, Y. Kurokawa, K. Fukutani and N. Usami: J. Vac. Sci. Technol. A, 38(2020), 022410.
- (38) K. Gotoh, T. Mochizuki, T. Hojo, Y. Shibayama, Y. Kurokawa,
 E. Akiyama and N. Usami: Curr. Appl. Phys., 21(2021), 36–42.

◎これまで知られている物性でも「美は水素が異わっていた!」ということは多いと思います。そのようなことも明らかにしていきたいです。

水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦

高速移動水素による 次世代創蓄電デバイスの設計

宮 武 健 治*

1. はじめに

最近,幾つかの水素化物で超イオン伝導や高プロトン伝導 などの特異機能が見出されている.これは複数の水素機能の 相乗効果による"高次水素機能"の誘起によるものであり, この機能を追求することにより個別の水素機能だけでは実現 することが困難な革新的材料・デバイス・反応プロセスの創 成が期待できる.特異な水素機能を融合して多彩な高次水素 機能を誘起するためには,学問分野の枠を超えて有機的に連 携した新たな視点の水素科学の構築が必要である.

我々は科研費新学術領域研究「ハイドロジェノミクス」の 計画研究「高速移動水素による次世代蓄電デバイス設計」に おいて、ハイドロジェノミクスの基盤となる水素の「高速移 動機能」を極限まで高める革新的技術を創出するとともに、 積極的に高次水素機能を誘起するための学理構築を目指して いる.特に、プラスチックフィルムやシート中の水素の移動 を格段に促進し異種材料が接する界面におけるプロトンや電 子の移動の制御を試みながら、他の研究項目・計画研究を含 む領域全体で連携して次世代創蓄電デバイスを設計する研究 を進めている. 例えばこれまでに, プロトンがプラスチック フィルム(高分子薄膜)中を酸性水溶液中と同じように「高速 移動」する機能と、多量の水素イオンが「高密度凝集」する 機能を融合して、燃料電池と全固体二次電池の利点を兼ね備 える新しい創蓄電デバイスを創出することに成功した. 各構 成材料の物性を一層向上させてこのデバイスを発展させるこ とにより、従来材料・技術では見通すことができない高出力 密度と高エネルギー密度を併せ持つエネルギーデバイスの基 礎原理を提案したいと考えている.本原稿では「高速移動水 素による次世代蓄電デバイスの設計」における最近の成果に ついて,いくつかの代表例を紹介する.

2. 研究目的と領域への貢献

特異な水素機能を融合して多彩な高次水素機能を誘起する ためには、学問分野の枠を超えて有機的に連携した新たな視 点の水素科学(=ハイドロジェノミクス)の構築が必要であ る.本計画研究では、ハイドロジェノミクスの基盤となる水 素の「高速移動機能」を極限まで高める革新的技術を創出す るとともに、積極的に高次水素機能を誘起するための学理構 築を目指している.具体的には、多彩な高次水素機能を誘 起、領域全体で連携して革新的材料・デバイス・反応プロセ スを創成するとともに、これらの研究を通じてハイドロジェ ノミクスを構築することを目的とする.特に、プラスチック フィルムやシート中の水素の移動を格段に促進し異種材料が 接する界面におけるプロトンや電子の移動の制御を試みなが ら、他の研究項目・計画研究を・公募研究を含む領域全体で 連携して次世代創蓄電デバイスを設計し、領域全体の推進に 貢献したいと考えている.

研究は3つのステージに分けて進めている.ステージI では高分子内のプロトンと水分子の構造を詳細に解析し水素 高密度化を誘起する構造要件を解明し,水中に匹敵する高い プロトン伝導度を示すプラスチックフィルムを創製する.次 にステージIIでは領域内での連携を進めて,フィルム中のプ ロトン伝導機構解明と制御方法の構築,プラスチックフィル ムの微細構造と電子移動解析,異種材料界面における電子移 動反応の促進,固液界面(電極/水)・異種成分界面(疎水性分 子/親水成分)における水やプロトンの挙動解明を行う.ステ ージIIでは水素の高速移動機能と他の水素機能との融合が生 み出す高次水素機能によって超機能材料を合成するととも に,その特性を活用した従来までとは全く異なるアイデアに 基づく革新的エネルギーデバイスを創製する.現在,ステー

* 山梨大学クリーンエネルギー研究センター;教授(〒400-8510 甲府市武田 4-4-37)

Design of Next Generation Energy Devices Enabled by Fast Hydrogen Transfer; Kenji Miyatake (Clean Energy Research Center, University of Yamanashi, Kofu)

Keywords: hydrogenomics, proton conduction, plastic thin films, fuel cell, hydrogen storage, energy device 2020年10月31日受理[doi:10.2320/materia.60.161]

ジⅡまでがほぼ順調に完了し、計画を前倒してステージⅢの 研究を進めている段階である.

プラスチックフィルム中のプロトン高密度化と高 速化

スルホン酸基を含む高分子化合物がプロトン伝導性を示す 薄膜となることはよく知られているが、プラスチックフィル ム中でプロトンを高速移動させるための構造要件は十分に解 明されていない.我々はこれまで芳香族系高分子の特徴を最 大限に活用して、プロトン導電性プラスチックフィルムの高 性能化に取り組んできた.その結果、イオン性基を高密度に 集積する手法を世界に先駆けて開発することに成功し た⁽¹⁾⁽²⁾.特にブロック共重合型高分子において、従来型高分 子電解質膜に比べて数倍高い、酸性水溶液と同程度のプロト ン導電率を達成した⁽³⁾.さらに、ポリフェニレンとスルホン 酸基のみからなるスルホン酸化ポリフェニレンにおいて主鎖 の結合位置割合を精密に制御することにより、化学的に極め て安定なプロトン導電性薄膜の開発にも成功した(SPP-QP, 図1)⁽⁴⁾.

図2 スルホン酸基を高密度に導入したプラスチックフィル ムの構造.

本研究ではスルホン酸化ポリフェニレンにおけるスルホン 酸基の置換位置や配列を厳密に制御することにより,プロト ンが自発的に集合して水分子を介して高速移動が可能となる 高次構造の形成を試みている.例えば共役系のポリフェニレ ンに複数のスルホン酸基が置換した構造では,わずかな水分 子が存在するだけで高密度にプロトンが凝集した水素結合ネ ットワークを形成することが期待できる.このコンセプトを 基にして,図2に示すように部分フッ素化したスルホン酸化 ポリフェニレンを設計し側鎖のスルホフェニレン環の数を増 やす効果を検討したところ,図3に示すようにスルホン酸基 高密度化により,プロトン導電率が4.5倍も高いプラスチッ クフィルムを得ることができた⁽⁵⁾.

4. プラスチックフィルム中における相分離構造の高 度解析

フェニレン環とスルホン酸基のみから構成されるスルホン 酸化ポリフェニレン系膜 SPP-QP は上述したように高プロ トン導電率を示すが、高ガスバリア性、化学的安定性にも優 れている.この特性を活かして、燃料電池用電解質膜として 優れた発電特性と耐久性も確認されている⁽⁶⁾.ポリフェニレ ン主鎖のベンゼン環の結合位置やその配列の違いが電解質膜 特性に与える影響を明らかにすることは、スルホン酸化ポリ フェニレン電解質膜の更なる高性能化に繋がるものと期待で きる.そこで、スルホン酸基が置換していないベンゼン環の 結合規則性が異なる3つのスルホン酸化ポリフェニレンを 新たに合成し、薄膜のモルフォロジーやプロトン導電率を比

図3 高密度スルホン酸化プラスチックフィルムの親水性と プロトン導電率のイオン交換容量(IEC)依存性.

図4 スルホン酸化ポリフェニレン(SPP-QP, SPP-BP, SPP-MP)の合成方法.

較した.疎水性モノマー(ジクロロキンケフェニル(QP),ジ クロロビフェニル(BP),ジクロロベンゼン(MP))と親水性 モノマー(スルホジクロロベンゼン(SP))の重縮合反応は、0 価のNi 錯体を用いて行った(図4).¹H NMR スペクトルか ら合成した SPP がそれぞれ目的の分子構造を有することを 確認し、溶液キャスト法により透明で柔軟な電解質薄膜(イ オン交換容量 IEC は 2.4~2.5 meq/g 程度)を得た.

これら SPP は疎水性モノマーが異なるため、共重合規則 性(親水性モノマーおよび疎水性モノマーの結合連続性)が異 なっており、この一次構造の違いは膜のモルフォロジーや物 性に対しても大きく影響する. 例えば SPP 膜を鉛イオンで 染色して透過型電子顕微鏡(TEM)で観察すると、鉛イオン を含む親水部ドメインとベンゼンから成る疎水部ドメインが 相分離しているモルフォロジーを認めることができる.親水 部ドメインの大きさは、SPP-QP(約3nm)と比較して疎水 部繰り返し単位が小さい SPP-BP および SPP-MP ではやや 小さい(<2 nm). 疎水部構造の違いが親水部ドメインの大 きさに影響を及ぼすことは大変興味深い.親水部ドメイン構 造とその変化を明らかにするために,異なる湿度(RH,重 水による加湿)における各 SPP 膜の小角中性子散乱(SANS) を測定した. SANS パターンは 0% RH ではピークがないが 加湿に伴ってピークが発達し、これをフィッティング解析し た結果,親水部ドメイン間の距離(D)は,QPおよびBP(7.9 nm) > MP(3.8 nm), 親水部ドメインの大きさ(ξ)は QP(2.5 nm) > BP および MP(<1 nm) と概算でき, これら D 値およ び*と*値は用いた疎水部モノマーの大きさ順(QP>BP>MP) とよく一致していた(SANS から想定される相分離構造のモ デルを図5に示す).以上の結果から、重合に用いるモノマ ーの大きさの違いが高分子一次構造中の結合規則性に影響を 及ぼし, それが膜中の高次構造にも影響を及ぼすことを明ら かにした. SPP-QP 膜と比較して, SPP-BP および SPP-MP 膜はやや低いプロトン導電率を示した.プロトン導電率 は SANS より得られた親水部ドメインの連結性(E/D)の順 序とよく一致しており、同じイオン交換容量(IEC)値であっ ても親水部ドメインの連結性の違いによりプロトンの拡散が

図5 スルホン酸化ポリフェニレンフィルムのモルフォロジ ーモデル.

変化することが示唆された⁽⁷⁾.この結果は、より高速にプロトンが移動するプラスチックフィルムを設計する上で重要な知見である.

5. リチャージャブル燃料電池の原理実証

分担研究者である早稲田大学の小柳津教授らは、以前に温 和な条件下で可逆的に水素貯蔵・放出可能なプラスチックシ ート(HSP)の開発に成功している⁽⁸⁾. この HSP シートは軽 量安全で折り曲げが可能であり、分子中のフルオレノール/ フルオレノン基の可逆的な変化により、穏やかな条件下で水 素を可逆的に貯蔵(室温・大気圧下)、放出(80℃)すること ができる. HSP シートを内蔵した全高分子形リチャージャ ブル燃料電池(RCFC)を設計し、その原理実証を行った⁽⁹⁾. 図6に RCFC の概念図を示す. アノード側の触媒層に Ir 触 媒を含侵させた HSP シートを貼り付けた. HSP シートは、 80℃において HSP シートを貼り付けた. HSP シートは、 80℃において HSP シート内に固定した水素のうち、20% (20分後)、33%(30分後)、51%(60分後)、96%(360分後) の水素ガスを放出する. プロトン導電性膜としては市販のフ ッ素系電解質膜(Nafion)およびガス透過性の低い SPP-QP 膜を使用した.

図 6 (a) リチャージャブル燃料電池の概念図および(b) HSP シートの構造.

図7 電流密度が異なる条件でのリチャージャブル燃料電池 の発電試験.

電流密度が異なる条件(1,5,10 mA/cm²)におけるセル 電圧-時間曲線を図7に示す(プロトン導電性膜の違いの効 果を定量的に理解するために,発電時間を HSP 質量で規格 化している). 電流密度が 10 mA/cm² において, SPP-QP セルの発電時間は約 0.56 s/mgHSP(ca. 28 s for 50 mg of HSP)であり、Nafion セルの発電時間(約 0.15 s/mgHS¹, or ca. 18 s for 123 mg of HSP) と比較して約4倍長い時間発電 可能であった. これは, SPP-QP 膜のガス透過性が Nafion の1/5程度と著しく低いためである.発電時間は電流密度 を低下するにつれて増加し、1 mA/cm²の一定電流密度にお いて, SPP-QP セルの発電時間は最大で約 10.2 s/mgHSP (ca. 509 s for 50 mg of HSP)に達した.図8に、電流密度1 mA/cm²における RCFC のサイクル特性を示す. 両セルと もに、少なくとも50サイクルの発電が可能であった. SPP-QP セルは Nation セルと比較して 6-7 s/mgHSP 長い発電時 間を示した.以上のことから,HSP を水素供給源とした全 高分子形の RCFC の原理実証に世界で初めて成功した.

6. 今後の展開

領域内での連携が進むにつれて、ここに示した内容以外に も様々な成果が現れてきている.例えば、プラスチックフィ

図8 リチャージャブル燃料電池のサイクル試験.

ルム/電極界面におけるプロトンや水分子の構造を定量的に 解析することにより触媒活性点の構造や機能の設計指針が明 らかになってきており、また、より高速かつ高密度で水素や プロトンを貯蔵・放出できるプラスチックシートの開発も進 んできている.今後、有機高分子から金属錯体・無機系まで を水素をキーワードとして機能展開する本領域の発展に益々 期待していただきたい.

本稿で紹介した内容は,分担研究者をはじめ多くの共同研 究者との連携の成果である.関係者各位に心より感謝を申し 上げる.

文 献

- (1) B. Bae, T. Yoda, K. Miyatake, H. Uchida and M. Watanabe: Angew. Chem. Int. Ed., **49**(2010), 317.
- (2) F. Ng, B. Bae, K. Miyatake and M. Watanabe: Chem. Commun., (2011), 8895.
- (3) M. Tanaka, K. Fukasawa, E. Nishino, S. Yamaguchi, K. Yamada, H. Tanaka, B. Bae, K. Miyatake and M. Watanabe: J. Am. Chem. Soc., **133** (2011), 10646.
- (4) J. Miyake, R. Taki, T. Mochizuki, R. Shimizu, R. Akiyama, M. Uchida and K. Miyatake: Sci. Adv., 3(2017), eaao0476.
- (5) Z. Long, J. Miyake and K. Miyatake: ACS Appl. Energy Mater., 2(2019), 7527.
- (6) R. Shimizu, K. Otsuji, A. Masuda, N. Sato, M. Kusakabe, A. Iiyama, K. Miyatake and M. Uchida: J. Electrochem Soc., 166 (2019), F3105.
- (7) K. Shiino, T. Otomo, T. Yamada, H. Arima, K. Hiroi, S. Takata, J. Miyake and K. Miyatake: ACS Appl. Polym. Mater., 2(2020), 5558.
- (8) R. Kato, K. Yoshimasa, T. Egashira, T. Oya, K. Oyaizu and H. Nishide: Nat. Commun., 7(2016), 13032.
- (9) J. Miyake, Y. Ogawa, T. Tanaka, J. Ahn, K. Oka, K. Oyaizu and K. Miyatake: Comm. Chem., **3**(2020), 138.

宮武健治

2009年4月-現職 山梨大学クリーンエネルギー研究 センター 教授

2020年4月--現職 早稲田大学理工学術院 教授 専門分野:高分子化学

◎イオン導電性高分子の設計,合成,物性解析に関する基礎研究と,燃料電池や水電解などのエネルギー 変換デバイスへの応用研究に従事.

水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦

高速・局所移動水素と電子とのカップリングによる 新発想デバイスの設計

森 初 果*

はじめに:「高速・局所移動水素と電子とのカッ プリングによる新発想デバイスの設計」の概要

本稿では,新学術領域研究「ハイドロジェノミクス」の A03-2計画研究を中心に,紹介させていただく.本計画で は,水素が「高速移動し,電子とカップリング(協奏)する機 能」を高めるための高速移動化およびカップリング技術を創 出し,他の水素機能と融合することで従来にはない新発想デ バイス設計を確立するとともに,物質系(有機系,無機系,

生体系)を超えた統一的な水素と電子のカップリングの学理 を構築することを目的としている⁽¹⁾⁻⁽¹²⁾. これらの研究を通 じて領域連携全体で連携して,変幻自在な水素の性質を人類 が"使いこなす"ための指導原理となる新たな水素科学 (=ハイドロジェノミクス)の構築に貢献する事が研究のゴー ルである.

最近,従来の延長線上にない水素科学の萌芽が注目されて いる.この萌芽の本質は複数の水素機能の相乗効果による "高次水素機能"の誘起であり,これにより個別の水素機能 だけでは実現困難な革新的材料・デバイス・反応プロセスの 創成が期待される.実際に多彩な高次水素機能を誘起するた めには,学問分野の枠を超えて有機的に連携した新たな視点 の水素科学が必要となる.

例えば、水素が有機、無機、生体材料などの様々な物質系 を多様な電荷(プロトンH⁺,ヒドリドH⁻,およびその中間 の状態)で「高速移動」する機能と、ヒドリドとプロトンの 間の電荷移動、即ち電荷を−1~+1の間で制御することよ って「反応プロセスを促進」する機能を効果的に融合するこ とで、高効率物質変換、エネルギー貯蔵、物性制御などの高 次水素機能が創出できる.さらに、この水素を、水素と電子 のカップリング(協奏)(図1(a))という観点で統一的に捉え ることで,物質系を越えた包括的な学理の構築することがで きる.さらにその原理に基づき,物質内,および異相界面で 機能を発現・制御できる新発想デバイスを創出することも可 能となる.

A03-2計画班は,有機系,無機系,生体系物質を対象として,水素と電子のカップリングによる機能創出,新発想デバイス設計,および学理構築を目指している.

小林玄器准教授(分子科学研究所)は,無機系ヒドリド伝導 体に注目している. $La_{2-x-y}Sr_{x+y}LiH_{1-x} + yO_{3-y}$ (図1 (c))⁽¹¹⁾,さらに最近は,相転移によりヒドリド超イオン伝 導性を発現し,高温相では伝導率が $10^{-2}Scm^{-1}$ を越えるヒ ドリド伝導体を見出している.開発したヒドリド伝導体とヒ ドリド・電子混合伝導体を積層し,ヒドリド化学反応デバイ ス(ヒドリドリアクターデバイス)を他の班と協力しながら作 製中である.

また,樋口芳樹教授(兵庫県立大学)は,生体系カップリン グシステムとしてヒドロゲナーゼ(図1(d))を選択し,それ が示す3種類の酵素反応(核スピン変換反応,水素同位体交 換反応および水素分解反応)についてラマン分光法を用いて 同時測定することに成功している⁽¹²⁾.これを用いて,系を 乱すこと無く触媒反応を追跡する手法を確立することを目指 している.

そして、筆者は、有機系システムとして、水素と電子のカ ップリングにより新機能を創出する分子性物質の開発、機構 解明による学理構築、そしてその機構を利用した新発想デバ イス化を推進中である.本稿では、新カップリング物質とし てベイポクロミック金属錯体⁽¹⁾、および水素移動により電気 伝導性と磁性がスイッチングする有機物質⁽³⁾⁻⁽⁸⁾(図1(b))の 開発と、その自己集積型2分子層膜デバイスへの展開⁽⁹⁾⁽¹⁰⁾

* 東京大学物性研究所; 教授,所長(〒277-8581 柏市柏の葉 5-1-5) Design of Innovative Devices by Coupling High-Speed, Locally Mobile Hydrogen with Electrons; Hatsumi Mori (The Institute for Solid State Physics, The University of Tokyo, Kashiwa)

Keywords: hydrogen, hydrogenomics, higher-order hydrogen functions, hydrogen-electron coupling, design of innovative devices 2020年11月4日受理[doi:10.2320/materia.60.165]

図1 (a) 水素-電子カップリングと各水素機能.カップリング機能を軸に,水素機能を複合化した新発想デバイス設計を確立す るとともに,物質系を超えた統一的な水素-電子カップリングの学理を構築する.対象物質は,水素-電子カップリング 型(b) 有機伝導体 κ-H₃(Cat-EDT-TTF)₂⁽³⁾⁻⁽⁸⁾,(c) 無機ヒドリド伝導体 La_{2-x-y}Sr_{x+y}LiH_{1-x}+yO_{3-y}⁽¹¹⁾,(d) 生体系物質 [NiFe]-ヒドロゲナーゼ等(赤色と紫色原子:鉄,黄色原子:硫黄,青色原子:ニッケル)⁽¹²⁾である.(オンラインカラー)

を紹介する.

水素と電子のカップリングによるベイポクロミズ ム金属錯体の開発⁽¹⁾

蒸気に曝すことで色が変化するベイポクロミック物質は、 その変化を視覚的に観測できることから有用な化学センサー のための候補物質として盛んに物質開発が行われている.新 規ベイポクロミック物質のさらなる開発と機能性制御および その設計指針の確立のためには、その蒸気応答メカニズムの 詳細な理解が非常に重要である. これまでメカニズムについ ては蒸気分子吸着に伴う分子構造変化に由来する金属錯体の d 軌道エネルギー変化や、有機分子のフロンティア軌道間遷 移エネルギー変化などが提案されてきた.一方,我々は水素 結合によって π-d 電子状態を変調する戦略として水素結合 性金属ジチオレン錯体を基盤とした物質開発を行ってきた中 で、今回、新規Znジチオレン錯体結晶(Ph₄P)₂[Zn(4 $mxbdt)_2$ (1, $\boxtimes 2, 4-mxbdt = 4-methoxybenzenedithio$ late)を合成し、その水及びメタノール蒸気に対するベイポ クロミック特性による色変化および蛍光色変化を見出すこと に成功した(図2).

単結晶 X 線構造解析の結果,水およびメタノールを吸着 した結晶の組成はそれぞれ $1 \cdot H_2O$ および $1 \cdot 2MeOH$ であっ た.また,それぞれの微結晶粉末の可視光吸収・発光スペク トル測定から,視覚的な色変化(吸収:橙→黄,発光:赤→ 黄橙)と一致するブルーシフトが観測された.このベイポク

ロミズムのメカニズムを明らかにするために、蒸気吸着前後 の結晶構造を比較した.蒸気吸着後の結晶において、水・メ タノール分子のいずれも Zn 錯体の硫黄原子との間に O-H… S型の水素結合を形成していた.一方,Zn 錯体の分子構 造・配列は1·H₂Oではほとんど変化しておらず、1・ 2MeOH では有意に変化していた.したがって、従来の多く のベイポクロミック物質で議論されてきたような Zn 錯体の 分子・結晶構造変化ではなく, Zn 錯体と蒸気分子との水素 結合形成が本結晶のベイポクロミズムと本質的に関係してい ることが示唆された.そこで,実験的に得られた結晶構造を 基に DFT 計算を行い、結晶軌道エネルギーと吸収スペクト ルを見積もった.その結果,溶媒分子を含む結晶の可視光吸 収に該当する結晶軌道間遷移エネルギーは増加しており、そ れに応じて、計算された吸収スペクトルもブルーシフトして いた. さらに Mulliken 電荷分布解析と結晶軌道概形の比較 から、1·H₂O および 1·2MeOH では分子間水素結合形成に よって Zn 錯体の HOMO/LUMO と蒸気分子の LUMO が混 成し, Zn 錯体から蒸気分子に電子移動(H₂O: 0.19; MeOH: 0.23-0.26 electrons/molecule)が起こっていることが示唆さ れた. これが占有/非占有結晶軌道エネルギーに非対称な安 定化度合いをもたらすことでブルーシフトを示すことが明ら かになった.以上の結果から、本結晶におけるベイポクロミ ズム(色変化、蛍光色変化)が水素結合形成に伴う電子移動と いう新しいメカニズムによるものであることを明らかにした.

図2 亜鉛ジチオレン金属錯体結晶において,分子間電子移動と水素結合形成が結合した新規な水素一電子カップリング型ベイ ポクロミズム機構を見出した⁽¹⁾.メタノール蒸気にさらすことによりオレンジから黄色への色変化,蛍光色変化が観測さ れた.(オンラインカラー)

3. 高速・局所移動水素と電子とのカップリングにより電気伝導性と磁性がスイッチングする有機伝導体の開発と二分子膜デバイスへの応用⁽³⁾⁻⁽¹⁰⁾

近年我々は、水素のダイナミクスと π 電子とがカップル した π 電子—水素相関型分子性物質の開発、その機能物性 開拓、およびその新発想デバイス化を行っている.この系で は、水素の熱揺らぎ、無秩序—秩序化、あるいは量子揺らぎ 等の動的変化が π 電子の動きとカップルして、 π 電子系の量 子スピン揺らぎや、電荷不均化による電荷秩序相転移を引き 起こしている.さらに、この π 電子—水素相関系に外場と して電場、圧力を印可すると、水素および π 電子系が応答 し、巨大非線形伝導、電場誘起スイッチング⁽⁷⁾、圧力誘起ス イッチングとして常磁性—非磁性転移⁽⁸⁾、超伝導転移が出現 することが見いだされている.本稿では、その新カップリン グ機能⁽³⁾⁻⁽⁸⁾および新発想デバイス⁽⁹⁾⁽¹⁰⁾について紹介する.

水素一π電子相関系の κ -H₃(Cat-EDT-TTF)₂(κ -TTF と 略する)では、2次元伝導層内で、二量化した分子が三角格 子を形成してダイマーモット状態となっている.さらに、こ の2次元層は、-1価の水素結合[O..H.O]⁻¹で連結されて おり、通常のようにアニオン層を持たず、単一水素結合ユニ ットからのみ構成されている大変珍しい系である.この水素 結合は、室温から少なくとも 50 mK の低温まで対称性を保 っており、量子化学計算や誘電応答の実験より、水素結合中 のプロトンは、高温では熱揺らぎ、低温では量子揺らぎが効 き、プロトンの動きとπ電子系が相関して、基底状態は量 子スピン液体状態⁽⁴⁾⁽⁶⁾であることが、静磁化率、トルク⁽⁴⁾、 比熱、熱伝導と誘電応答⁽⁶⁾、¹³C-NMR からも確かめられて いる.一方、その重水素同位体である κ -D₃(Cat-EDT-TTF)₂(κ -D-TTF と略する)でも、2次元伝導層が-1価の 水素結合[O.D.O]⁻¹で連結され、高温では、 κ -TTF とほ

ま て り あ 第60巻 第3号(2021) Materia Japan ぼ同じ振る舞いを示すが、185 K 以下で、半導体一絶縁体、 および常磁性一非磁性転移を起こす.結晶構造解析によると、 185 K で水素結合が、[O...D-O]⁻¹と非対称的に秩序化する ことにより、水素結合ユニット内で電荷移動が起こって電子 系が電荷不均化し、電荷秩序化による相転移が起こることが 明らかとなっている⁽⁵⁾.このように水素結合内のプロトンの 電荷を制御することにより、π電子物性が大きく変化する振 る舞いがみられる.

さらに、基底状態が量子スピン液体状態である κ -TTF に 外場として圧力を印可したところ、分子間相互作用が増大し て抵抗は減少するが、水素を起源として、大変珍しい圧力誘 起絶縁化転移が観測された⁽⁸⁾.一方、類縁体である Se 化合 物[κ -H₃(Cat-EDT-ST)₂]では、バンド幅の増大により、 π 電子系が安定化し、常圧下ではS体同様、量子スピン液体 であるが、加圧すると約3Kで超伝導転移が観測された. 量子スピン液体相と反強誘電体相の境界である超臨界相に位 置する超伝導について、水素の揺らぎがどのように反映して いるのかが興味深く、現在研究進行中である.

さらに,この水素-π電子カップリング有機伝導体をの 自己集積型2分子層膜の作製に成功しており,今後,プロ トンスイッチング新発想デバイスの創成が期待されている (図3).

4. ま と め

A03-2 班では,有機系,無機系,生体系において,高 速・局所移動する水素と電子がカップリングすることによる 新機能の開発,その機構の解明を行っている,さらに,高密 度化,界面局在・高活性化などの機能を極めた他の班と連携 をしながら,新発想デバイスの設計,創出とその学理の構築 を目指した水素科学を推進している.

その中で、本領域では、水素原子、分子、プロトンやヒド

図 3 自己集積型2分子層膜におけるプロトンスイッチング デバイス⁽⁹⁾⁽¹⁰⁾. (オンラインカラー)

リドイオンと変幻自在な水素が、幅広いタイムスケール、空 間スケールで刻々と変化し、機能を発現する様子を、最先端 の計測と計算で捉えられるところに特徴があると思う.

水素が、周りの環境、外場で、どのように変幻自在に状態 を変え機能を発現するのか.水素と、電子(電荷、スピン、 軌道,格子),光子,電場,磁場などとのカップリングおよ び摂動という観点で統一的な学理を構築し、機能発現と制御 に繋がれば素晴らしい.

次世代エネルギー、資源、環境課題解決において、水素基 盤科学研究は急務であり、今後も新学術領域内外の連携を生 かしてハイドロジェノミクスの構築に邁進したい.

文 献

- (1) S. Yokomori, S. Dekura, T. Fujino, M. Kawamura, T. Ozaki and H. Mori: J. Mater. Chem. C, in press (2020).
- (2)Y. Sunairi, S. Dekura, A. Ueda, T. Ida, M. Mizuno and H. Mori: J. Phys. Soc. Jpn., 89(2020), 051008.
- (3) T. Isono, H. Kamo, A. Ueda, K. Takahashi, A. Nakao, R. Kumai, H. Nakao, K. Kobayashi, Y. Murakami and H. Mori:

Nature Commun., 4(2013), 1344.

- (4) T. Isono, H. Kamo, A. Ueda, K. Takahashi, M. Kimata, H. Tajima, S. Tsuchiya, T. Terashima, S. Uji and H. Mori: Phys. Rev. Lett., 112 (2014), 177201.
- (5) A. Ueda, S. Yamada, T. Isono, H. Kamo, A. Nakao, R. Kumai, H. Nakao, Y. Murakami, K. Yamamoto, Y. Nishio and H. Mori: J. Am. Chem. Soc., 136(2014), 12184-12192.
- (6) M. Shimozawa, K. Hashimoto, A. Ueda, Y. Suzuki, K. Sugii, S. Yamada, Y. Imai, R. Kobayashi, K. Itoh, S. Iguchi, M. Naka, S. Ishihara, H. Mori, T. Sasaki and M. Yamashita: Nat. Commun., 8(2017), 1821.
- (7) A. Ueda, K. Kishimoto, Y. Sunairi, J. Yoshida, H. Yamakawa, T. Miyamoto, T. Terashige, H. Okamoto and H. Mori: J. Phys. Soc. Jpn., 88(2019), 034710.
- (8) A. Ueda, K. Kishimoto, T. Isono, S. Yamada, H. Kamo, K. Kobayashi, R. Kumai, Y. Murakami, J. Gouchi, Y. Uwatoko, Y. Nishio and H. Mori: RSC Adv., 9(2019), 18353–18358.
- (9) Y. Kanematsu, H. S. Kato, S. Yoshimoto, A. Ueda, S. Yamamoto, H. Mori, J. Yoshinobu, I. Matsuda and M. Tachikawa: Chem. Phys. Lett., 741 (2020), 137091.
- (10) H. S. Kato, S. Yoshimoto, A. Ueda, S. Yamamoto, Y. Kanematsu, M. Tachikawa, H. Mori, J. Yoshinobu and I. Matsuda: Langmuir, **34**(2018), 2189–2197.
- (11) G. Kobayashi, Y. Hinuma, S. Matsuoka, A. Watanabe, M. Iqbal, M. Hirayama, M. Yonemura, T. Kamiyama, I. Tanaka and R. Kanno: Science, 351(2016), 1314-1317.
- (12) Y. K. Nakagawa, K. Nishikawa, S. Nakashima, S. Inoue, T. Ohta, T. Ogura, Y. Shigeta, K. Fukutani, T. Yagi and Y. Higuchi: Protein Sci., 28(2019), 663-670.

森 初果

***** 1986年 お茶の水女子大学大学院理学研究科修士課 程修了 主な略歴

1989年4月 超電導工学研究所研究員 2001年4月 東京大学物性研究所助教授 2010年4月- 現職

専門分野:分子性機能物質科学

◎分子性機能物質およびシステムの開発と機能物性研 究に従事.分子性の電子/プロトン伝導体,磁性 体,誘電体,発光・蛍光物質等や有機トランジスタ の開発と機能物性研究を中心に活動.

水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦

電気化学的水素化を利用した新反応プロセス

1. はじめに: A04 における研究の概要

我々は、(水素)クラスター、薄膜、ナノ粒子などのナノ構 造体の高活性界面の高度利用と、反応促進に関わる領域全体 の連携により、プロトンからヒドリドまで多様な荷電状態を とる水素の特徴を活かした新規反応プロセスを開拓している (図1).具体的には、他の水素機能との融合により、多様な 高活性水素を効果的に高活性化・精密制御できる界面反応場 を構築する。例えば、反応分子と高い親和性をもつ水素クラ スターなどのナノ構造体界面の局在電子と強く結合した高活 性水素の精密制御により、N2分子の安定な三重結合すら容 易に切断できることがわかってきている(1).また,高活性水 素を他のナノ構造体から高速で供給することで連続的に反応 を誘起できると考えられる. このような高次水素機能によっ て生み出される新規の物質変換プロセスは、CO2やN2など の不活性な物質と水素との反応により、機能性材料の原料と なる有用物質を高効率に製造するための基盤になると期待さ れる.特に、本研究では、水素の関与する物質変換を水素-電子カップリングの視点も含めて包括的に捉えることによ

り、新たな水素化学の確立に貢献したいと考えている.本稿 では、最近見出された電気化学的水素化反応を利用した高効 率のアミノ酸合成⁽²⁾と新規の熱電変換⁽³⁾についての研究例を 紹介する.

Ш

内

美

穂*

TiO₂上における電気化学的水素化による高効率 アミノ酸合成

アミノ酸は、生物にとって重要な構成要素であり、その用 途は旨味調味料、飼料添加物、化粧品、サプリメントなど、 多岐にわたっている.アミノ酸の需要は世界的に急拡大して おり、新たな低コスト・低環境負荷のアミノ酸生産プロセス の開発が望まれている.他方、我々は、資源量が豊富で、毒 性が少なく、化学的安定性の高い酸化チタンは、カルボン酸 を高効率的にアルコールに還元するなど、水中での電気化学 的な有機物還元に適した触媒材料であることを明らかにして いる⁽⁴⁾.具体的には、Tiメッシュの水熱処理により、表面 にアナターゼ型酸化チタンを直接成長させた酸化チタン/チ タンメッシュを作製し(図2左)、これを電極に用いた α -ケ

* 九州大学 カーボンニュートラル・エネルギー国際研究所(WPI-I²CNER); 教授(〒810-0395 福岡市西区元岡744) New Reaction Processes Using Electrochemical Hydrogenation Reactions; Miho Yamauchi(WPI-I²CNER, Kyushu University, Fukuoka) Keywords: *electrochemical hydrogenation reactions, titanium dioxide, amino acid, proton-coupled electron transfer, thermo-electrochemical con*version

2020年10月31日受理[doi:10.2320/materia.60.169]

ト酸の電気化学的還元により高いファラデー効率でアルコー ルを合成することに成功した⁽⁵⁾.本稿では、窒素源としてヒ ドロキシルアミンを使い、α-ケト酸の酸化チタン/チタンメ ッシュ上での電気化学還元によるアミノ酸の合成について紹 介する.これまでの研究により、ピルビン酸はヒドロキシル アミンと反応してオキシムを形成することがわかった.オキ シムを水素化できればアミノ酸が生成することができる.水 を水素源する電気化学的によりオキシムを水素化できれば、 コンパクトかつ効率的にアミノ酸を合成することが可能とな る. そこで, 我々は, ナフィオン膜で仕切られた2室型電 気化学セルを用いて、ヒドロキシルアミンの存在下でのピル ビン酸の電解還元を行った(-0.40 V vs RHE). 2時間の電 解の後,カソードセル内の溶液を分析した結果,アラニンが 78%の高ファラデー効率で生成することがわかった.反応 機構を探るために DFT 計算を行ったところ,酸化チタン上 に形成される基質分子と水分子が作る水素結合ネットワーク を介して、オキシムへのプロトン供与および電極からオキシ ムへの電子移動が連動して進行することによりアミノ酸生成 の活性化障壁が低下することが明らかとなった⁽⁶⁾.この現象 はプロトン共役電子移動(Proton Coupled Electron Transfer, PCET)と呼ばれ、分子系の水素化反応では重要な機構であ ると認識されている.我々の研究により,酸化物電極界面に おいても PCET により反応が促進されることが初めて明ら かとなった.

TiO₂/Ti メッシュ電極を用いた電解合成をアラニン以外の アミノ酸合成にも適用したところ,20種類のタンパク質構 成アミノ酸のうち9種類のアミノ酸の合成に成功した(図2 右).グリシン,アスパラギン酸,グルタミン酸,ロイシン は対応する α-ケト酸とヒドロキシルアミンから90%を超え る高いファラデー効率で生成することがわかった.一方,フ ェニルアラニンとチロシン生成のファラデー効率は,それぞ れ87と77%であり,わずかに低い値であった.これは,出 発原料の乏しい水溶性により,低濃度で電解反応を行ったた めであると考えられる.筆者らの知る限りでは,これは,ア スパラギン酸,フェニルアラニン,チロシン,バリン,イソ ロイシンの電気化学的合成された初めての結果であり,アラ ニンとグルタミン酸について達成されたそれぞれ99と97% のファラデー効率は,これまでの報告の中で最高の値である.

TiO₂ 界面での有機酸の酸化還元反応を介した熱 電気化学変換

熱電変換は、廃熱、地熱源、太陽熱など、200度未満の広 く分布している低品位熱エネルギーを電気にアップグレード するための有用な方法である.これまでに、無機材料、ポリ マー物質や有機-無機ハイブリッドなどの固体材料が熱電変 換に用いられてきた. 最近, 東京大学の山田(A03-1)らは, レドックス対を含む電気化学セルの温度差を利用して電力を 生成する熱電気化学変換(Thermo-electrochemical conversion, TEC) セルの開発に成功している. TEC セルは,低温 領域でのゼーベック係数(Se)が高いという特徴を持つこと から、最近は、体温を利用した熱電変換への応用も期待され ている. その場合, 生体適合性の高い酸化還元対を利用する ことが必要になる.我々は、酸化チタン/チタンメッシュ電 極を使った電気化学的水素化反応により、ピルビン酸を乳酸 に還元して変換できることを見出している(7). そこで, 我々 は、領域内の共同研究により、生体適合性のある乳酸/ピル ビン酸の酸化還元を使用した TEC 変換に挑戦した.

まず,図3左に示すように,導線で繋いだ二つの酸化チタ ン/チタンメッシュ電極をそれぞれをH字型のガラス製セル の挿入して TEC セルを構築した. セルに乳酸(20 mM), ピ ルビン酸(20 mM)および支持電解質として硫酸ナトリウム (50 mM)を注入し、セル間の温度差と電極間の開回路電圧 を測定したところ、温度差が大きくなると電圧が大きくなる TEC 現象を観測することができた.また,電圧の温度差依 存性についての最小二乗解析により、この系の Se 値を 1.40 mV K⁻¹ と見積もることができた.乳酸とピルビン酸の生成 エンタルピーを考えると Se 値は-2.20 mV K⁻¹ となると考 えられる.しかしながら、本研究では、正の Se 値が得られ た. この矛盾を説明するため,広島大学の石元(A04)らが乳 酸/ピルビン酸系の振動のエントロピーについての DFT 計 算を行った. TiO2 が存在しない場合は, 高温ではエントロ ピーの大きいピルビン酸の生成が起こる乳酸の酸化反応 (DFT 計算から求められた振動のエントロピー: *Δ*S=3× 10⁻⁴ eVK⁻¹)が進行すると期待される.しかし,TiO₂ 電極 が存在すると、ピルビン酸の還元反応中間体およびプロトン

図3 酸化チタン/チタンメッシュ電極を使った熱電気化学変換セルの模試図(左)とその出力(右).(オンラインカラー)

が電極に吸着した中間状態のエントロピーがかなり大きくな るため(ΔS=8×10⁻⁴ eVK⁻¹),高温では,この中間状態が 現れる還元反応が進行することがわかった.これは,電極へ の基質およびプロトン吸着によって通常とは逆の熱電変換が 起こる初めての観測例であり,領域および計画班内の連携に よって生まれた成果である.図3右に示す通り,現状の TEC セルからの出力は大きなものではないが,セル構造の 改良によりウェアラブル利用など,多方面の応用も期待され る.

4. まとめ

電解質から基質へのプロトン供与と電極からの電子供与に より電気化学水素化反応が進行する.本稿で紹介した電気化 学的アミノ酸合成や熱電変換反応では,TiO2電極界面上に 形成された水素結合ネットワークを介してプロトンと電子が 連動して移動することにより,オキシムの電気化学的水素化 が促進されることがわかった.また,TiO2界面における乳 酸/ピルビン酸の酸化還元反応では,プロトンと基質分子の 吸着により溶液中とは異なる逆の反応が進行するということ が明らかとなった.これらの現象には,荷電状態を柔軟に変 化させながら多様な物質と相互作用できる水素の特性が顕著 に現れている.現在,A04では,金属薄膜上で単原子触 媒,ヒドリドクラスター,光有機錯体などの様々なナノ構造 体上での新しい反応経路を見出している.今後,反応機構を 詳細に調べることにより水素の機能を深く掘り下げるととも に,反応におけるハイドロジェノミクスの構築を進めるつも りである.

文 献

- (1) T. Shima, S. Hu, G. Luo, X. Kang, Y. Luo and Z. Hou: Science, 340 (2013), 1549–1552.
- (2) T. Fukushima and M. Yamauchi: Chem. Commun., **55**(2019), 14721–14724.
- (3) H. Eguchi, T. Kobayashi, T. Yamada, D. S. R. Rocabado, T. Ishimoto and M. Yamauchi: under revision.
- (4) R. Watanabe, M. Yamauchi, M. Sadakiyo, R. Abe and T. Takeguchi: Energy Environ. Sci., 8(2015), 1456–1462.
- (5) M. Sadakiyo, S. Hata, X. Cui and M. Yamauchi: Sci. Rep., 7 (2017), 17032.
- $(\,6\,)\,$ M. Isegawa, A. Staykov and M. Yamauchi: to be submitted.
- (7) M. Sadakiyo, S. Hata, T. Fukushima, G. Juhász and M. Yamauchi: Phys. Chem. Chem. Phys., 21 (2019), 5882–5889.

★★★★★★★★★★★★★★★★★★★
 2001年3月 筑波大学大学院博士課程化学研究科修了
 2003年11月 九州大学理学研究院化学部門助手
 2008年7月 北海道大学触媒化学研究センター准教授
 2017年4月 現職
 専門分野:ナノ固体化学,水素科学,触媒化学,エネ

ルギー化学 ◎新規ナノ固体材料の開発とその物性開拓に従事.エ ネルギー・環境問題の解決に向けた取り組みを行う.

• 山内美穂

ま て り あ 第60巻 第3号(2021) Materia Japan 水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦

水素料

水素の先端計測法の開発とそれによる 水素機能の高精度解析

1. はじめに

水素は変幻自在な元素であり、広い濃度範囲で物質中に存 在し、しばしばその物性を大きく左右する.本研究では、様 々な物質における水素の状態を精密計測するための先端計測 法の開発を行っている.核反応法や中性子散乱などプロトン に感度のある計測法の高度化を図るとともに、水素化過程や 機能発現その場解析可能なオペランド計測技術の導入を行っ ている.さらにシミュレーション技術と連携して水素データ 同化技術を確立することで、高次水素機能発現の機構解明と 新規水素機能材料の予測を目的としている.これらの研究を 通じて、変幻自在な水素の性質を人類が"使いこなす"ため の指導原理となる新たな水素科学(=ハイドロジェノミクス) の構築を目指している.

このような高次水素機能の研究を推進するためには,水素 化物の構造と電子状態を解析し機能発現の起源を解明するこ とが不可欠である.しかし,水素は電子を一つしか持たない ため観測困難な元素と言われ,多くの分析法は水素に対して 本質的に感度を持たない.水素に大きな感度を持つプローブ として,イオンビームを利用する核反応法⁽¹⁾と中性子ビーム の散乱を利用する中性子散乱⁽²⁾⁽³⁾がある.図1に示すよう に,この2つの測定手法を中心に,X線,電子,ミュオ ン⁽⁴⁾,光などの量子ビームを活用することで水素化物の高次 水素機能発現機構を解析し,新規材料の開発に資することが できると期待される.水素は原子サイズが小さいため,物質 中での移動が早い.水素吸蔵やプロトン伝導においては,水 素の移動が重要な役割を担う.さらに固体表面では,水素は

福

谷

之*

克

図1 先端ビームを用いた水素の計測. (オンラインカラー)

種々の化学反応に寄与する.静的な構造とともに水素の運 動・移動をとらえることも重要な課題である.測定感度や精 度の向上とともに、実デバイス環境下での水素観測を目指し ている.

2. 水素の先端計測:核反応と中性子·X線散乱

材料の構造や組成を非破壊で分析するには,通常光や電子の散乱・遷移が利用される.しかし,水素の電子や光に対する散乱断面積は小さいため,一般に感度が低く検出は困難である.また元素分析のための蛍光 X 線分析や X 線光電子分光,オージェ電子分光などは,内殻電子励起に伴う元素固有のスペクトルを利用する.しかし原子番号1番の水素は内殻電子を持たないため,固体中の水素を上記の分光法で観測することはできない.そこで,水素を観測するために,水素の原子核である陽子の性質が利用される.その典型的な実験

^{*} 東京大学生産技術研究所;教授,日本原子力研究開発機構 先端基礎研究センター;グループリーダー(〒153-8505 東京都日黒区駒場 4-6-1)

Development of Advanced Measurement Methods of Hydrogen and Their Application to Hydrogen Functional Analysis; Katsuyuki Fukutani (Institute of Industrial Science, The University of Tokyo, Tokyo) Keywords: hydrogenomics, higher-order hydrogen functions, nuclear reaction analysis, neutron diffraction, X-ray diffraction, metal hydride,

Keywords: nyarogenomics, nigher-oraer nyarogen junctions, nuclear reaction analysis, neutron alffraction, X-ray alffraction, metal nyariae, metal oxide

²⁰²⁰年11月9日受理[doi:10.2320/materia.60.172]

方法が,以下に示す核反応法と中性子散乱である.

実デバイス環境下での測定を実現するためには、測定環境 を整えると同時に試料以外からの信号を除去し、測定感度を 向上させる必要がある.核反応計測施設では、背景信号の低 減をはかり測定感度を向上させるとともに、伝導性・反応性 のその場計測システムを構築している.中性子散乱施設で は、試料からの散乱信号を選択的に検出可能な専用コリメー タなどの開発を行っている.SPring-8放射光施設では、水 素化物形成に伴う微少な原子変位を精度よく捉えるために、 高精度原子二体分布関数解析が可能な全散乱プロファイル測 定法の開発を行っている.さらに並行して、コヒーレント X線回折イメージング法の開発を行っている.これは、コ ヒーレントX線の特徴を生かし、複数の回折パターンから 3次元格子の構造を構築する方法で、これにより例えば単一 ナノ粒子の水素化過程を3次元イメージングにより追跡可 能になると期待される.

本研究のもう一つの狙いが水素データ同化技術の開発であ る.上記のような計測法の開発を行ったとしても,水素化物 に関する実験データは限られ,解析が困難な場合が多い.核 反応法を用いて水素量を定量,X線回折により骨格構造に 関する情報を,中性子回折から水素の構造に関する情報を取 り入れ,第一原理計算を行うことで,効率よく真の解を求め ることを狙っている.これまでに,超イオン伝導性を示す錯 体水素化物 Li(CB₉H₁₀)や光誘起絶縁体-金属転移を示すイッ トリウム酸水素化物薄膜のデータ同化解析を進めている.

(1) 核反応法⁽¹⁾

加速されたイオンが原子と相互作用する場合、エネルギー が低い時にはクーロン反発のため散乱されるが、エネルギー が高くなり、核力の働く距離まで近づくようになると、原子 核同士の反応が生じるようになる.核反応の生成物と断面積 は原子核固有のため、これを利用して元素分析が可能にな り、核反応法と呼ばれる.水素を検出可能な反応として、図 2に示す窒素同位体(15N)との反応が知られている.この反 応に伴い放出される y 線を検出することで試料中の水素の定 量を行うことができる.この核反応は、15Nのエネルギーが $6.385 \text{ MeV}(=E_{\mathbb{R}})$ で共鳴的に大きくなり、これよりエネル ギーが高くても低くても反応は起こらない. この性質を利用 すると、深さ分解測定が可能になる.図2に示すように、 エネルギーが ER のイオンは表面に吸着した水素と核反応を 起こすのに対して、これより大きなエネルギーを持つイオン は、表面の水素とは反応せず固体中を通過し、丁度 E_R とな る深さで水素と核反応を起こす.したがって、イオンのエネ ルギーを変化させると、水素がどのような深さに存在するか を見分けることができる.また、この反応の断面積は、原子 核の性質で決まっており周囲の電子の状態には依らないた め、水素の絶対量を測定することができる.

高速のイオンビームが原子に散乱されると、その原子の後 方にはイオンが侵入しないシャドーコーンと呼ばれる領域が 形成される.イオンが特定の結晶軸に平行に入射すると、結

図2 核反応法を用いた水素の深さ分析の原理.(オンラインカ ラー)

図3 (a) 面心立方格子の8面体サイト(O)と四面体サイト (T).(b) チャネリング核反応測定による水素サイト同 定の概念図.(オンラインカラー)

晶軸に平行に配列した原子が最表面の原子のシャドーコーン に隠され入射イオンと散乱しなくなり,チャネリングと呼ば れる.これを利用すると,水素の格子内での位置を決定でき ると期待される.図3(a)は,面心立方格子において6個の 金属原子に囲まれた8面体サイト(Oサイト)と4個の原子 に囲まれた4面体サイト(Tサイト)を示す.図2(b)は[001] の結晶軸方向にイオンを入射した場合の模式図で,Oサイト は結晶原子の陰に隠れるのに対してTサイトの水素は隠れ ない.従ってチャネリングプロファイルを測定することで水 素のサイトを同定することができる.本研究で核反応法にチ ャネリングを組み合わせた測定法の開発を行っている.

(2) 中性子·X 線散乱

X線や中性子線はその波長が原子間距離と同程度である ため、物質中の原子配列を反映した回折を起こす.この回折 パターンを解析することで、物質の原子配列構造を求めるこ とができる.X線・中性子線の散乱されやすさを特徴付け るのが原子散乱因子(中性子の場合は散乱長と呼ばれる)であ る.電磁波であるX線の原子による散乱は、電子との電磁 相互作用に起因する.このため原子散乱因子は原子番号にほ ぼ比例しては大きくなる.従って、原子番号が1番の水素 による散乱は小さく、X線回折で水素を観測することは困 難である.これに対して、電荷をもたない中性子は核力を通 じて原子核と相互作用するため、散乱長は原子核の電荷(原 子番号)とは無関係である.水素は比較的大きな散乱長を持っため、中性子回折を利用すると水素の構造解析が可能になる.

原子とクーロン力で相互作用する電子と比較すると,X 線の物質に対する透過能は大きい.中性子線の透過能はX 線よりさらに3桁ほど大きいため,測定のためには比較的 多くの試料が必要となり,さらに表面・界面や薄膜を調べる のは困難である.一方で,中性子は弾性散乱だけではなく非 弾性散乱も起こすため,非弾性散乱スペクトルを解析するこ とで,水素や格子の振動状態を解析することが可能となる.

3. 研究例

(1) 金属水素化物の構造と物性

金属水素化物の表面近傍やナノ粒子において,バルクとは 異なる水素の構造が実現し,それによる新たな電子物性発現 や水素拡散特性の可能性が期待される.さらに表面を修飾す ることで,物性や水素の吸放出特性を制御することが期待さ れている.例えば,パラジウム中では水素はOサイトを占 有するが,ナノ粒子の表面付近ではTサイトを占有するこ とが中性子散乱により示されている⁽⁵⁾.準安定な金属水素化 物や,表面を修飾した系を作製し,その詳細な構造を解析し 新規物性との相関を明らかにすることが,課題となっている.

パラジウム表面に単原子層以下の量の金を蒸着し,核反応 法を用いてパラジウム中への水素の吸蔵を確認するととも に,水素吸収効率を評価したところ,金蒸着により吸収が促 進され,金の被覆率が0.4原子層付近で40倍になることが判 明した⁽⁶⁾.理論計算により表面近傍での水素の拡散障壁を見 積もると,金の存在により表面への水素吸着が不安定化し, それとともに内部への拡散障壁が低下することが示された.

気相の水素ガスと接するパラジウム中への水素の吸蔵は、熱 的な拡散によって生じる.一方,水素をイオン化して加速す ると、エネルギーの高い水素を供給することができ、準安定 な水素化物の形成が期待される.図4は、500eVの水素イ オンを6Kに冷却したパラジウム薄膜に照射したときの抵 抗変化と熱脱離スペクトルを測定した結果である(7).水素イ オン照射により抵抗が増加し、その後加熱すると~80Kと ~150Kで抵抗の減少が見られた.熱脱離スペクトルには ~150 K に水素の脱離が見られることから、後者の変化はパ ラジウムからの水素の脱離に起因することがわかる.これに 対して、前者は水素の脱離を伴わないため、水素が準安定な 位置から安定な位置へ移動することに伴う変化であることが わかる.この抵抗変化の同位体依存性と温度依存性から,低 温では水素がトンネル効果によって拡散することが明らかと なった.パラジウム薄膜中の水素のサイトとダイナミクスを 明らかにすべく, チャネリング核反応実験と中性子非弾性散 乱による振動状態解析を行っている.

種々の基板上にチタン水素化物薄膜を作製し、その水素濃 度を核反応法によって定量したところ、水素濃度に依存して ホール係数の符号が変化することが観測された⁽⁸⁾.詳細な理

図4 (a) Pd 薄膜を6Kに冷却し,500 eV の水素イオンを照 射したのち昇温した時の,(a) 抵抗と(b) H₂の脱離強 度,の温度依存性⁽⁷⁾.

論計算を行ったところ,水素濃度により格子定数が変化し, これに伴いフェルミ面の形状が変化することでホール係数の 符号が変わることが明らかとなった.このことは,水素によ り電子物性を制御できることを示している.

(2) 水素による金属酸化物の電子物性制御

金属酸化物は,伝導性,磁性,光物性など様々な興味深い 物性を示す.金属酸化物に水素を導入すると,これらの物性 が大きく変化することがあり,水素による新規物性発現と制 御の観点から注目を集めている.

二酸化チタンはバンドギャップが~3eVの絶縁体で,水 素が導入されると電子が供与される.近年は、水素処理を行 うことで、可視光に対する光触媒活性を示すことで注目を集 めている⁽⁹⁾.供与された電子がどのような電子状態を取るか は、電子-格子相互作用と電子間相互作用によって決ま る(10). 電子-格子相互作用が弱い場合, 電子は伝導体を占有 し系は金属となる.しかし、電子-格子相互作用が強く大き な原子変位が生じると、ポーラロンを形成しバンドギャップ 中に局在準位が形成される.2個の電子が存在する場合に は、電子間相互作用によって、スピン1重項となる場合と3 重項となる場合が考えられ、磁性に影響する. TiO2 には、 結晶多型があり、ルチル型とアナターゼ型が存在する. これ ら2種類の構造のTiO2の表面に水素を吸着させたところ、 ルチル型表面ではギャップ中に状態が形成されるのに対し て、アナターゼ型表面ではギャップ中に状態が形成されな い(11). このことから, ルチル型ではスモールポーラロンが 形成されるのに対して、アナターゼ型では形成されないと考

図5 単結晶 TiO₂に 500 eV の水素イオンを照射したのち核 反応法により測定した水素の深さ分布. (a) ルチル型 TiO₂(110). 300 K で照射(白丸)したのち,673 K に昇 温(青四角),さらに酸素曝露したもの(白四角)⁽¹²⁾. (b) アナターゼ型 TiO₂(101). 300 K で照射(黒丸)したのち, 673 K に昇温したもの(赤丸). 200 K で照射したもの (白丸)⁽¹³⁾. (オンラインカラー)

えられる.続いて,これらの試料に500 eVの水素イオンを 照射したときの,水素の深さ分布を図5に示す⁽¹²⁾⁽¹³⁾.ルチ ル型 TiO₂では,水素が30 nm 程度の深さまで侵入しており その平均濃度は5%程度であることがわかる.これに対して アナターゼ型では,300 K では水素が表面近傍に蓄積される ことはなく,200 K で 50 nm 程度の深さまで拡散する様子 が観測された.このことは,ルチル型に比べてアナターゼ型 で水素の拡散が早いことを示している.このとき,光電子分 光で電子状態を調べると,両者とも電子ドープに伴う下方の バンドベンディングが見られ,またスモールポーラロンに相 当するギャップ中準位も観測されることがわかった.

TiO₂とは異なり、金属的な伝導を示す金属酸化物に水素 を導入すると、金属から絶縁体に転移する場合があり注目を 集めている.顕著な例として、ペロブスカイト型のニッケル 酸化物があるが、水素量と伝導性との相関は明らかではな く、現在その詳細を明らかにすべく研究に取り組んでいる.

太陽電池は、光励起で生成する電子とホールを効率よく分離することが求められ、キャリアー選択的ヘテロ界面が注目を集めている.酸化チタンとSi基板とでヘテロ界面を作成すると、電子選択的な接合が形成される一方で、界面でのキ

ャリアー再結合が課題となっている.水素プラズマ処理を行うことで、キャリアー寿命が伸長し、また核反応法で界面水素量を定量すると、界面水素量の増大を示唆する結果が得られた⁽¹⁴⁾.水素により界面欠陥準位が不活性化されたと考えられる.

4. まとめ

変幻自在な水素の有り様を実験的に観測することは、水素 科学における長年の課題である.核反応法や中性子散乱、X 線回折をはじめ、様々な手法の進展により、水素の姿が少し ずつ明らかになりつつあるが、必ずしも十分ではない.チャ ネリング核反応法やオペランド中性子散乱、さらにコヒーレ ントX線回折イメージング法など、新たな実験手法を開発 しながら、研究に取り組んでいる.

本稿を書くにあたり、ご協力いただいた本研究グループの 大友季哉,町田晃彦はじめ,共同研究者の皆さまに感謝する.

文 献

- (1) M. Wilde and K. Fukutani: Surf. Sci. Rep., 69 (2014), 196–295.
- (2) T. Ohomo, K. Ikeda and T. Honda: J. Phys. Soc. Jpn., 89 (2020), 051001.
- (3) M. Kofu and O. Yamamuro: J. Phys. Soc. Jpn., 89(2020), 051002.
- (4) T.U. Ito, W. Higemoto and K. Shimomura: J. Phys. Soc. Jpn., 89(2020), 051007.
- (5) H. Akiba, M. Kofu, H. Kobayashi, H. Kitagawa, K. Ikeda, T. Otomo and O. Yamamuro: J. Am. Chem. Soc., 138(2016), 10238–10243.
- (6) K. Namba, S. Ogura, S. Ohno, W. Di, K. Kato, M. Wilde, I. Pletikosic, P. Pervan, M. Milun and K. Fukutani: Proc. Natl. Acad. Sci. USA (PNAS), 115 (2018), 7896–7900.
- (7) T. Ozawa, R. Shimizu, S. Ogura, T. Hitosugi and K. Fukutani: J. Vac. Surf. Sci., 62(2019), 492–497.
- (8) R. Shimizu, Y. Sasahara, I. Hamada, H. Oguchi, S. Ogura, T. Shirasawa, M. Kitamura, K. Horiba, H. Kumigashira, S. Orimo, K. Fukutani and T. Hitosugi: Phys. Rev. Res., 2 (2020), 33467.
- (9) X. Chen, L. Liu, P. Y. Yu and S. S. Mao: Science, **331**(2011), 746–750.
- (10) 福谷克之, 小倉正平: 固体物理, 53(2018), 661-671.
- (11) K. Fukada, M. Matsumoto, K. Takeyasu, S. Ogura and K. Fukutani: J. Phys. Soc. Jpn., 84(2015), 064716.
- (12) Y. Ohashi, N. Nagatsuka, S. Ogura and K. Fukutani: J. Phys. Chem. C, **123**(2019), 10319–10324.
- (13) N. Nagatsuka, M. Wilde and K. Fukutani: J. Chem. Phys., 152 (2020), 074708.
- (14) S. Miyagawa, K. Gotoh, S. Ogura, M. Wilde, Y. Kurokawa, K. Fukutani and N. Usami: J. Vac. Sci. Technol. A, 38(2020), 022410.

福谷克之

★★★★★★★★★★★★★★★★★★★
 1990年 東京大学大学院理学系研究科博士課程修了
 1990年 東京大学物性研究所助手
 1996年 東京大学生産技術研究所助教授

2006年- 現職

2018年- 日本原子力研究開発機構 先端基礎研究セン ター グループリーダー兼務

専門分野:表面界面物性

◎表面での対称性低下に伴う新規物性開拓や水素の表面ダイナミクスの研究に従事.

水素科学の最前線 新学術領域研究「ハイドロジェノミクス」の挑戦

水素の先端計算による水素機能の高精度解析

常 行 真 司*

1. はじめに

ユビキタスな元素である水素は、様々な物質中に不純物と して存在し、半導体の不動態化(注:キャリアドープした半 導体の電気的活性が失われること)を引き起こす例のよう に、原子周りの環境に応じて異なる荷電状態をとることで、 物性を大きく左右することが知られている.また近年、様々 な酸化物中の酸素をヒドリドで大量に置換してキャリアドー ピングできることや、新しいヒドリド伝導体、高温超伝導を 示す超高圧下の硫化水素などが見つかり、固体中の水素が改 めて脚光を浴びている.一方、電極反応や各種触媒反応、合 金の水素吸蔵・放出など、水素社会実現のために必要な化学 反応も、近年さらに重要性が増している.こういった水素を 含む物質・材料の研究では、水素量や水素原子位置、ダイナ ミクスの計測の難しさが、常に大きな問題となっている.

新学術領域研究「ハイドロジェノミクス:高次水素機能に よる革新的材料・デバイス・反応プロセスの創成」の計画研 究 A05-2「水素の先端計算による水素機能の高精度予測」 では、この水素の問題を計算科学の立場で解決するため、第 一原理シミュレーション手法の開発を行っている.中でも、 計測とシミュレーションを直接つなぐデータ同化手法の開発 は、本領域に特徴的な試みである.

本稿では、まず第2章で物質・材料の研究を支える第一 原理シミュレーション手法の現状を紹介する.とくに水素で 顕著な原子核の量子効果,有機物のシミュレーションで重要 なファンデルワールス相互作用,水素化合物の超伝導転移温 度の定量計算は,ハイドロジェノミクス研究を進める上で重 要な手法である.第3章では,実験的観測が困難な水素を 含む物質・材料のデータ同化構造探索手法について述べる. 計算機シミュレーションだけを使って物質の結晶構造を予測 することは、原子数が増えるにつれて可能性の数が爆発的に 増えるため、非常に困難になる.そこで可能性を絞るために 実験データを利用しようというのが、我々の提案するデータ 同化手法である.

2. 水素を含む系の第一原理シミュレーション

(1) 電子状態計算

物質・材料の結晶構造,電子状態,物性のシミュレーショ ン手法のうち,周期系,液体,表面・界面といった凝縮系一 般で経験パラメータを使わないシミュレーションを可能にす るのが,密度汎関数理論(Density Functional Theory,以下 DFT)に基づく第一原理電子状態計算と,そこから計算され る原子間力を使って原子を動かす第一原理分子動力学法 (First-Principles Molecular Dynamics,以下 FPMD)である.

DFT は1960年台に W. Kohn らが作り上げた理論で,物 質の基底状態エネルギーが電子密度分布だけで決まり,その 計算に必要なエネルギー汎関数は物質によらないユニバーサ ルなものであるということ示した Hohenberg-Kohn の定 理⁽¹⁾と,電子密度の計算を相互作用しない仮想的な電子系の 問題にマップすることで,電子密度とエネルギーの精密な計 算手法を与えた Kohn-Sham 理論⁽²⁾からなる.DFT によ り,波動関数理論ではできなかったような凝縮系の電子状態 計算が可能となり,開発者の Kohn は1998年にノーベル化 学賞を受賞した⁽³⁾.

DFT の実際の計算では、電子密度からエネルギーを計算 する際に、何らかの近似に基づく交換相関エネルギー汎関数 を利用する.有名なのは一様電子ガスの結果を利用する局所 密度近似(LDA)や密度勾配の補正を加えた一般化密度勾配 近似(GGA)であるが(文献(3)およびその引用文献を参照)、 最近では、波動関数理論であるハートリー・フォック法の交

^{*} 東京大学大学院理学系研究科;教授(〒302-0124 東京都文京区本郷 7-3-1)

Hydrogen Function Analysis by Advanced Computer Simulations; Shinji Tsuneyuki (School of Science, The University of Toyo, Tokyo) Keywords: *hydrogenomics, data assimilation, first-principles simulation, density functional theory (DFT), molecular dynamics (MD)* 2021年1月25日受理[doi:10.2320/materia.60.176]

換エネルギーの表式を取り入れたハイブリッド汎関数もよく 用いられている⁽⁴⁾.また局在性の強いd軌道やf軌道に,電 子相関効果を格子モデル的に取り入れるDFT+U法も使わ れている⁽⁵⁾.

これらの汎関数では,極性のない分子間の相互作用として 重要なファンデルワールス(vdW)相互作用の記述が不十分 で,分子性の固体,液体,表面分子吸着系などの計算結果の 精度が悪い.そこで近年,簡便で正確にvdW相互作用を計 算するための手法が研究されている.濱田により提案された vdW密度汎関数は,その中でも成功を収め,広く使われ始 めた手法である⁽⁶⁾.

(2) 動力学計算

1985年になると、原子の動きとそれに伴う電子状態変化 を同時に解くことで計算量や計算に必要な計算機のメモリー 量を大幅に減らすことのできる Car-Parrinello 法が登場し, 液体や表面の動力学シミュレーションも DFT で行えるよう になった⁽⁷⁾. この手法を電子状態の逐次解法へと発展させ, より精密な電子状態計算と分子動力学計算を実現したのが, 現在の FPMD である⁽⁸⁾. FPMD は動力学計算だけでなく, ポテンシャルエネルギー面をたどる構造最適化にも利用され る.

近年,電極での水素発生のように,電子のリザーバーであ る固体表面と外部のイオンの間で電子移動が起きる化学反応 を,FPMD で調べたいというニーズが高まってきた.その ような電子移動を伴うシミュレーションを有限サイズの系で 行うと,電子1個の移動で表面が無視できないほど帯電 し,電位が変化するという問題が生じる.大谷と杉野による 有効遮蔽媒質法は,この問題を解決して電子数一定ではなく 電位一定条件という開放系のシミュレーョンを実現する手法 であり,FPMD と組み合わせて広く利用されるようになっ ている⁽⁹⁾.

(3) 原子核の量子効果

FPMDでは、与えられた原子位置を使ってDFTに基づ く電子状態計算を行い、そこから原子に働く力を計算し、ニ ュートンの運動方程式を使って原子を動かす.すなわち原子 は古典的な粒子として扱っているので、しばしば用いられる 「量子 MD」という言い方は誤解を生みやすく推奨できない. これに対して、本稿の主題である水素原子は質量が軽いた め、固体中にある時の典型的な零点振動エネルギーが0.1 eV 程度となり、これは温度に換算すると1000 K 以上の大きな 値である.つまり室温程度の温度では、分布関数の広がりの 主な要因は熱揺らぎではなく量子効果ということになる.こ のような、エネルギーや分布に現れる量子効果を、我々は通 常無視することが多いが、本当に無視して良いかどうかは物 質や現象ごとによく検討しなければならない.

量子効果が重要と思われる場合には、ファインマンの経路 積分法を使うことで、量子力学的な原子をバネでつながれた 複数の仮想古典粒子として近似的に記述し、分子動力学法 (MD)を使って温度効果も含めてシミュレーションすること ができる.この手法を経路積分分子動力学法(Path-Integral Molecular Dynamics,以下 PIMD)と言い,とくに第一原理 に基づくものを FP-PIMD と言う.FP-PIMD は D. Marx らによって初めて水素を含む分子に適用され⁽¹⁰⁾,その後, 著者のグループが初めて凝縮系(結晶シリコン中の不純物水 素⁽¹¹⁾,超高圧下の固体水素⁽¹²⁾)に適用して,原子核の量子 効果を論じた.

PIMDでは,量子系を古典系にマップするにあたって, 計算量が仮想粒子の数の分だけ増える.量子効果が大きい場 合ほど,近似の精度を担保するのに必要な仮想粒子の数を増 やす必要があり,水素を含む系の典型的な計算量は通常の MDの100倍のオーダーとなる.そのため,もともと計算量 の多い DFTを使った FP-PIMDの応用はなかなか広がらな かった.幸い FP-PIMDは並列計算しやすいため,近年の 並列計算機の発展に伴って利用しやすくなり,日本では志賀 らが非常に汎用性の高いプログラムを開発・公開したこと で,さまざまな系に応用が広がっている⁽¹³⁾.

(4) 超伝導

第一原理に基づく超伝導転移温度の計算には様々な報告例 があるが、多くの場合、DFTによる第一原理電子状態計算 と電子格子相互作用を表す経験パラメータを組み合わせて用 いており、予言力には限界があった.近年、ドイツの E.K.U. Gross らが、DFTを拡張して超伝導転移を記述する 理論(超伝導密度汎関数理論、以下、SCDFT)を提案し、少 なくともフォノンを媒介とする超伝導については、真に非経 験的な転移温度予測の道が開かれた⁽¹⁴⁾.その後フォノン以 外、たとえばプラズモン⁽¹⁵⁾やスピン揺らぎ⁽¹⁶⁾の効果を取り 入れる試みもなされている.

固体水素は以前から圧力により金属化すると予想され,金属化すれば高温超伝導体になるであろうと考えられてきた. 残念ながら固体水素の金属化が起きる圧力はあまりにも高く,水素単体での超伝導は実現されていないが,水素を多量に含む系で高温超伝導の発現がいくつか実証されている.そのきっかけとなったのは,ドイツのマックスプランク研究所のグループが発見した,硫化水素高圧相での200 Kを超える温度での超伝導転移である⁽¹⁷⁾.このような水素系の超伝導転移は,基本的にはフォノン媒介であると考えられ,実際SCDFTを使うと転移温度がよく再現される⁽¹⁸⁾⁽¹⁹⁾.その時,水素が軽く量子効果による分布の広がりが大きいことを反映し,格子振動の非調和効果が大きいことも指摘されている⁽²⁰⁾.

3. データ同化構造探索

これまで紹介した第一原理シミュレーション手法では,い ずれの場合も初期原子座標を入力として与え,そこからエネ ルギーが下がるように原子を動かしたり,温度に見合った初 速度を与えて動力学計算をしたりする.では適切な初期原子 座標がわからない場合,どうすれば良いだろうか.

典型的な例は, 化学組成から未知の結晶構造をシミュレー ションで探索したいという場合である.そのような場合に は、たとえばランダムな初期原子配置をたくさん用意してそ れぞれ構造最適化を行い,最も安定なものを選ぶ(Random Sampling),液体のように原子が動き回れる高い温度の MD から始めて徐々に温度を下げて安定構造を見つける(Simulated Annealing, 以下 SA), 準安定構造を一つ見つけた ら、その近傍でポテンシャルエネルギー障壁を越えるように 原子を動かして次の安定点を見つける(Basin Hopping, Minima Hopping), といった様々な手法が提案されている. また 最近成功を収めている手法には、

ランダムな初期配置の構造 最適化に,遺伝子のような交叉と突然変異を組み合わせる遺 伝アルゴリズム(Genetic Algorithm)や,鳥が群れになって 餌場を探すかのように多次元空間を探索する粒子群最適化法 (Particle Swarm Optimization)がある [レビュー論文とし て、文献(21)をあげておく]. これらの結晶構造探索は、シ ミュレーションセルに含まれる原子の座標からなる多次元空 間での最適化問題であり,正しい解を得ることは原子数(次 元)が増えるにつれて急激に困難になる.現状では100原子 くらいになると、もはや絶望的であろう.

そこで我々が注目したのは、データ同化の考え方である. 気象データは離散的な点でしか得られないため、気象モデル (運動方程式)を解くための初期値を内挿で決めるしかない. また気象モデルも完全なものではない.そのため、時間が経 てばシミュレーション結果と現実のずれが大きくなるので、 時間と共に次々と入ってくる観測データを使って、シミュレ ーションを改善しようと考えた.これが気象予報の分野で長 年にわたり様々な手法が開発されてきた、データ同化の基本 的なアイデアである.

結晶構造予測の場合には、時系列の実験データではない が、手に入れやすいX線や中性子線の粉末回折実験データ を使う.もちろん良質のサンプルがあってきれいな回折実験 データが手に入るならば、第一原理に基づく計算機シミュレ ーションは必要ない、データ同化が役に立つのは、試料の質 が悪かったり量が少なかったり、あるいはダイヤモンドアン ビルセルを用いた超高圧実験のように実験装置の制限で回折 角が限られるなどの理由から、回折実験データだけでは構造 が決まらない場合である、水素のようにX線ではほとんど 見えない元素の位置を決めたい場合にも有用である、以下で は回折実験データを用いたデータ同化構造探索手法につい て、少し詳しく説明しよう.

全原子の位置をまとめて R, 粉末回折実験データを $I(\theta)$ とシンボリックに書くことにする. Iは回折角 θ の関数であ る. 有限温度での原子の分布関数を $\rho(R)$, Iの分布関数を $\rho(I)$, 実験から I が与えられたときの原子の分布関数を $\rho(R$ |I), 逆に R がわかったとき I が観測される確率分布を $\rho(I|$ R)とすると, これらの間には

$$\rho(R|I) = \frac{\rho(I|R)\rho(R)}{\rho(I)} \tag{1}$$

というベイズの定理が成り立つ.有限温度 T でのカノニカ ル分布を考えると、右辺の $\rho(R)$ は、ポテンシャルエネルギ -E(R)と温度の逆数 $\beta(=1/k_BT)$ を用いて、

$$\rho(R) \propto \exp\left[-\beta E(R)\right] \tag{2}$$

と書ける. Rが決まれば回折ピークの角度や大きさはすべて 計算できるので,その計算値を $I_{calc}(\theta; R)$ とする. $\rho(I|R)$ を 考える際には、 θ の関数である $I_{calc}(\theta; R)$ が $I(\theta)$ からずれる につれてその確からしさが減ると考え、ずれが大きいほど大 きなペナルティーを与えるようなエネルギーの次元をもった 汎関数 $D[I, I_{calc}]$ を導入して、

 $\rho(I|R) \propto \exp(-\beta D[I, I_{calc}])$ (3)
と書く、これらをベイズの定理の式に代入すると、

 $\rho(R|\theta) \propto \exp\{-\beta(E(R) + D[I, I_{calc}])\}$ (4) が得られる.構造シミュレーションの各ステップでのRが わかればその構造に対する I_{calc} が計算され,そこからペナ ルティーDも決まるので, $D[I, I_{calc}]$ を明示的にD(R)と書 くことにしよう.結果的に我々が欲しい $\rho(R|\theta)$ は,仮想的 なポテンシャルエネルギー関数

$$F(R) \equiv E(R) + D(R) \tag{5}$$

のもとでの原子分布関数であることがわかる.構造探索のもっとも簡単な手法の一つである SA では,E(R)で相互作用しながら運動する原子のシミュレーションを融点より高い温度で開始し,絶対零度まで徐々に温度を下げていくことで最安定構造を探す.回折ピークに関して何らかの情報がある場合には,E(R)に替えてF(R)を使った SA を行えば,その情報を利用できるわけである.

このことをもう少し直感的に示したのが、図1である.第 一原理シミュレーションで得られる*E*(*R*)は、一般に非常に 複雑な多谷構造をもち、SA などの手法で最安定点を見つけ ようとしても準安定点にトラップされて構造探索に失敗す る.ペナルティー*D*(*R*)はこれとは異なる多谷構造を持つと 考えられるが、最安定構造(図1の星印)は*E*(*R*)と*D*(*R*)に

図1 データ同化構造探索手法の模式図. (オンラインカラー)

178

共通の安定点なので,両者をたしあわせた *F*(*R*)ではその安 定性が強調され,探索が容易になる⁽²²⁾.

ペナルティー関数は人為的なものなので、様々な選び方が ある.素直に考えれば、観測された回折データ $I(\theta)$ と計算 された回折データ $I_{calc}(\theta; R)$ の相関係数(を1から減じたも の)を利用すると良いが、たとえば回折ピークの現れる回折 角だけで定義される結晶化度 λ を使うこともできる⁽²²⁾.

$$D(R) = D[I(\theta), I_{calc}(\theta; R)] = \alpha N(1 - \lambda)$$
(6)

$$\lambda = \sum_{\theta_{obs}} \int_{\theta_{obs}-\delta}^{\theta_{obs}+\delta} I_{calc}(\theta; R) d\theta / \int_{\theta_{min}}^{\theta_{max}} I_{calc}(\theta; R) d\theta$$
(7)

式(6)の α はエネルギーの次元を持つ定数で,データ同化 の重みを決めるコントロールパラメータ, Nはシミュレー ションに用いる原子数である.式(7)で定義される λ の分 母は,実験で計測された角度範囲 $\theta_{\min} \le \theta \le \theta_{\max}$ で $I_{calc}(\theta; R)$ の積 分であるが,積分範囲は実験で回折ピークが観測される角度 θ_{obs} の近傍(幅 2 δ)にのみ限定する.こうすれば常に $0 \le \lambda \le 1$ であり, $\theta_{\min} \le \theta \le \theta_{\max}$ に観測されたすべての回折ピークの 回折角が(強度を別にして)計算値と一致すれば, $\lambda = 1(D = 0)$ となる.ポテンシャルエネルギーに対するペナルティー の重みを決めるパラメータ α は,何らかの原理により決め ることができないが,経験的には融点の熱エネルギーの10 倍程度でうまくいくようである.

実際にこのデータ同化手法を用いてシリコンの構造探索を 行った時の構造およびそこから計算されるX線回折データ の変化の様子と、その過程で計算された*E*(*R*)(破線)と *F*(*R*)(実線)を、図2に示す.この計算は原子数64個の周期 セルと原子間力モデル⁽²³⁾を用い、古典 MD のプログラムパ ッケージ LAMMPS⁽²⁴⁾を使って初期温度5000 K から 0 K ま で 5 ps かけて SA を行った. 左下図の横軸は結晶化度 λ で ある. SA の時間発展は概ね左から右に進み, この例では最 終的に $\lambda = 1$ となって完全結晶にたどりついている. データ 同化に使ったのは,回折角60度以下に見られる 3 本のピー ク位置のみである. 初期構造はランダムなので,回折ピーク は周期的境界条件が許すすべての角度に現れる. 時間が経つ につれて,データ同化に使った 3 箇所の正しい回折ピーク (×印のついた線)と同じ角度のピークが成長し,正しい結晶 構造が得られる. この過程で, E(R)の変化を見ると活性障 壁を超えているように見えるが,計算に使った F(R)の方は 単調に減少しており,これにより E(R)を使う SA よりも短 時間で結晶構造に到達したことがわかる.

シリコンは結晶構造が簡単だが,それでも通常のSAでこ れほど急冷してしまうと,結晶構造を得るのは容易ではな い.対してデータ同化で正しい結晶構造が得られる確率(成 功率)は,ほぼ100%であった.もちろん,このようなデー タ同化がうまくいくかどうかは,コントロールパラメータα の大きさ,SAの初期温度やどのくらいゆっくりと温度を下 げるかによって変わる.化学組成や凝集機構,構造の複雑 さ,実験データの質と量にも依存してしる.したがって,未 知物質の構造探索を行う場合,条件設定のための試行錯誤は 避けられない.しかしながら我々がこれまで様々なタイプの 結晶(酸化物,水酸化物,水素化物,合金,金属間化合物, イオン伝導体など)でテストした限りでは,いずれの場合も データ同化によって構造探索の成功率が大きく向上すること が確認された.たとえば高温超伝導を示す硫化水素の高圧相 の場合,X線回折実験で明瞭に観測されたピークは4本し

図2 シリコンのデータ同化構造探索シミュレーションで得られた原子配列の時間変化と、そこから計算される角度範囲 0<20< 60°の粉末 X 線回折データ(赤).データ同化に用いた既知の回折データを、×印つきの線(黒)で表示した.結晶化度 λ は時 間と共に増加し、完全結晶の値である1に近づく.左下図では、その過程で得られた *E*(*R*)(破線)と *F*(*R*)(実線)を、結晶 化度 λ に対してプロットした.(オンラインカラー)

かないが⁽²⁵⁾, この情報があるだけで実験を非常に良く説明 し,かつ超伝導転移温度の計算値もよく一致する結晶構造 を,容易に見つけることができた.多少なりとも回折実験デ ータがあるならば,データ同化に利用してみる価値は大いに あると言って良いだろう.

実は本手法と関連する手法は,過去にもいくつか提案され ている.粉末回折実験データから結晶構造を決めるという意 味で最も近いのは,PutzらによるCombined method であ る⁽²⁶⁾.彼らは理論的に結晶構造を探査するというより,粉 末回折実験データから逆問題を解いて結晶構造を決める際 に,粗い原子間相互作用モデルを使って探索範囲を絞り,構 造探索を加速することを目的としていた.我々の手法では, 第一原理計算等で得られる信頼性の高いポテンシャルエネル ギーを利用し,そこに粉末回折実験データを同化すること で,情報不足のために構造決定に役立たないとして捨てられ ていた実験データでさえ有効利用し,シミュレーションによ る構造探索を加速する.つまりデータ同化により,理論と実 験のコラボレーションが可能になるのである.

4. おわりに

本稿では,まず第2章で,第一原理シミュレーション手 法の現状を概観した.その中で述べた vdW 相互作用の精密 計算,電極反応のような開放系を取り扱う手法,原子核の量 子効果を取り扱う手法は,ハイドロジェノミクス研究にとっ て重要であり,それぞれの開発者が科研費新学術領域研究 「ハイドロジェノミクス」に参加して,領域内の実験グルー プと様々な共同研究を行っている.

また第3章では,粉末回折実験データを利用して第一原 理シミュレーションによる結晶構造探索を加速する,データ 同化手法を紹介した.この手法はSA以外の手法と組み合わ せたり, *E*(*R*)と*D*(*R*)を足し合わせずに利用したりと⁽²⁷⁾, さまざまなバリエーションが考えられ,いまだ発展途上であ るが,すでに実験で見えない水素を計算機で「見る」ための 手法として,上記新学術領域研究で未知構造の探索に使われ 始めている.現在は粉末回折実験のデータを利用している が,透過型電子顕微鏡や走査プローブ顕微鏡の画像など,原 子位置から容易にシミュレーションできる実験データであれ ば,同じようにデータ同化できると考えられる.

文 献

(1) P. Hohenberg and W. Kohn: Phys. Rev., **136**(1964), B864–B871.

- (2) W. Kohn and L. J. Sham: Phys. Rev., 140(1965), A1133– A1138.
- (3) W. Kohn: Rev. Mod. Phys., 71 (1999), 1253–1266.
- (4) M. Marsman, J. Paier, A. Stroppa and G. Kresse: J. Phys. Cond. Mat., 20(2008), 064201.
- (5) B. Himmetoglu, A. Floris, S. de Gironcoli and M. Cococcioni: Int. J. Quantum Chem., 114(2014), 14–49.
- (6) I. Hamada: Phys. Rev. B, 89 (2014), 121103 (R), Phys. Rev. B, 91 (2015), 119902 (Erratum).
- (7) R. Car and M. Parrinello: Phys. Rev. Lett., **55**(1985), 2471–2474.
- (8) M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos: Rev. Mod. Phys., 64(1992), 1045–1096.
- (9) M. Otani and O. Sugino: Phys. Rev. B, 73(2006), 115407.
- (10) D. Marx and M. Parrinello: Z. Phys. B, 95(1994), 143–144.
- (11) T. Miyake, T. Ogitsu and S. Tsuneyuki: Phys. Rev. Lett., 81 (1998), 1873–1876.
- (12) H. Kitamura, S. Tsuneyuki, T. Ogitsu and T. Miyake: Nature, 404(2000), 259–262.
- M. Shiga: PIMD version 2.4.0(2020), M. Shiga, M. Tachikawa and S. Miura: J. Chem. Phys., **115**(2001), 9149–9159, M. Shiga, M. Tachikawa and S. Miura: Chem. Phys. Lett., **332** (2000), 396–402.
- (14) L. N. Oliveira, E. K. U. Gross and W. Kohn: Phys. Rev. Lett., 60(1988), 2430–2433.
- (15) R. Akashi and R. Arita: Phys. Rev. Lett., 111 (2013), 057006.
- (16) K. Tsutsumi, Y. Hizume, M. Kawamura, R. Akashi and S. Tsuneyuki: Phys. Rev. B, 102 (2020), 214515.
- (17) A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov and S. I. Shylin: Nature, 525 (2015), 73–76.
- (18) R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura and R. Arita: Phys. Rev. B, 91 (2015), 224513.
- (19) R. Akashi, W. Sano, R. Arita and S. Tsuneyuki: Phys. Rev. Lett., **117** (2016), 075503.
- (20) I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma and F. Mauri: Phys. Rev. Lett., 114(2015), 157004.
- (21) Y. Wang and Y. Ma: J. Chem. Phys., 140(2014), 040901.
- (22) N. Tsujimoto, D. Adachi, R. Akashi, S. Todo and S. Tsuneyuki: Phys. Rev. Materials, 2(2018), 053801.
- (23) T. Kumagai, S. Izumi, S. Hara and S. Sakai: Comput. Mater. Sci., 39(2007), 457–464.
- (24) S. Plimpton: J. Comp. Phys., **117**(1995), 1–19.
- (25) M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao and Y. Ohishi: Nature Physics, **12**(2016), 835–838.
- (26) H. Putz, J. C. Schön and M. Jansen: J. Appl. Crystallogr., 32 (1999), 864–870.
- (27) D. Adachi, N. Tsujimoto, R. Akashi, S. Todo and S. Tsuneyuki: Comp. Phys. Comm., 241 (2019), 92–97.

常行真司

講義ノート

金属製錬反応の速度論Ⅱ —化学反応速度—

北村信也*

4. 化学反応速度

4·1 化学反応速度式⁽¹⁾⁽²⁾

温度, 圧力が一定の下で起こる次のような反応を考える.

aA+bB=cC+dD (4.1)
 化学反応速度rは物質量の変化速度であり, mol/(m³·s)
 のような単位を持ち,各成分の反応速度の間には式(4.2)の
 関係がある.

$$r = -\frac{r_A}{a} = -\frac{r_B}{b} = +\frac{r_C}{c} = +\frac{r_D}{d}$$
(4.2)

質量作用の法則に従えば、反応速度は反応成分の濃度の積 に比例するため、濃度を $C(\text{mol/m}^3)$ 、時間をt(s)と書くと 次式で表される.

$$r_A = -\frac{dC_A}{dt} = k \cdot C_A^a \cdot C_B^b \tag{4.3}$$

ここで, *k*は反応速度定数, *a*+*b*=*n* を反応次数と呼び, *n*=1が1次反応, *n*=2が2次反応となる.

下記の式(4.4)で表した反応のように、逆反応が無視でき る場合や不可逆反応の場合には、反応速度式は式(4.5)のよ うに1次反応で表される.鉄鋼製錬で1次反応を示す例 は、溶鋼に含まれるCaやMgの気化反応等である.

$$A \xrightarrow{k_1} B \tag{4.4}$$

$$-\frac{dC_A}{dt} = k_1 C_A \tag{4.5}$$

今,反応開始時点でのAの濃度を $C_{A,0}$, t時間後の濃度を C_A として積分すると式(4.6)が得られる.

ln
$$C_A = \ln C_{A,0} - k_1 t$$
, $C_A = C_{A,0} e^{-k_1 t}$ (4.6)
つまり、1 次反応の特徴は反応物の濃度が指数関数的に減

少することである.

2次反応は次式のような反応が該当し,脱窒素や脱水素な どの鉄鋼製錬反応が該当する.

$$A + B \xrightarrow{R_2} C, \ 2A \xrightarrow{R_2} C \tag{4.7}$$

反応速度式は式(4.8)であり、不可逆反応の場合は、初濃 度を*C*_{A,0}, *C*_{B,0} とし積分すると式(4.9)が得られる.

$$-\frac{dC_A}{dt} = k_2 C_A C_B, \quad -\frac{dC_A}{dt} = k_2 C_A^2 \tag{4.8}$$

$$\frac{1}{C_{A,0} - C_{B,0}} \ln\left(\frac{C_{B,0}C_A}{C_{A,0}C_B}\right) = k_2 t, \ \frac{1}{C_{A,0}} - \frac{1}{C_A} = -k_2 t \tag{4.9}$$

反応初期で生成物がほとんどない時には逆反応は無視でき るが、生成物が多くなると逆反応は無視できず、平衡では正 反応の速度と逆反応の速度が等しくなる.逆反応も考慮して 式(4.4)を書き替えると式(4.10)になる.

$$A \underset{k_1'}{\overset{k_1}{\rightleftharpoons}} B \tag{4.10}$$

正反応はBの生成速度であり k_1C_A , 逆反応はBの分解反応であり k'_1C_B で表されるため, Bの生成速度は式(4.11)になる.

$$\frac{dC_B}{dt} = k_1 C_A - k_1' C_B \tag{4.11}$$

反応が平衡に達した時は $dC_B/dt=0$ で、平衡濃度を $C_{A,eq}$, $C_{B,eq}$ と書くと、式(4.11)から $k_1C_{A,eq}=k'_1C_{B,eq}$ となる.した がって平衡定数Kと反応速度定数の間には式(4.12)が成り 立つ.つまり、平衡定数とは正反応と逆反応の反応速度定数 の比であることになる.

$$K = \frac{C_{B,eq}}{C_{A,eq}} = \frac{k_1}{k_1'}$$
(4.12)

Aの初期濃度を $C_{A,0}$ とし、はじめにはBは存在しなかっ

^{*} 東北大学名誉教授

Kinetics of Metal Smelting Reaction II — Chemical Reaction Rate—; Shin-ya Kitamura (Emeritus Professor, Tohoku University, Sendai) Keywords: *chemical reaction, kinetics, adsorption, reaction rate, nitrogen* 2020年6月24日受理[doi:10.2320/materia.60.181]

たとすると、 $C_{A,0} = C_A + C_B$ の関係が成り立つ.したがって、式(4.11)は式(4.13)となり、その積分形は式(4.14)になる.

$$-\frac{dC_A}{dt} = k_1 C_A - k'_1 (C_{A,0} - C_A)$$
(4.13)

$$\ln \left(\frac{C_{A,0} - C_{A,eq}}{C_A - C_{A,eq}}\right) = (k_1 + k_1')t$$
(4.14)

一方,逆反応を考慮して式(4.7)を書き換えると式(4.15) になる.

$$A + B \underset{k_2}{\stackrel{R_2}{\rightleftharpoons}} C \tag{4.15}$$

同様に $A \ge B$ の初期濃度を $C_{A,0}$, $C_{B,0} \ge U$, はじめには C は存在しなかったとすると,式(4.8)は式(4.16)となり, その積分形は式(4.17)になる.

$$-\frac{dC_A}{dt} = k_2 C_A^2 - k_2' (C_{A,0} - C_A)$$

$$\left(\frac{C_{A,0} - C_{A,eq}}{C_{A,eq}(2C_{A,0} - C_{A,eq})}\right)$$

$$\times \ln\left(\frac{C_{A,0} C_{A,eq} (C_{A,0} - C_{A,eq}) + (C_{A,0} - C_{A,eq})^2 C_A}{(C_A - C_A,eq)^2 C_A}\right) = k_2 t$$
(4.16)

このように,化学反応速度は平衡濃度と反応速度定数を用いて表す事ができる.

4・2 界面における反応⁽¹⁾

溶鋼と窒素との反応は,硫黄や酸素の濃度に大きく影響を 受ける.これらの元素は界面活性元素と呼ばれ,溶鋼表面で の窒素原子の吸着を妨げる.このような界面における反応を 表す場合に,ラングミュアの吸着モデルが広く用いられてい る.このモデルでは以下を仮定している.

(1) 表面には一定数の吸着点があり,気体と平衡する 時,吸着点のうち吸着分子で占められている点の割合は θ , 占められていない点の割合は $1-\theta$ である.

(2) 各吸着点には1個の分子だけが吸着される,吸着分子間の相互作用はない.

(3) 単分子吸着層のみが生成される.

表面から吸着分子が脱離する速度は θ に比例し,脱離速度 定数 k_d を用いて $k_d\theta$ と書く.一方,気体分子の衝突頻度は 吸着成分の分圧 P_A に比例し,表面に衝突した分子が吸着す る速度は $1-\theta$ に比例するため,吸着速度定数 k_a を用いて k_a $P_A(1-\theta)$ と書くことができる.平衡状態では脱離速度と吸 着速度が等しいので,式(4.18)が成り立ち, θ は吸着係数 K_{ad} を用いて式(4.19)で書き表せ,この式をラングミュアの 吸着等温式と呼ぶ.

$$k_d \theta = k_a P_A (1 - \theta) \tag{4.18}$$

$$\theta = \frac{k_a P_A}{k_d + k_a P_A} = \frac{K_{ad} P_A}{1 + K_{ad} P_A}, K_{ad} = k_a / k_d$$
(4.19)

いま, $A \rightleftharpoons B$ という反応を素過程に分けると,界面におけるAの吸着(式(4.20)),界面での化学反応(式(4.21)),界面からのBの脱離(式(4.22))となる.ここで、 \bowtie は吸着点

を示し, θ_A , θ_B は A, Bにより占められている吸着点で, $\theta = \theta_A + \theta_B$ である.

$$A + \bowtie \stackrel{k_a}{\underset{k_a}{\leftarrow}} A_{ad} \quad r_a = k_a C_A (1 - \theta) - k'_a \theta_A \tag{4.20}$$

$$A_{ad} \stackrel{R_r}{\underset{k'_r}{\leftrightarrow}} B_{ad} \quad r_r = k_r \theta_A - k'_r \theta_B \tag{4.21}$$

$$B_{ad} \stackrel{k_d}{\underset{k'_d}{\longrightarrow}} B + \bowtie \quad r_d = k_d \theta_B - k'_d C_B (1 - \theta) \tag{4.22}$$

脱着過程が律速だとすれば,吸着と化学反応は平衡に達しているとみなせるので,式(4.23)が成り立ち,反応速度は式 (4.24)になる.

$$\theta_{A} = \frac{k_{a}}{k_{a}'} C_{A} (1-\theta), \ \theta_{B} = \frac{k_{r}}{k_{r}'} \theta_{A}$$

$$r = \frac{k_{a} k_{r} k_{d} / k_{a}' k_{r}'}{1 + (k_{a} / k_{a}') C_{A} + (k_{a} k_{r} / k_{a}' k_{r}') C_{A}} \left(C_{A} - \frac{k_{a}' k_{r}' k_{d}'}{k_{a} k_{r} k_{d}} C_{B} \right)$$

$$(4.24)$$

Aの吸着反応についてはラングミュアの吸着等温式で表 される平衡が成り立ち脱離速度は十分に速いとすると、反応 速度は式(4.25)になる.ここで $C_{A,ad}$ は単位面積当たりのA分子の吸着量を示し、単位面積当たりの吸着点の数 Γ_t とA分子が吸着している割合 θ_A の積で与えられる.

$$r = k_r C_{A,ad} = k_r \Gamma_t \theta_A = k_r \Gamma_t \frac{K_A P_A}{1 + K_A P_A}$$
(4.25)

これより、 $K_A P_A$ が非常に大きい場合は $r = k_r \Gamma_l$ となり反応速度は分圧に依存しないことになり、逆に、 $K_A P_A$ が非常に小さい場合は $r = k_r \Gamma_l \cdot K_A P_A$ となり反応速度は分圧に比例することになる.

4·3 解 析 例

4・3・1 化学反応速度律速条件での解析(3)

前記のように,金属製錬反応は高温で起こるため,一般的 には化学反応速度は十分に速く,化学反応速度が律速する場 合は少ない.鉄鋼製錬では溶鋼への窒素の吸収や放出を解析 する場合に,化学反応速度を考慮する必要がある事が知られ ている.

Ar-窒素ガス雰囲気下で溶鉄からの脱窒素速度を測定した ところ図4.1の結果を得た.脱窒素反応は逆反応を考慮した 式(4.15)を書き換えると式(4.26)になる.

$$2[N] \stackrel{k_2}{\underset{k_2'}{\leftrightarrow}} N_2(g) \tag{4.26}$$

脱窒素速度を溶鋼中の窒素濃度変化で表すため,界面積 A と溶鋼体積 Vを用いて式(4.16)を書くと式(4.27)になる.

$$-\frac{d[\%N]}{dt} = \frac{A}{V} \{k_2 [\%N]^2 - k_2' P_{N_2}\}$$
(4.27)

図4.1は純 Ar を用いた場合の結果なので、 P_{N_2} はゼロとみなせ、初期窒素濃度を $[%N]_0$ とおくと式(4.28)が得られる.

$$\frac{1}{[\%\mathrm{N}]} - \frac{1}{[\%\mathrm{N}]_0} = \frac{A}{V} k_2 t \tag{4.28}$$

図4.1を1/[%N] と時間の関係でプロットすると図4.2の ように良い直線関係が得られた.

図 4.2 1/[%N]と時間の関係⁽³⁾.

次いで窒素分圧を変えた実験を行った.この場合は式 (4.27)の P_{N_2} はゼロではないが、平衡に達した場合には式 (4.29)の関係が成り立つため、平衡窒素濃度 [%N]_{eq}を用 いると式(4.27)は式(4.30)となり、積分形は式(4.31)となる.

$$k_{2}[\%N]_{eq}^{2} = k'_{2}P_{N_{2}}$$

$$-\frac{d[\%N]}{dt} = \frac{A}{V} \{k_{2}[\%N]^{2} - k_{2}[\%N]_{eq}^{2}\}$$

$$= \frac{A}{V} k_{2} \{[\%N]^{2} - [\%N]_{eq}^{2}\}$$

$$(4.30)$$

図 4.3 式(4.31)の左辺と時間の関係⁽³⁾.

$$\frac{1}{2[\%N]_{eq}} \left\{ \ln \frac{[\%N] + [\%N]_{eq}}{[\%N] - [\%N]_{eq}} + \ln \frac{[\%N]_0 - [\%N]_{eq}}{[\%N]_0 + [\%N]_{eq}} \right\}$$

$$= k_2 \frac{A}{V} t \qquad (4.31)$$

図4.3は式(4.31)の左辺と時間の関係だが,良い直線関係 が得られている.

ところで,脱窒素速度定数は微量の硫黄や酸素の存在で大 きく低下する.これは,界面における吸着の影響と考えられ る.吸着平衡は式(4.19)と同じ考え方で式(4.32)で表され, 脱着が律速し逆反応を無視すると,反応速度式は式(4.25)と 同じ考え方で式(4.33)になる.

$$\theta_{\rm N} = \frac{K_{\rm N} a_{\rm N}}{1 + K_{\rm O} a_{\rm O} + K_{\rm S} a_{\rm S} + K_{\rm N} a_{\rm N}}$$

$$2N_{ad} \xrightarrow{k_d} N_2 + 2 \bowtie,$$

$$(4.32)$$

 $r = k_d \theta_{\rm N}^2 = k_d \left\{ K_{\rm N} a_{\rm N} \left(\frac{1}{1 + K_{\rm O} a_{\rm O} + K_{\rm S} a_{\rm S} + K_{\rm N} a_{\rm N}} \right) \right\}$ (4.33)

これを窒素濃度の変化速度で書きなおすと、溶鋼密度 ρ と窒素の原子量 M_N を用いて式(4.34)が得られる.ここで、 各元素の活量は濃度と等しいと近似し、 $K_N \cdot a_N$ は $K_0 \cdot a_0$, $K_S \cdot a_S$ より十分に小さいとした.

$$-\frac{d[\%\mathbf{N}]}{dt} = \frac{A}{V} \frac{M_{\mathrm{N}}}{\rho} k_{d} K_{\mathrm{N}}^{2}$$

$$\times \left(\frac{1}{1 + K_{0}[\%\mathbf{O}] + K_{\mathrm{S}}[\%\mathbf{S}]}\right)^{2} [\%\mathbf{N}]^{2}$$

$$= k_{\mathrm{N}}[\%\mathbf{N}]^{2} \qquad (4.34)$$

見かけの脱窒素速度定数 $k_N(cm/(\% \cdot sec))$ は式(4.34)第 2項の [%N]²に対する係数項であり、その逆数の平方根を とれば、 $\exists = (A/V) (M_N/\rho) k_d K_N^2$ とすると式(4.35)にな り、実験で得られる脱窒素度と酸素又は硫黄濃度との関係か ら K_0 , K_S を評価する事ができ、例えば式(4.36)が提示され ている.尚、 f_N は窒素の活量係数である.

$$\frac{1}{\sqrt{k_{\rm N}}} = \frac{1}{\sqrt{\exists}} \left(1 + K_0 [\% O] + K_{\rm S} [\% S] \right)$$

$$(4.35)$$

$$k_{\rm N} = 0.974 f_{\rm N}^2 \left(\frac{1}{1 + 28.4 [\% {\rm O}] + 5.35 [\% {\rm S}]} \right)^2 \tag{4.36}$$

4·3·2 混合律速条件での解析⁽⁴⁾

前節では,脱窒素速度を化学反応律速で解析した例を示し たが,界面活性元素の濃度が低く化学反応速度が速い場合に は物質移動律速や混合律速になる場合もある.

窒素ガス N_2 が溶鉄に[N]として吸収される反応,また は溶鉄中[N]が N_2 として放出される反応の素過程として 以下を考える.

- (1) N₂の気相側境膜層内物質移動
- (2) 界面における吸着反応
- (3) [N] の溶鋼側境膜層内物質移動

気相側境膜層内の物質移動流束は分圧差を駆動力にすると 式(4.37)で,溶鋼側境膜層内の物質移動流束は式(4.38)で表 せる.ここで, kg は気相側境膜層内の物質移動係数である.

$$N_{g} = \frac{k_{g}}{RT} \left(P_{N_{2}} - P_{N_{2},i} \right)$$
(4.37)

$$N_m = k_m (C_{N,i} - C_N)$$
(4.38)

界面での吸着反応は式(4.16), (4.17)で表されるので k_2 , $k'_2 \approx k_c$, k'_c と書き,平衡定数をKとすると式(4.39)となる.

$$N_{c} = k_{c} P_{N_{2},i} - k_{c}^{\prime} C_{N,i}^{2} = k_{c} \left(P_{N_{2},i} - \frac{C_{N,i}^{2}}{K} \right)$$
(4.39)

平衡定数は式(4.40)で定義される,定常状態では $N_g = N_m = N_c = N_w$ であるため式(4.41)が得られる.

$$K = \frac{k_c}{k'_c} = \frac{C_{N,e}^2}{P_{N_{2},e}}$$
(4.40)

$$N_{ov} = \frac{1}{\frac{1}{k_m} + \frac{K}{2C_{N,i}} \left(\frac{RT}{k_g} + \frac{1}{k_c}\right)} \left(\frac{C_{N,e}^2}{C_{N,i}} - C_N\right)$$
(4.41)

式(4.41)は吸収速度を表したものであるが、右辺に負号を つければそのまま放出速度を表す式になる.

図4.4は窒素吸収速度を1次式で表した場合の吸窒速度定数(k_N ; cm/s)と界面活性元素である酸素,硫黄濃度との関係を示した実験結果である.このように界面活性元素濃度が低い場合には,これらの濃度に依らず一定値になる.これは k_c が十分に大きく反応が溶鋼側境膜層内の物質移動で律速

図 4.4 1次式を仮定した吸窒速度定数と界面活性元素濃度と の関係⁽⁴⁾.

される事を示している(相対的に気相側物質移動は速いので 無視する). この結果から, k_m を求め,界面活性元素濃度が 高い条件での実験結果を式(4.41)で解析することで k_c を求 める事ができる.図4.5は,実験結果を2次式で解析して得 た吸窒速度定数(k'_N ; cm/(s·%))と酸素濃度の関係を示す. 図中の一点鎖線は,得られた k_c の値を用いて化学反応速度 律速として計算した値であるが,酸素濃度が低くなると,こ の線からの乖離が大きくなっており,この条件では物質移動 抵抗が無視できなくなる事がわかる.

一方,同様の解析方法で,真空度を変化させた実験結果を 用いて k_g を評価した例もある⁽⁵⁾.この場合, $k_c \ge k_m$ の値が

(1) Choh, Inoue, (2) Ban-ya et al, (3) Suzuki et al., (4) Narita et al., (5) Shinmyo et al.

図 4.5 2 次式を仮定した吸窒速度定数と酸素濃度の関係⁽⁴⁾.

図 4.7 kov に対する諸要因の影響⁽⁵⁾.

必要であるが、 k_m は他の研究者の測定値を用い k_c は真空度 が高い実験では N_2 の気相側境膜層内物質移動は十分に早い として、実験で得られた総括反応速度係数 (k_{ov}) から求めて いる.その結果、図4.6のような圧力依存性を得ている.ま た、界面活性元素である酸素と硫黄の影響として式(4.42)を 示している.図4.7は k_{ov} と式(4.42)の括弧内分母の値との関 係を、 k_m , k_g を変化させて計算した結果であるが、酸素と硫 黄の活量が高い場合は, k_wは k_rとほぼ等しく化学反応律速 であり,酸素と硫黄の活量が低くなると物質移動速度の影響 が大ききなる事がわかる.

$$k_{\rm N} = 15.0 f_{\rm N}^2 \left(\frac{1}{1 + 161 [\%0] + 63.4 [\%S]} \right)^2 \tag{4.42}$$

(次号へつづく)

文 献

- (1) 川合保治:鉄冶金反応速度論,日刊工業新聞社,(1973).
- (2) 小木 修:ぶんせき, (3)(2014), 94-100.
- (3) 萬谷志郎, 篠原忠広, 戸崎秀男, 不破 祐:鉄と鋼, 60 (1974), 1443-1453.
- (4) 井上道雄:鉄と鋼, **70**(1984), 1315-1324.
- (5)原島和海,溝口庄三,梶岡博幸,坂倉勝利:鉄と鋼,73 (1987),1559-1566.

****	*****
1980年 東北大学大学院工学研究科修	士課程修了
1980年4月—2003年9月 新日本製鉄	ŧ
1991年1月 九州大学より学位授与(工学博士)
2003年10月—2005年3月 新日鉄住金	ミステンレス
2005年4月—2020年3月 東北大学多	6 元物質科学研
究所	
2020年4月一 東北大学名誉教授	
専門分野:鉄鋼製錬	
◎制鋼プロセフの閉路しそれに関する	は淋研究に従

北村信也

◎製鋼プロセスの開発とそれに関する基礎研究に従 事.熱力学や反応速度論を使ったプロセス解析や スラグの利用技術の開発等を行った.

--透過電子顕微鏡法の基礎--

今野豊彦(著) 共立出版 2003年

東北大学多元物質科学研究所 佃 諭志

このシリーズの中では比較的新しい書籍となるが、著書と の思い出の一冊ということで本書を取り上げさせていただ く.本書を知ったのは、博士後期課程に在籍中のことであ る. 当時は金属とは無縁の高分子と放射線化学に関する研究 を行っていた著者は、透過電子顕微鏡(TEM)による金属ナ ノ粒子の解析が必要な事態へと陥った.当然これまで TEM による結晶構造解析などには携わってきておらず, TEM も 走査型電子顕微鏡(SEM)と同様に観察のツールとしての認 識しかなかった. そんな中, 当時の電顕室の職員から勧めら れて購入し、電子顕微鏡の仕組みや解析方法について勉強し たのが本書である.図1は.現在著者が所持してある書籍で ある. 初めて出会ってから少なくとも15年以上の月日が経 過しているにしては,新しすぎる外観である.これは著者が この本を全く読んでいなかったわけではなく、単に2代目 (2冊目)であるからである.いつ頃かは忘れてしまったが, 学生に本書を貸し出したことがあり,卒業や震災のドタバタ の中,所有する書籍が行方不明になってしまった.どうして も必要なため2度購入した経緯があり、いまでも新しい外 観を保っている.貸し借りはしっかりしなくていけないこと を思い出させてくれる点でも著者にとっては貴重な1冊(2 冊?)である.

本書の内容についてであるが,書籍の裏面に書かれている 「これから透過電子顕微鏡を学ぼうとする方々へ」が象徴す るようにとても丁寧に基礎から実践編までを説明されてい る.当時右も左もわからない学生であった著者にとっても丁 度よい電子顕微鏡を知る導入本であった.

本書は、第I部から第Ⅲ部の3部構成で書かれている. また、最初に第0章を設定し、ここで波の干渉と結像について簡単に触れながら、本書で学ぶ概要を解説している.図 2に示した本書の道しるべとして、象徴的な図を交えながら 各章立てと各章で得られる知見がまとめられている親切な仕様である.

第 I 部「光学の基礎と電子線・X 線の発生」では,第1 章から第4章に分けて,光,電子の幾何光学,X 線の発生 と基礎的事項,波動光学の基礎を復習し,本書を読み進める にあたっての基礎知識に関する項目が丁寧に記述されている.

第Ⅱ部「物質からの散乱と解析の基礎」は,第5章から 第8章で構成されており,電子線の散乱と結像について詳 しく述べられている.単原子からの散乱から複数原子,結晶 の散乱と波と物質との相互作用を詳細に書かれている.道中 の式の導出も丁寧も記述されていることから,その導出過程 を追うことも容易であり,本書の内容を理解する助けとなっ ている.

図1 現有の教科書の様子(左)とその表紙(右).

第Ⅲ部「回折と結像の実際」は,第9章から第13章で構成されており,実際の測定に生かせる実践編とでもいうべき 内容で構成されている.電子顕微鏡を取り扱うようになり, 試料の測定や解析の段階で特にお世話になった項目である.

その他にも、本文の要所に演習問題や巻末の付録(実習の プランまでもが記載)、参考文献、索引そしてギリシャ文字 の読み方までもカバーされている.

電子顕微鏡の測定では,試料と光学系の状況を把握しなが ら,その都度装置を的確に操作していくことが要求される. 電子顕微鏡の仕組みと電子線の回折等が基礎から丁寧に説明 されている本書は,これから電子顕微鏡について学ぼうとし ている学生にお勧めの一冊である.

ISBN ⊐− k^{*}: 978-4-320-03426-6 https://www.kyoritsu-pub.co.jp/bookdetail/9784320034266

図2 第0章で本書の道しるべとしてまとめられた各章の関係.

(2021年1月25日受理)[doi:10.2320/materia.60.186]

これまでの研究生活を振り 返って

東北大学金属材料研究所・学術研究員 味戸沙耶

1. はじめに

私は、2019年3月に東京工業大学物質理工学院材料系に て博士(工学)の学位を取得し、現在は東北大学金属材料研究 所にて学術研究員として勤務しております.このたび、本稿 を執筆する大変貴重な機会をいただきましたので、学生時代 からこれまでの研究について振り返るとともに、今後の抱負 について述べさせていただきます.

2. 研究活動を通じて学んだこと

私は、学部から博士課程まで、東京工業大学物質理工学院 西方・多田研究室にて大気腐食にともなう水素侵入に関する 研究に取り組んできました.鉄鋼材料は、省資源・省エネル ギーの観点から、高強度化が進められていますが、高強度鉄 鋼材料は水素脆化感受性の高いことが懸念されています.水 素脆化割れを引き起こす要因は、材料・応力・環境の3点 が考えられており、私は、環境に着目した研究をおこなって きました.鉄鋼材料は大気環境で使用されることが多く、水 素脆化割れの問題となる水素源は大気腐食にともなう水素発 生反応です.鉄鋼材料が大気環境で使用されると、降雨や結 露などにより薄い水膜が形成し、腐食反応が進行します.大 気腐食は、薄い水膜下で進行する腐食現象であることから、

一般的な電気化学測定電極を挿入することが難しく(図1 (a)),これまで腐食反応計測と水素侵入量の定量を同時にお こなわれた例はほとんどありませんでした.そのため,大気 腐食にともなう水素侵入機構の詳細は,未解明点が多くあり ました.

この問題を解決するために,私はケルビンプローブという 非接触参照電極を適用し(図1(b)),大気腐食過程において 鉄鋼材料に吸収される水素量を定量するとともに,ケルビン プローブも用いた腐食反応計測による腐食機構解析をおこな いました.その結果,液滴の乾燥過程において,腐食の生起 にともない腐食電位が卑化し水素吸収が生じること,また乾 燥直前においては,液滴のpH低下が水素吸収に大きな影響

図1 (a) 一般的な電気化学測定電極と(b) ケルビンプローブ を大気腐食系に適用したときの模式図(To 測定装置). (オンラインカラー)

をおよぼすことを明らかにしました⁽¹⁾⁽²⁾. この研究を通じ て,先生方からご指導いただいたことは数え切れませんが, 特に指導教員である多田先生から学んだ研究に真摯に取り組 む姿勢は,私の研究姿勢の骨子となっています.

博士課程修了後は、東北大学金属材料研究所にて学術研究 員として勤務しております.これまでは、水素脆化を防ぐた めに、材料が使用される環境に着目して研究をおこなってき ました.現在は、これまで学んできた腐食科学に関する研究 に加えて、秋山・小山研究室の先生方にご指導いただきなが ら金属組織(材料)や変形(応力)に着目した水素脆化研究にも 挑戦しています.これらの研究を通して、水素脆化現象への 理解を深めることだけでなく、腐食研究についても多面的な 視野をもって取り組むことにつながっていると感じていま す.まだまだ勉強の日々ですが、これまで学んできた腐食科 学に軸足を置きながら、金属組織や変形など幅広い視野を持 って材料の環境劣化について研究に取り組んでいきたいと思 います.

3. おわりに

腐食科学に関する研究は、社会資本やインフラ構造物、輸 送機器の安全性確保に重要な研究分野であり、私たちの生活 に密接に関係しています.今後も変わることなく腐食・防食 の研究開発が進むことは間違いありません.今後の腐食研究 の発展に微力ながら力になれるようこれからも真摯に研究に 取り組んで参ります.また、金属材料を支える腐食研究者が 一人でも増えることを願っております.

最後になりましたが、本稿執筆の機会を設けていただいた 関係者の皆様、これまでご指導ご鞭撻をいただいた東京工業 大学 西方篤教授、多田英司准教授、大井梓助教、そして現 在大変お世話になっております東北大学 秋山英二教授、小 山元道准教授、北條智彦助教をはじめ、これまでお世話にな った多くの方々にこの場を借りて深く御礼申し上げます.

文 献

- (1) S. Ajito, E. Tada, A. Ooi and A. Nishikata: ISIJ Int., **59**(2019), 1659–1666.
- (2) S. Ajito, E. Tada, A. Ooi and A. Nishikata: Mater. Trans. 60 (2019), 531–537.
 (2020年12月28日受理)[doi:10.2320/materia.60.187]

(連絡先:〒980-8577 仙台市青葉区片平 2-1-1)

~第4回「高校生·高専学生ポスター発表|優秀賞~

卵殻膜を用いた銅(Ⅱ)イオンの吸着

岩手県立水沢高等学校

及川美結 佐藤安沙美 給木萌晏 豊嶋成葉 村上もも

私たちは、卵殻膜を用いた銅(Ⅱ)イオンの吸着について研 究しています. この研究は一学年上の先輩から引き継いだも のです. 先輩方は, 50 mL の硫酸銅(Ⅱ) 水溶液(濃度は 0.010, 0.025, 0.050, 0.100, 0.150 mol/Lの5種類)に0.50g の卵殻膜を加え、恒温振盪器で24時間振盪させて、卵殻膜 に銅(Ⅱ)イオンを吸着させました.吸着前後の溶液を試料と し、分光光度計で800 nm の吸光度を測定しました。事前に 作製しておいた検量線から水溶液中の銅(Ⅱ)イオンの濃度を 求め,吸着前後の濃度の減少量から卵殻膜1gあたりの銅 (Ⅱ)イオンの吸着量(mol)を計算しましたその結果,水溶液 中の銅(Ⅱ)イオンの初期濃度が高くなると吸着量が増加する こと、水溶液の温度が高くなると吸着量が増加することがわ かりました(図1). これらのことから先輩方は, 卵殻膜に対 する銅(Ⅱ)イオンの吸着は吸熱反応ではないかと考えました.

先輩方の研究を引き継いだ私たちは,銅(Ⅱ)イオンがどの ような仕組みで卵殻膜に吸着しているのかということに興味 を持ち,研究を始めることにしました.

私たちは、「銅(Ⅱ)イオンが静電気力によって吸着してい るのではないか」という仮説を立てました. この仮説を証明 するために, 銅(Ⅱ)イオンの代わりにニッケル(Ⅱ)イオンを 用いて実験をすることにしました. ニッケル(Ⅱ)イオンは銅 (Ⅱ)イオンよりもイオン半径が小さいので, 銅(Ⅱ)イオンよ りも吸着量が多くなると予想しました.実験方法は,前年度 と同じ方法で行いました. ただし, ニッケル(Ⅱ)イオンの吸 光度は最大吸収波長である 400 nm で測定しました. その結 果,実験結果は予想とは異なり、ニッケル(Ⅱ)イオンはほと んど吸着されないことがわかりました(図2).

そこで、私たちは卵殻膜を構成しているアミノ酸の組成を 調べました. すると, 卵殻膜には硫黄をもつシスチンが多く

図1 pH 2.0における Cu²⁺ の吸着等温線(卵殻膜).

図2 pH 2.0における Ni²⁺ の吸着等温線(卵殻膜).

図3 pH 2.0における Cu²⁺ の吸着等温線(高野豆腐).

含まれていることがわかりました. さらに, 各金属硫化物の 溶解度積を調べると,硫化銅(Ⅱ)は6.5×10⁻³⁶(mol/L)², 硫化ニッケル(Ⅱ)は1.6×10⁻¹³(mol/L)²であり、銅(Ⅱ)イ オンの方がニッケル(Ⅱ)イオンよりも硫化物イオンと結合し やすいことがわかりました. そこで,「銅(Ⅱ)イオンが硫黄 と結合して吸着しているのではないか」という新たな仮説を 立てました.新たな仮説を確かめるため、卵殻膜の代わりに シスチンをほとんど含まないタンパク質である高野豆腐を用 いて, 銅(Ⅱ)イオンが吸着するのかを確かめることにしまし た. その結果, 高野豆腐には銅(Ⅱ)イオンがほとんど吸着さ れないことがわかりました(図 3). このことから, 銅(Π)イ オンの吸着には硫黄の関与が強く疑われると結論づけました.

今年度は新型コロナウイルス感染拡大のため、多くの研究 発表会が中止に、あるいはオンライン開催になりました. 今 回のポスター発表は初めて参加したオンライン発表で、どの ようになるのかとても不安がありましたが、多くの先生方に 発表を聴いていただくことができました.始めは、PCの操 作に不慣れだったために、うまく説明することができません でしたが、徐々に慣れて後半はうまく説明することができま した. 説明はメンバーが交代で担当しましたが、質問に答え るときには、全員で協力して答えることができました. 先生 方から,「なぜ,この研究を始めたのか」,「この研究は社会 でどのようなことに役立つのか」といった質問を多くいただ きました.研究の目的や動機,社会的な意義の大切さを改め て考えることができました.また、「これからも研究を継続 するように」といった励ましをいただき、研究を続けてきて 良かったと感じることができました.

> (2020年12月21日受理)[doi:10.2320/materia.60.188] (連絡先:〒023-0864 奥州市水沢龍ヶ馬場 5-1)

会 告	第16回 JIM/TMS Young Leader International Scholar Award 募集案内 189 第67回日本金属学会賞候補者推薦依頼 190 第2回日本金属学会フロンティア研究助成募集 190 2021年春期(第168回)講演大会ご案内ならびに参加申込みについて 191 2021年春期講演大会:技術セミナー/R&D セミナー開催/付設展示会(オンライン版)開催案内 192 第12回男女共同参画ランチョンミーティング開催 192 第12回男女共同参画ランチョンミーティング開催 192 第12回男女共同参画ランチョンミーティング開催 193 日本金属学会主催国際会議企画提案募集 193 日本金属学会主催国際会議企画提案募集 193 新設「研究会」発足のお知らせ 194 研究集会 195
支部行事 揭示板 … 新入会員	195 会誌・欧文誌3号目次 199 196 次号予告 200 198 行事カレンダー 201

事務局 涉外 · 国際関係 : secgnl@jim.or.jp
会員サービス全般:account@jim.or.jp
会費·各種支払:member@jim.or.jp
刊行物申込み : ordering@jim.or.jp
セミナーシンポジウム参加申込み : meeting@jim.or.jp
講演大会: annualm@jim.or.jp
総務 · 各種賞:gaffair@jim.or.jp
学術情報サービス全般 : secgnl@jim.or.jp
調 査 · 研 究:stevent@jim.or.jp
まてりあ · 広告 : materia@jim.or.jp
会誌 · 欧文誌 : editjt@jim.or.jp

公益社団法人日本金属学会 〒980-8544 仙台市青葉区一番町 1-14-32 TEL 022-223-3685 FAX 022-223-6312 https://jim.or.jp/

・投稿規程・出版案内・入会申込はホームページをご利用下さい.

会告(ホームページもご参照下さい)

第16回 JIM/TMS Young Leader International Scholar Award 募集案内

本会では,若手研究者及び技術者の活動の活性化を図り,併せてTMS との国際交流を促進させることを目的に JIM/TMS Young Leader International Scholar Program を設けており, TMS への派遣者を募集いたします.

決定した派遣者は2022年 TMS 春期大会(2022年 2 月27日~3 月 3 日:米国 California 州 Anaheim) に JIM の Young Leader International Scholar Award 授賞者として派遣して TMS の表彰式において表彰されるとともに,講演発表をしていただきます.また,大会前後に関連機関の訪問も可能です.

募集要領

応募資格 ①日本金属学会の正会員で派遣時点に満35歳以下であり、本会活動に熱意のある人.

②日本金属学会の機関誌に論文が掲載されたか、または講演を発表した経験があり、かつ英語で講演発表ができる人、

③日本金属学会の若手世代の代表として,責任ある行動がとれる人.

派遣人数 若干名(1~2名)/1回

応募手続き <u>所定の様式</u>(ホームページよりダウンロードして下さい)により必要事項を記入の上,下記 E-mail アドレスにご 送信下さい.

応募書類 推薦書

①推薦理由(400字程度)

②論文および講演発表の業績リスト:5編程度

国際口頭発表リスト:5編以内

③TMS 主催の講演大会で発表予定の論文タイトルとアブストラクト(英語で400word 程度)

④本会における若手研究者活動の活性化に対する抱負(英語で400word 程度)

⑤TMS 主催の講演大会で参加・発表して得られると期待される成果(英語で300word 程度)

⑥米国での大学・研究所・企業などの訪問計画予定(先方との事前コンタクトは不要)と目的

本会補助 派遣費用上限30万円.ただし,TMSへの派遣に合わせて北米内の大学・研究機関等を訪問する場合は上限40万円. 推薦書締切日 2021年4月15日(木)

提出先:〒980-8544 仙台市青葉区一番町 1-14-32

(公社)日本金属学会「Young Leader」係

☎ 022-223-3685 E-mail: stevent@jim.or.jp

第67回日本金属学会賞候補者推薦依頼

本会では、第67回日本金属学会賞の候補者の推薦を下記要領にて募集いたします.ご推薦を宜しくお願いします.

第67回学会賞推薦要領

主 旨 金属およびその関連材料の学術および科学技術の振興に顕著な貢献をした者に授賞するものです.

推薦資格 本会代議員

- 審査基準 この賞の審査基準は、下記の通り

 (1)当該分野を切り開く先導的な役割を果たしたか
 (2)学術上重要な発見をしたか
 (3)効果が大きい重要な発明をしたか
 (4)学術や技術の進歩に大きく貢献したか
 (5)金属およびその周辺材料の科学技術の振興に貢献したか
 (6)研究や開発ならびに育成や啓発によって社会へ貢献したか
 (7)金属学会の活動に貢献したか
- 推薦方法 「学会賞推薦」と明記の上,<u>推薦様式(ホームページよりダウンロードして下さい)に沿って Word</u> 文書で下記 Email アドレス宛に送信して下さい.

推薦書類提出締切 2021年5月6日(木)

推薦書提出先 (公社)日本金属学会 学会賞係

〒980-8544 仙台市青葉区一番町 1-14-32

☎ 022-223-3685 🕅 022-223-6312 E-mail: award@jim.or.jp

第2回日本金属学会フロンティア研究助成募集

教育・研究機関での金属及びその関連材料分野の学術研究及び技術研究の発展や若手研究者の育成や奨励を主な目的として、金属及びその 関連材料分野に関連する材料又はプロセスに関する研究に助成金を交付いたします.下記の通り第2回目の助成の対象となる研究を募集い たしますので、応募下さい.

|募集期間:2021年2月1日(月)~3月31日(水)まで|

募集要項

応募資格

応募者(代表者)は、2021年4月1日時点で45歳以下の日本の教育 機関または公的研究機関に所属し、日本国内で研究に従事する者 (学生・大学院生および企業との兼務者を除く)であること.ただ し、共同研究者は国外でも可とする.

応募は一人一件とします.同一研究室からの複数応募は可能です が,新規採択は1件とします.

活動開始時には、非会員は会員になることが望ましい.

助成の対象となる研究

金属及びその関連材料分野に関連する材料又はプロセスに関する 調査,試験,研究及び開発とする.

- 研究期間 助成研究の実施期間は,原則2年間とする.研究開始日 が年度途中となる場合は,年度をまたいだ2年間とする.
- 助成件数 年間10件以下
- **助成金額** 1件あたり,150万円

助成金の使途

研究等に直接必要な費用及び所属組織の必要最低限の間接経費に 充当すること.研究者の人件費(臨時雇用の研究補助者等の費用 を除く)には充当できないものとする.

助成金の交付方法および交付期間

研究助成金の交付方法は,原則として,助成実施者が所属する組 織に対する奨学寄付の形とする.共同研究者が別の組織に所属す る場合は,複数の組織に交付することは可能です.

研究助成金の交付期間は、原則として、理事会決定以降12月31日 までの間とします.研究実施者は、速やかに助成金受領のために 助成金交付の手続き(奨学寄附受付窓口の連絡等)を行うこと. (1)提出書類:所定様式の「研究助成金申請書」に必要事項を記入し, 提出して下さい.

申請書の様式は,本会のホームページからダウンロー ドできます.

- 必要事項:応募者,研究題名,研究分担者(共同研究者がある場合),予算(費目,金額),研究目的(背景,必要性,意義,価値,成果活用の見込み等),研究計画(実施計
 - 画,成果目標等),報告予定,該当する分科,研究業
 - 績,金属学会での活動実績等

(2)作成要領

応募方法

「研究助成金申請書」に記載された作成要領に従って日本語(専門 語等で部分的に外国語を使用することは可)で作成すること。申 請書については,作成要領に明記されたページ数制限を遵守する こと。制限ページ数を超えた申請は受け付けません。

(3)提出方法

作成した研究助成金申請書を, E-mail の添付ファイルで提出して 下さい.

なお,ファイルは MS-Word 形式とて下さい. Fax や紙での申請 は受け付けません.

提出書類等は,採否にかかわらず返却しません.

問合・申請先
 申請書は下記 E-mail アドレスに提出下さい. 2,3 日
 過ぎても受理返信通知のない場合は、ご連絡下さい.
 (公社)日本金属学会 フロンティア研究助成係
 E-mail: gaffair@jim.or.jp 2022-223-3685

2021年春期(第168回)講演大会ご案内ならびに参加申込みについて

春期講演大会は、3月16日(火)から19日(金)までオンラインにて開催します. 尚、参加申込みは、すべてインターネット申込となります.詳細は、下記申込要領をご覧下さい.

後期(当日) 参加申込要領

|大会参加申込み URL https://www.jim.or.jp/convention/2021spring/|

参加申込締切後,参加方法や講演概要ダウンロードについては,下記をご参照下さい.なお,**領収書は,決済完了後に申込** 画面から各自印刷して下さい(WEB 画面:講演大会 MyPage よりダウンロード).

◆大会参加費(講演概要ダウンロード権含む)※年会費とは異なります.

事前参加申込締切後の後期(当日)申込を設定しました.

参加費・懇親会費の消費税扱については,ホームページ(一覧表 PDF)をご参照下さい.

会員資格	事前参加申込期日 2月26日(金)で終了しました.	後期(当日)申込 (3月3日~会期最終日)
正員・維持員会社社員,シンポジウム共催・協賛の学協会・鉄鋼協会会員(本会非会員)	10,000円	13,000円
個人会員で2021年3月1日時点で65歳以上の方*	無料	無料
学生員**	6,000円	7,000円
非会員*** 一般	24,000円	27,000円
非会員*** 学生(大学院生含む)	14,000円	16,000円

• お支払後の取消は、準備の都合上ご返金いたしかねますのでご了承下さい.

* **65歳以上の個人会員**:会員情報に生年月日のご登録がない場合は,課金されますのでご注意下さい.会員情報に生年月日をご登録 させて頂きますので,大会参加登録の前に annualm@jim.or.jp まで会員番号・お名前・ご連絡先・生年月日をお知らせ下さい.

** <u>学生員</u>:卒業予定変更等により会員種別に相違がある場合,<u>事前に会員種別の変更手続きを行ってから</u>,大会参加をお申込下さい. *** 非会員の(有料)参加申込者には,1年間の会員資格を付与します.ただし特典は重複して付与いたしません.

◆支払方法

お支払いはクレジットカードおよびコンビニ振込決済をご利用頂けます.また、入金後のご返金は致しかねます.

◆参加方法および講演概要の閲覧

講演概要の公開日は、大会2週間前の2021年3月2日(火)です.後期(当日)申し込みされた方は、参加登録された際の受理通知に記載の 「登録番号 E-****」と「パスワード」にて講演大会公開サイトのタイムテーブルにログイン後、講演概要の閲覧ができます.

◆講演概要集購入について

講演概要集 DVD は作成いたしません. 全講演概要は,本大会 Web サイトで公開をします. これまで概要集 DVD のみ購入をされていた 方も,通常の参加登録をして頂き,概要の閲覧をお願いします.

◆懇親会開催案内(※金属学会単独開催)

開催日時 3月16日(火) 18:30~

開催方法 オンライン会議ツールRemo(予定)

参加費 無料

参加方法 開催当日,春期講演大会ホームページの会場 URL よりご入場下さい.

参加申込·問合先

〒980-8544 仙台市青葉区一番町 1-14-32 (公社)日本金属学会 窗 022-223-3685 [弧] 022-223-6312 E-mail: annualm@jim.or.jp

 \diamond \diamond \diamond

2021年春期講演大会:技術セミナー開催 (主催:(公社)日本金属学会 企画:㈱ 明報社)

春期講演大会(オンライン開催)にて,技術セミナーを開催 いたします.各社の最新の技術を解説いたします.是非ご視 聴頂き,皆様の研究開発にお役立て下さい.

3月17日(水) P 会場

 $12:00 \sim 12:40$

○オックスフォード・インストゥルメンツ㈱ 「波長分散型X線分析装置『AZtecWave』での高エネル ギー分解能X線スペクトル収集」

3月18日(木) P 会場

 $13:00 \sim 13:40$

○アドバンスソフト㈱

「第一原理計算ソフトウェアとマテリアルズ・インフォマ ティクス」 技術第1部 胡 春平

 $14:00 \sim 14:40$

○㈱新興精機

「リモートで実現する遠隔研究の手法」

3月19日(金) P 会場

10:00~10:40
 ○アドバンスソフト㈱
 「ナノ材料解析統合 GUI: Advance/NanoLabo」
 技術第8部 西原慧径

2021年春期講演大会: R&D セミナー開催 (主催:(公社)日本金属学会 企画:㈱ 明報社)

春期講演大会(オンライン開催)にて, R&D セミナーを開 催いたします. 各社の研究開発動向を解説いたします. 学生 参加者の皆様には, 是非ご視聴頂き, リクルート活動にお役 立て下さい.

3月17日(水) Q 会場

 $13:00{\sim}13:40$

- ○日立金属㈱
- $14:00{\sim}14:40$
- ○三菱マテリアル㈱

「三菱マテリアル 金属材料で未来を創造 Material Innovation and Revolution」

3月18日(木) Q 会場

10:00~10:40
○東邦チタニウム㈱
「東邦チタニウム㈱の Amazing R&D」
11:00~11:40
○トピー工業㈱
「トピー工業 ~素材から製品まで一貫生産! 金属加工の

総合メーカー〜」
13:00~13:40
○東邦チタニウム㈱
「東邦チタニウム㈱の Amazing R&D」

2021年春期講演大会:付設展示会(オンライン版)開催 (主催:(公社)日本金属学会 企画:㈱ 明報社)

春期講演大会ホームページにて,付設展示会(オンライン版)を開催いたします.金属材料関連各社の製品やサービスの最新情報の他,製品動画や資料を閲覧できます.皆様のアクセスをお待ちしております.下記大会ホームページよりご 欄下さい.

URL: https://confit.atlas.jp/guide/event/jim2021spring/top 開催期間: 2月上旬~3月19日(金)

□田展企業
 ○アドバンスソフト㈱
 ○㈱池上精機
 ○伊藤忠テクノソリューションズ㈱
 ○オックスフォード・インストゥルメンツ㈱
 ○㈱TSL ソリューションズ
 ○㈱TSL ソリューションズ
 ○㈱モルシス
 ○㈱UNICO

NIC|[[13]

第12回男女共同参画ランチョンミーティング 「金属材料分野での多様なキャリアパス」

金属材料分野でのキャリアパスとしてどのようなものがあ るでしょうか.企業,大学,独法研究機関など様々です.ま た,一言で企業といっても様々な分野で活躍可能です.金属 材料を学んだ先輩達がどのような進路で活躍しているか話を 聞いてみませんか.

仕事のこと、キャリアの積み上げ方、家庭のこと、気になる いろいろなことを、気楽に質問してみて下さい. 学生さん、 若手の研究者、技術者の方、若い方にエールを送りたい方、 大勢の方のご参加をお待ちしております.

- **主 催** 男女共同参画委員会日本金属学会 · 日本鉄鋼協会
- 協 賛 男女共同参画学協会連絡会
- 日時 2021年3月19日(金) 13:00~14:00
- 会場 Zoom ミーティング(URL は後日ホームページに掲載します.)

参加費 無料

(講演大会参加申込の有無にかかわらず,このミーティング に参加できます!!)

プログラム

司会 三浦永理(兵庫県立大)

$13:05{\sim}13:10$	開会の挨拶	男女共同参画委員会委員長
$13:10{\sim}13:40$	ある男性研究者の	の保護者としての小学校と
	の関わり	金沢大 宮嶋陽司
$13:40{\sim}13:50$	総合討論	
$13:50{\sim}13:55$	閉会の挨拶	男女共同参画委員会副委員長

令和3年 春季 全国大学材料関係教室協議会 講演会のご案内

日時 2021年3月19日(金) 15:00~16:00

- 場 所 日本金属学会春期講演大会会場(オンライン)
- 参加方法 2021年春期講演大会にオンライン会場にリンク を設けておりますので、そちらからご入場下さい、接続されましたら、マイクをミュートにしてお待ち下さい。
- 共催 (公社)日本金属学会, (一社)日本鉄鋼協会
- 問合せ 全材協事務局 🕿 022-795-3785
- 〈講演会〉 15:00~16:00
- 題 目 第6期科学技術・イノベーション基本計画とマテ リアル戦略
- 講 師 国立研究開発法人 物質 · 材料研究機構 理事長 橋本和仁 氏
- 聴講料 無料

日本金属学会主催国際会議企画提案募集

本会が主催する国際会議につきまして,ダイナミックな国際化の動きに即したタイムリーな企画を選定するため,次の 方針で提案募集を行います.2023年度以降開催の国際会議 が対象です.ご参照の上,期日までに有意義な企画をご提案 下さいますようお願いいたします.

提案締切日 2021年5月31日(月)

- 提案要項 下記事項を記載した文書(提案書:ホームページ よりダウンロードして下さい)(A判)をもって, 本会会長宛に申請して下さい.
 - (1) 会議の名称(和文名・英文名)
 - (2) 会期
 - (3) 開催地·会場予定
 - (4) 会議の目的・特徴
 - (5) 日本開催の経緯と意義
 - (6) 計画概要
 - a. 協賛, 後援団体
 - b. 主要準備日程
 - c. 使用語
 - d. 参加予定国(国名 · 国数)
 - e. 参加予定者数(国内外)
 - f. 著名な国内外参加予定者(氏名・所属・役職)
 - g. パラレルセッション数およびポスターセッションの 有無
 - h. プロシーディングスの出版(出版元・予定頁数,製 作部数・頒価・配布方法)

- i. 予算(収入・支出明細)
- (7) 準備委員会委員(氏名·所属·役職)
- (8) 提案(連絡)責任者(氏名・所属・役職・住所・電話・ E-mail)
- **提案書送付先** 〒980-8544 仙台市青葉区一番町 1-14-32 (公社)日本金属学会 国際会議募集係

一公益社団法人日本金属学会主催国際会議実施方針(2013年12月改訂抜粋)一

- 1. 基本的要件
 - (1) 開催要望が国内外で高まっており、かつ本会会員から も要望されていること.
 - (2) 関係国内学協会の協賛が得られること.
 - (3) 会議の計画内容が本会主催の会議としてふさわしいと 認められること.
 - 1-1 会議の構成,主要題目,日程,使用語が適切で ある.
 - 1-2 参加国数および国外参加者が10カ国50名以上予 定されていること.
 - 1-3 参加予定国および参加予定者は確実な根拠に基づいて推定されていること.
 - 1-4 当該分野における国内外の代表的研究者の参加 が予定されていること.
 - (4) 会議の Proceedings を刊行する場合は、多重投稿等ミスコンダクトが生じないよう対策をとること、実施する対策を事前に届け出て本会の承認を得ること。

2. 本会主催国際会議の区分と規模

- (1) JIMIS: 国際シンポジウム-参加者150名未満
- (2) JIMIC: 国際コンファレンス—参加者150名以上
- (3) その他の国際会議:国際的要請に基づいて主催する国際集会等
- 3. 開催頻度

必要に応じて随時開催する.

- 4. テーマの公募, 選定方法
 - (1)「まてりあ」会告で定期的に企画提案を募集する.
 - (2) 提案された企画案は、まず分科会企画委員会において 検討,優先順位を付けて、国際学術交流委員会に提示 する.
 - (3) 国際学術交流委員会において実施企画,会議の区分, 貸与金(内定)を決定して,理事会に答申する.
 - (4) 理事会において正式決定し,提案責任者に対して文書 により決定通知と開催準備推進の依頼を行う.
- 5. 財 源
 - (1) 参加費
 - (2) 文部科学省補助金
 - (3) 地方公共団体補助金
 - (4) 民間財団補助金
 - (5) 本会国際学術交流資金からの<u>補助金(上限350万円</u>, 残余は会議後返却)
 - (6) 寄付金

6. 業務処理の会計処理

本会の「国際会議開催準備マニュアル」と「国際会議会計 処理マニュアル」に準拠する(これらの資料は採択決定後に 提案責任者に送付する).

2021年秋期講演大会の外国人特別講演および招待講演募集

春秋講演大会における外国人研究者による特別講演と招待 講演については会員からの推薦をもとに、国際学術交流委員 会において審議採択し,講演実施細目については講演大会委 員会で決定いたします.2021年秋期講演大会の特別講演と 招待講演を募集いたしますので,下記要領によりご推薦下さい.

特別講演

- •講演者:著名な外国人研究者とする.
- •講演時間:30分(討論10分)
- 採択件数: 3~4件
- •滞在費補助:10,000円×5日(上限日数)
- •その他:大会参加費免除,懇親会招待

招待講演

- ・講演者:有益な講演が期待される国内に滞在する外国人 研究者とする。
- 講演時間:15分(討論5分)
- 採択件数:5件程度
- 滞在費補助:なし
- その他:大会参加費免除

推薦用紙

<u>所定様式</u>(ホームページからダウンロード下さい)により, 下記メールアドレス宛に「外国人特別講演推薦」と明記し, お送り下さい.送信後2~3日過ぎても受理メールの無い場 合はお問合せ下さい.

推薦書提出期日 2021年4月30日(金)

照会·推薦書提出先

〒980-8544 仙台市青葉区一番町 1-14-32
 (公社)日本金属学会 国際学術交流委員会宛
 ☎ 022-223-3685
 E-mail: stevent@jim.or.jp

新設「研究会」発足のお知らせ

本年3月から新たに下記の研究会が発足いたします.メ ンバーとして登録を希望される方は、氏名、勤務先、連絡先 (E-mail address 含む)を明記の上、世話人宛にお申込み下 さい.研究会の活動期間は1期5ヶ年以内です.継続更新 の場合は、延長期間1期3年以内、最長活動期間は2期8 年以内です.

(研究会新設募集:7号会告予定/申請締切日:9月1日)

■No. 85. 状態図·計算熱力学研究会

活動期間 1期5年間(2021年3月~2026年2月)

様々な材料の機能を最大限に引き出すための組織制御にお いて,状態図が果たしてきた役割はたいへん大きい.特に, 状態図の熱力学的計算法である CALPHAD 法やマテリアル ズ・インフォマティクスの提唱など,実験だけに依拠してき たこの分野の近年の研究環境の充実は目を見張るものがあ る.しかし一方で,状態図という基礎的で重要な研究領域を 専門とする人材や,そこから生み出される研究成果のポテン シャルは年々低下の一途を辿っている.このような材料科学 における基礎力の低下は,時間の経過とともに我が国におけ る材料開発基盤や国際的競争力の低下をもたらすことは容易 に想像ができる.そこで本研究会は,実測や熱力学理論に基 づく精緻な状態図構築を通して,観察される現象の背後にあ る本質的学理を明らかにしながら,この分野の研究力の飛躍 的な向上と人材育成,産業への応用を目指して設置するもの である.

代表世話人 阿部太一

物質・材料研究機構 主幹研究員 **②** 029-859-2628 E-mail: abe.taichi@nims.go.jp

 \diamond

 \diamond

 \bigcirc

研究集会

研究会 No. 75

キンク研究会:2021年度研究会

「ミルフィーユ構造物質におけるキンク形成とキンク 強化の理論構築」

キンク研究会は、近年注目が集まっているキンク変形と いう特異な変形挙動を題材に、回位などの新たな視点から 材料の変形と破壊についての基礎的議論を深めるととも に、キンク変形を利用した高性能材料の開発を進め、新し い材料研究領域の構築に展開していくことを目的として 2015年度から活動しています.

2021年度キンク研究会では、マグネシウム合金をはじめ とするミルフィーユ構造物質におけるキンク形成およびキ ンク強化の理論構築に向けた活動として、下記3名の講師 の方々から話題提供をいただき、参加者の皆様とともに議 論を深めたいと思います.本研究会にご参加希望の方は、 下記要領にて事前申し込み下さい.

日 時 <u>2021年3月29日(月)13:30~17:00</u>

場所 Zoom によるオンライン開催

(参加申込者へミーティング ID とパスワードを後日連絡)

- 共催 軽金属学会「LPSO/MFS構造材料研究部会」,新学術 MFS セミナー,高性能 Mg 合金創製加工研究会,熊本大学 MRC セミナー
- プログラム
 - 13:30~13:35 開会挨拶 東工大 藤居俊之
 - 13:35~14:20 精密結晶方位測定と変形の可視化による キンク強化理論の検証(仮)

九大 光原昌寿

- 14:20~15:05微分幾何学に基づくキンク変形の数理解
析(仮)近(仮)阪大 垂水竜一15:05~15:15一休憩—
- 15:15~16:00 変形の連続性に基づくキンク組織とキン ク強化の運動学的描像(仮)

東工大 稲邑朋也

- 16:00~16:55
 総合討論
 司会:名大 君塚 肇

 16:55~17:00
 閉会挨拶
 熊大 河村能人
- 参加費 無料(要事前参加申込)
- 申込方法 <u>3月22日(月)17:00までに</u>,事務局(藤居)宛
 ①氏名,②所属,③E-mailアドレス,④電話番号を明記し,申込下さい.
- **申込・問合先** 東京工業大学 物質理工学院 藤居俊之 E-mail: fujii.t.af@m.titech.ac.jp

支部行事

2021年度春季講演会

[共催] 日本鉄鋼協会九州支部

- 日 時 <u>2021年3月9日(火) 13:00~16:10</u> 場 所 オンライン開催(ZOOM)
- プログラム
- 13:00~14:00 湯川記念講演会
- ナノ組織制御による高臨界電流超伝導材料の開発 九州工業大学 大学院工学研究院 物質工学研究系

教授 松本 要

14:10~16:10 講演討論会 テーマ:環境・エネルギー調和機能材料の高性能化

- 熱電材料の高性能化に向けて―ハイスループット測定に よるアプローチ 茨城大学 大学院理工学研究科 物質科学工学領域 教授 池田輝之
- 2. ペロブスカイト薄膜の熱電特性とその応用
- 九州工業大学 大学院工学研究院 機械知能工学研究系

教授 宮崎康次

3. REBa₂Cu₃Oy 超伝導薄膜線材の接合プロセス 九州大学 大学院工学研究院 材料工学部門 教授 寺西 亮

参加費 無料

問合先 九州工業大学 大学院工学研究院 物質工学研究系
 徳永辰也
 ☎ 093-884-3379

E-mail: tokunaga@post.matsc.kyutech.ac.jp

 \bigcirc

◇本会の行事のご案内は、ホームページ https:// jim.or.jp(イベント)でもご覧頂けます.

- 〈公募類記事〉
 無料掲載:募集人員,締切日,問合先のみ掲載.
 有料掲載:1/4頁(700~800文字)程度.
 ・「まてりあ」とホームページに掲載;15,000円+税
 ・ホームページのみ掲載;10,000円+税
 〈その他の記事〉 原則として有料掲載.
 ・原稿締切・掲載号:毎月1日締切で翌月号1回掲載
 ・原稿提出方法:電子メール(受け取りメールの確認をして下さい)
 ・原稿送信先:[MI]022-223-6312 E-mail:materia@jim.or.jp
- (公募)

◇物質・材料研究機構 若手国際研究センター ICYS 研究員公募◇

- 公募人員 ICYS 研究員 若干名
- 所 属 若手国際研究センター
- 研究分野 独自のイノベーティブな発想に基づき,様々な材料(金属,無機材料,高分子,半導体,磁性材料,ナノ材料,生体材料,量子材料等)に関して,自立して研究に取り組める方
- 応募資格 博士の学位取得後10年以内の方,または着任時 までに博士の学位を取得見込みの方
- **着任時期** 2021年8月1日~2022年3月1日
- **任 期** 2年(審査により更新あり.最長3年)
- 公募締切 <u>2021年3月31日(水)必着</u>
 ※詳細・提出書類については下記 URL をご参照 下さい.
 www.nims.go.jp/icys/recruitment/
- **問合せ先** 若手国際研究センター 採用担当 E-mail: icys-recruit@nims.go.jp

◇豊橋技術科学大学大学院工学研究科 機械工学系 教員(助教)公募◇

- 募集人員 助教 1名
- 所 属 機械工学系 材料·生産加工分野
- 専門分野 各種構造・機能材料におけるナノレベルでの組織 制御および強度・破壊特性評価に関する分野
- 応募資格 博士あるいは PhD の学位を有するか着任までに 取得見込みの方
- **採用予定時期** 令和3(2021)年10月1日以降できるだけ早 い時期
- 勤務形態 常勤(任期あり)
 任期:5年(採用後5年以内にテニュア審査を受け、合格すればテニュア助教(任期なし)となることができる)
- 応募締切 2021年5月14日(金)(必着)
- 書類送付先 〒441-8580 愛知県豊橋市天伯町雲雀ヶ丘 1-1 豊橋技術科学大学 大学院工学研究科 機械工学系 系長 伊崎昌伸
- ※「材料・生産加工分野教員(助教)応募書類在中」と朱記し, 書留で郵送して下さい.

- 問合せ先 機械工学系 教授 三浦博己 ☎ 0532-44-6697 E-mail: miura@me.tut.ac.jp
- ※詳細は下記の URL をご参照下さい.
 - https://www.tut.ac.jp/about/kyoin-koubo.html

◇九州大学 大学院工学研究院 機械工学部門 材料力学講座 教員募集◇

募集人員 助教 1名

- **業務内容** 教育·研究
- 所属 九州大学 大学院工学研究院 機械工学部門 材料 力学講座
- 教育研究分野 構造材料評価に関する研究(例えば,金属材料の損傷破壊挙動の材料試験,直接可視化,および数値計算による評価など)
- **担当科目** 工学部機械航空工学科(令和3年4月工学部改組 後は機械工学科)にて材料力学関連科目(機械工 学実験第一など)を担当(英語によるものを含む)
- 着任時期 採用決定後出来るだけ早い時期
- 勤務形態 常勤(任期なし), 試用期間あり(3ヵ月)
- 応募資格 博士の学位を有し(着任時までに取得見込みの方 を含む),学部・大学院で教育・研究指導を行う 能力を有すること
- **提出書類**(1) 履歴書(写真貼付,学歴,職歴を記載.連絡 先と E-mail を明記)
 - (2) 研究業績(学術論文,国際会議 Proceedings, その他に分類.主要論文の別刷(コピー可)を 3 編以内添付)
 - (3) 学会および社会における活動等
 - (4) 研究費獲得状況(代表者分のみ),受賞歴,ならびに特筆すべき事項
 - (5) これまでの研究の概要(A4任意形式1頁以内)
 - (6) 応募の動機ならびに教育と研究についての抱 負(同上)
 - (7) 応募者について意見を伺える方1名以上の 氏名,所属および連絡先
 - ※(1)~(7)の正本1部(印刷)および電子データを 提出のこと
- 選考方法 書類による1次審査後,面接(プレゼンテーショ ンを含む)による2次審査実施(選考に関わる旅 費等の経費は,自己負担となります)

公募締切 2021年4月15日(木)必着

応募書類提出先および問合せ先

〒819-0395 福岡市西区元岡744

九州大学 大学院工学研究院 機械工学部門

- 教授 戸田裕之
- **a** 092-802-3246

E-mail: toda@mech.kyushu-u.ac.jp

※「応募書類在中」と朱書し簡易書留で郵送下さい.応募書 類は返却いたしません.

※労働条件その他についての詳細は、ホームページをご覧下	令和2年 レアメタル研究会のご案内 (2021.1.8)
さい.	第95回 2021年3月12日(金) 14:00~
	An 棟 2F コンベンションホール
	(リアル講演会+講演のネット配信のハイブリッド研究会)
◇レアメタル研究会◇] <u>テーマ:</u> 非鉄金属製錬,貴金属,環境問題,リサイクル
■主 催:レアメタル研究会	午後2:00~
■主 宰 者:東京大学生産技術研究所 教授 岡部 徹	司会 東京大学 生産技術研究所 特任教授 所 千晴
■協 力:(一財)生産技術研究奨励会(特別研究会 RC-	- 金の湿式精錬について(50分)
40)	住友金属鉱山株式会社 顧問
■共 催:東京大学マテリアル工学セミナー	東京大学 生産技術研究所 特任教授 黒川晴正 講師
レアメタルの環境調和型リサイクル技術の開発	金属生産に関わる環境問題とリサイクルの意義(30分)
研究会,東京大学生産技術研究所 持続型エネ	東京大学生産技術研究所 教授 岡部 徹
ルギー・材料統合研究センター,東京大学生産	水銀を利用する金の製錬の現状と課題(仮)(50分)
技術研究所 非鉄金属資源循環工学寄付研究部	3. 広島大学大学院 先進理工系科学研究科 准教授 布施正暁 講師
門(JX 金属寄付ユニット)	
■協 賛 :(公社)日本金属学会 他	パネルディスカッション
■開催会場:東京大学生産技術研究所 An棟2階 コンペ	、 モデレーター 東京大学 生産技術研究所 特任教授
ンションホール	所 千晴, 岡部 徹
〒153-8505 目黒区駒場 4-6-1	午後6:00~
(最寄り駅:駒場東大前,東北沢,代々木上原)	研究交流会・意見交換会(←Web での開催を企画予定)
https://www.iis.u-tokyo.ac.jp/ja/access/	詳細については今後ホームページに掲載いたします.
■参加登録・問合わせ:	レアメタル研究会ホームページ URL:
岡部研 学術支援専門職員 宮嵜智子	https://www.okabe.iis.u-tokyo.ac.jp/japanese/rc40_j.html
(tmiya@iis.u-tokyo.ac.jp)	

 \Diamond \Diamond \Diamond

~掲示板は、ホームページにも掲載しております. https://jim.or.jp をご覧下さい. ~

~2021年度の会費お払込について~
2021年度の会費お払込のお手続きはお済みでしょうか、会員の皆様には、既にお手続きのご案内をお送りいたしておりますが、お手続きが未だの方は、ご対応をお願いいたします。
尚、本会ホームページの会員専用ページからは支払いの確認や、クレジットカード決済などができます。
また、ご連絡先住所の変更もこのページからできますのでご利用下さい。
JIM ホームページ
入会・会員 → 〔会員マイページ〕 → ID & パスワード入力 → 会費決済 or 各種変更届手続きへ

正 員

阿 部 駿 弥 今 里 和 樹	特殊電極株式会社
越智健太郎	三井金属鉱業株式会社
勝 部 涼 司	京都大学
川中啓嗣	株式会社日立製作所

学生員

あべ松雄太朗	茨城大学
網 野 京 勢	東京大学
安藤駿汰	静岡大学
池 勇哉	関西大学
石渡智央	東海大学
市木由香	関西大学
伊 藤 航 亮	名古屋大学
伊 藤 充 洋	京都大学
井上喬仁	島根大学
岩嵜郁樹	芝浦工業大学
江口直暉	鈴鹿工業高等専門学校
海老名 航	東北大学
及川一汰	宇都宮大学
大 西 智 也	大阪府立大学
大 橋 勇 介	東北大学
岡田真由子	豊田工業大学
越智侑七	新居浜高専
加藤敦士	名古屋大学
加藤 優	東北大学
加藤森映	九州大学
可児誠太郎	名古屋大学
神谷咲良	大阪府立大学
川又 瞬	富山大学
神林守人	東北学院大学
菊 地 真 矢	千葉工業大学
北村健太	芝浦工業大学
木村健二朗	芝浦工業大学
金城陸斗	兵庫県立大学
國近まりや	同志社大学
栗原泰智	東北大学
黒 岩 省 吾	京都大学
黒田啓介	旭川工業高等専門学校
小梶莉菜子	東京大学
小 寺 拓	名城大学

外国一般会員

小	林	泰	河	千葉工業大学
齋	藤	向	葵	旭川工業高等専門学校
齋	藤		遥	東北大学
斉	藤	優	<u> </u>	芝浦工業大学
斉	村		健	関西大学
坂	牧	公	嗣	千葉工業大学
酒	匂	麻	帆	岡山大学
佐	藤	幸	輝	東京工業大学
品	川	直	紀	東北大学
志	村	大	夢	東海大学
白	川	寛	太	富山大学
進	藤	京	平	九州大学
須	賀	隆	裕	京都大学
杉	田	優	樹	千葉工業大学
杉	野	玄	樹	千葉工業大学
助	川	彩	音	東北大学
鈴	木	聖	顕	東北大学
鈴	木	広	崇	京都大学
Sa	cha	na	Supl	hattra 九州大学
関	口	雄	介	富山大学
SE	0	Poo	oreur	n 九州大学
高	須	信	秀	千葉工業大学
高	田	ŋ	ん	旭川工業高等専門学校
高	橋	温	子	東北大学
高	橋		希	東京工業大学
武	井	悠	朔	名古屋工業大学
竹	田	康	平	金沢大学
田	中	知	樹	大阪府立大学
塚	村	順	平	北海道大学
辻	井	正	和	芝浦工業大学
任	田	光	佑	兵庫県立大学
常	澤	佑	太	山形大学
俊)	成故	≝—	朗	愛媛大学
中	嶋	優	汰	東北大学

中	島	隆	世	金沢工業大学
中	瀬	仁	太	京都大学
中	山	成	哉	茨城大学
南	家	-	博	茨城大学
西	山厦	憂太	朗	大阪府立大学
橋	本	眀	賢	北海道大学
濱	田	直	弥	東京大学
浜	原	幸	治	大阪大学
林		源	太	大阪大学
林		優	衣	名古屋大学
林		優	作	東京工業大学
藤	原	賢	慈	東北大学
古	川	沙	姫	旭川工業高等専門学校
堀		勇	<u> </u>	東京工業大学
Æ	岡	伊	織	豊田工業大学
益	野	颯	仁	立命館大学
増	山	湧	士	立命館大学
松	井	駿	也	大阪大学
松	井		涼	芝浦工業大学
松	田	和	己	久留米工業高等専門学校
松	田匠	Е太	郎	同志社大学
松	戸	玲	菜	東北大学
松	永	啓	吾	久留米工業高等専門学校
松	本	睦	輝	東海大学
丸	尾	彩	夏	九州大学
水	田	和	裕	東京都立大学
宮	武		護	関西大学
宮	原	広	行	名古屋大学
\equiv	好	高	雅	関西大学
村	尾	侑	亮	岡山大学
Щ	腰	健	太	名古屋大学
Щ	﨑		連	東北大学
四	辻		聖	北見工業大学
渡	辺		樹	金沢大学
郭		方	芹	

|--|

Ho Ngoc Nam 大阪大学	GUI YUNWEI 東北大学	YAN XIAO 広島大学
PHAM DUNG THI 大阪大学	高 子墨 東北大学	李 晨光 東北大学
wei qianglin East China University of Technology	耿 殿程 東北大学	李 文権 広島大学
Yijie Huang Xi'an Jiaotong University	SRI PRAGNA PENDEM 東北大学	劉 嘉瑞 東北大学
宇 文 浩 東京工業大学	陳 茜 東北大学	LYU Shaofan 東北大学
カッリ スリナガセシャ 東北大学	トラクルヂット スピチャ 室蘭工業大学	王 雷 大阪大学

bing wang Lanzhou University of Technology Faudree Michael 東京都市大学

日本金属学会誌掲載論文 Vol. 85, No. 3 (2021)

論 文一

 Cu-Ni-X (X = Co,Fe)合金における特異な不連続析

 出現象に対する CALPHAD 法およびフェーズフィー

 ルド法に基づく理解

 後藤潤大
 小山敏幸

 塚田祐貴

Ti スクリーンを用いてプラズマ窒化した低炭素鋼の 窒化挙動と耐食性および耐摩耗性に及ぼすスクリーン 開孔の影響 今村晃大 西本明生

レーザ積層造形における結晶集合組織形成機構解明の ための改良 CA 法によるシミュレーション

久保 順 小泉雄一郎 石本卓也 中野貴由

液体ナトリウム及び液体錫による純金属の濡れ性 斉藤淳一 小林洋平 澁谷秀雄

Mg-3 mass%Al-1 mass%Sn 合金圧延材の室温成形 性および集合組織形成に及ぼす圧延温度の影響

> 福岡準史 黃 新胜 鈴木一孝 塚田祐貴 小山敏幸 千野靖正

Materials Transactions 掲載論文

Vol. 62, No. 3 (2021)

——Special Issue on Materials Science on Hypermaterials——

PREFACE Ryuji Tamura, Hiroyuki Takakura, Kazuhiko Deguchi, Ryo Yoshida and Kaoru Kimura

Magnetism of Tsai-Type Quasicrystal Approximants (*Review*) Shintaro Suzuki, Asuka Ishikawa, Tsunetomo Yamada, Takanori Sugimoto, Akira Sakurai and Ryuji Tamura

High Dimensional Approach to Antiferromagnetic Aperiodic Spin Systems

Sam Coates and Ryuji Tamura

Adsorption of Pentacene on the 2–Fold Surface of the Icosahedral Ag–In–Yb Quasicrystal

Amnah Alofi, Dominic Burnie, Sam Coates, Ronan McGrath and Hem Raj Sharma

Possibility of Semiconducting Electronic Structure on Al–Pd–Co 1/1 Cubic Quasicrystalline Approximant Yutaka Iwasaki, Tomoyuki Kashimura, Koichi Kitahara and Kaoru Kimura

Composition Effect of Kondo Behavior in Au-Al-Ce Quasicrystalline Approximants

> Yuji Muro, Tadashi Fukuhara, Takahiro Namiki, Tomohiko Kuwai, Akira Sakurai, Asuka Ishikawa, Shintaro Suzuki and Ryuji Tamura

Frank-Kasper σ and A-15 Phases Formed in Symmetry and Asymmetry Block Copolymer BlendSystemKatsuhiro Yamamoto and Hideaki Takagi

Nobuhisa Fujita and Makoto Ogashiwa

Pressure-Volume Relationship of a Au-Al-Yb In-
termediate Valence Quasicrystal and Its Crystal-
line ApproximantTetsu Watanuki, Akihiko Machida
and Tsutomu Ishimasa

The Local Structure of the Fibonacci Chain and
the Penrose Tiling from X-Ray Fluorescence
HolographyHolographyJens R. Stellhorn, Hiroyuki Takakura,
Shinya Hosokawa and Kouichi Hayashi

Accuracy of Cluster Model Calculations for Quasicrystal Surface

Masanori Sato, Takanobu Hiroto, Yoshitaka Matsushita and Kazuki Nozawa

High-Temperature Specific Heat of Al–Cu–Ru Icosahedral Quasicrystals and 1/1 Crystal Approximants Satoshi Tamura, Kento Fukushima, Yuki Tokumoto, Yoshiki Takagiwa and Keiichi Edagawa

Antiferromagnetically Ordered State in the Half-Filled Hubbard Model on the Socolar Dodecagonal Tiling Akihisa Koga

Classical and Quantum Magnetic Ground States on an Icosahedral Cluster

Shintaro Suzuki, Ryuji Tamura and Takanori Sugimoto

A Toy Model Approach to Fractal Nature: Thermodynamics on a Cantor-Lattice Ising Model

Yoichiro Hashizume and Takanori Sugimoto

Effect of Electron-Electron Interactions on Metallic State in Quasicrystals

Shiro Sakai and Akihisa Koga

—Regular Article——

Microstructure of Materials

A Comparison between Tungsten Inert Gas Welded Joints Welded by Commercial ER5183 Filler and Al-Mg-Zn-Sc-Zr-Mn Filler on Microstructure and Properties in 7075-T651 Aluminum Alloys

Zixin Qu, Tianru Han, Hongbo Cui and Xin Tang

Mechanics of Materials

Characterization on Ti35Nb7Zr Based Hydroxyapatite Composites Prepared via Rapid Sintering for Biomedical Applications

ZhengYuan He, ChangBo Yi, WenRui Shan, Lei Zhang, Jun Tan and YeHua Jiang

Materials Chemistry

Silicon Refining by Solidification from Liquid Si-Zn Alloy and Floating Zone Method

Yuanjia Ma, Kouji Yasuda, Akifumi Ido, Takeyuki Shimao, Ming Zhong, Rika Hagiwara and Toshiyuki Nohira Observation of Pit Initiation and Growth of Stainless Steel under a Chloride Solution Droplet —Effect of S Content on Pit Initiation, Growth, and Repassivation— Azusa Ooi, Yaoki Ise, Eiji Tada and Atsushi Nishikata

Polarization Curves of Carbon Steel in Concentrated LiBr Solutions Containing LiOH and Li₂MoO₄ at Different Temperatures after Short Immersion Tomoyoshi Irie, Daiki Morihashi, Youhei Hirohata and

Takumi Haruna

Mechanism for Local Corrosion of Solid B₂O₃ at Water–Gallium Interface Induced by Branched Flow Itaru Hasegawa, Takuya Koizumi, Kazuhiko Kita, Masanori Suzuki and Toshihiro Tanaka

Materials Processing

Development of Grain Growth Promotion Technique of Ni-Based Superalloy IN713 Fabricated by Metal Injection Molding

Shinya Hibino, Kazushige Fujimitsu, Ryutaro Okada, Yoshimichi Nomura and Kenichiroh Igashira

Microstructural Observation of Dendrite and Its Surrounding Regions Formed during Solidification of Gray Cast Iron

Yoichi Kishi, Hideharu Mochizuki and Zenjiro Yajima

Pulsed-Electric-Current Bonding of Oxygen-Free Copper and Austenitic Stainless Steel Hayato Nakao and Akio Nishimoto

Effect of Rotation Speed on the Tribological and Conductive Behaviors of Rolling Current-Carrying Cu Pairs Jiawei Li, Chenfei Song, Yanyan Zhang, Yixiang Sun, Tianhua Chen, Li Wang, Zili Liu, Shuai Wang and Yongzhen Zhang

—Technical Article—

Prediction of Residual Mg Contents in Ladle and Product after Graphite Spheroidizing Treatment by Using Artificial Neural Network

Kazuki Akiyama, Ilgoo Kang, Toshitake Kanno and Nozomu Uchida

Announcement

欧文誌編集委員会からのお知らせ

~日本金属学会誌, Mater. Trans. へ投稿しませんか?~ ◎日本金属学会誌および Mater. Trans. は, 会員, 非会員問わず投稿することができます. 掲載論文充実化のため, レビュー, オーバービュー, 技術論文など多くの種別を取り入れております. 会誌の投稿・掲載費用は無料です. 詳細は,本会ホームページ → [会誌] or [Mater. Trans.]のページをご覧下さい. 皆様のご投稿をお待ちしております.

 $\diamond \qquad \diamond \qquad \diamond$

Materials Transactions 論文フリーアクセス公開サービス(Open Choice)について

『公開後すぐに,できるだけ多くの読者に読んでもらいたい!!』というご要望に応えるため,投稿・掲載費用に,<u>追加</u> <u>費用(3万円)</u>をお支払いいただければ,半年間の認証期間を設けることなく,公開即フリーダウンロードを可能とする サービス(Open Choice)がございます.

是非ご利用下さい.詳細は、ホームページ:刊行物 → 欧文誌 をご参照下さい.

まてりあ 第60)巻 4 号 予告
 金属なんでもランキング! No.13 超伝導転移温度 [最近の研究] Mn 基ホイスラー合金の磁気特性と電子状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 [実学講座] 1-2 汎用走査電子顕微鏡を用いた組織観察 名大 徳永智春 [よくわかる!ピンポイント講座] フェルミ面とは
	編集の都合により変更になる場合があります

行事力 レンダー _{太字本会主催(ホームページ掲載)}

開催日	名称・開催地・掲載号	主催	問合先	締切
<u>2021年3月</u> 1~4	The 8th conference of Crystal Growth and Crystal Technology (CGCT8) 第 8 回アジア結晶成長・結 晶技術国際会議(Web)	アジア結晶成長お よび結晶技術学会 他	a-yokotani@cgct-8.com https://www.cgct-8.com	
3	第45回日本顕微鏡学会関東支部講演会(Web開催)	日本顕微鏡学会関 東支部	http://microscopy.or.jp/kanto/lecture TEL 029-863-5474 MITSUISHI.Kazutaka@nims.go.jp	
4	第16回 SPring-8 金属材料評価研究会/第57回 SPring-8 先端利用技術ワークショップ(Web 開 催)	SPring-8 利用推 進協議会他	suishin@spring8.or.jp http://www.jasri.jp/iuss/research_activity/ 2020/20210304.html	
4	ウィンタースクール「トポロジー最適化の基礎~ 積層造形によるものづくりへの応用~」(Web)	日本計算工学会	TEL 03-3868-8957 office@jsces.org https://www.jsces.org//	2.19
4	第2回世界エンジニアリングデー記念シンポジ ウム(Web開催)	日本工学会	TEL 03-6265-0672 http://www.jfes.or.jp/	
9	2021年度春季講演会(Web開催)(本号195頁)	九州支部	TEL 093–884–3379 tokunaga@post.matsc.kyutech.ac.jp	無料
9~11	2020年度量子ビームサイエンスフェスタ(Web 開催)	高エネルギー加速 器研究機構物質構 造科学研究所,J- PARC センター他	qbsf2020-office@ml.post.kek.jp http://qbs-festa.kek.jp/2020/1stcircular. html	
12	第116回シンポジウム「構造材料のための表面処 理と腐食防食」(東京)	軽金属学会	TEL 03-3538-0232 https://www.jilm.or.jp/	定員 70名
12	第46回組織検査用試料の作り方(組織の現出)講 習会「鉄鋼材料・非鉄金属材料・表面改質処理お よび異常組織材」(Web 開催)	材料技術教育研究 会	TEL 047-431-7451 info@ystl.jp http://www.mskoshukai.jp	3.1
12	第95回レアメタル研究会(東大生産技研)(本号 197頁)	レアメタル研究会	tmiya@iis.u-tokyo.ac.jp https://www.okabe.iis.u-tokyo.ac.jp/ japanese/index_j.html	
16~19	日本金属学会春期講演大会(Web 開催)(本号191 頁)	日本金属学会	TEL 022–223–3685 FAX 022–223–6312 annualm@jim.or.jp	
17~18	2021年春期講演大会:R&Dセミナー(Web開催)(本号192頁)	日本金属学会 · 明 報社	TEL 022–223–3685 https://confit.atlas.jp/guide/event/ jim2021spring/top	無料
17~19	2021年春期講演大会:技術セミナー(Web 開催) (本号192頁)	日本金属学会 · 明 報社	TEL 022-223-3685 https://confit.atlas.jp/guide/event/ jim2021spring/top	無料
19	令和3年 春季 全国大学材料関係教室協議会 講演会(Web開催)(本号193頁)	全国大学材料関係 教室協議会	https://confit.atlas.jp/guide/event/ jim2021spring/top	無料
19	第12回男女共同参画ランチョンミーティング「金 属材料分野での多様なキャリアパス」(Web 開催) (本号192頁)	男女共同参画委員 会日本金属学会 · 日本鉄鋼協会	TEL 022–223–3685 https://confit.atlas.jp/guide/event/ jim2021spring/top	無料
19	第34回軽金属セミナー「アルミニウム合金の組 織一応用編(加工・熱処理による組織変化)」(第 7回)(東京)	軽金属学会	http://www.jilm.or.jp/	定員 40名
23~4.23	第412回講習会「切削加工の新技術とJIM- TOF2020 Onlineにみる最新動向」(Web開催)	精密工学会	TEL 03-5226-5191 https://www2.jspe.or.jp/	
27~31	The International Conference on Sintering 2022 (Sintering 2022国際会議)(岐阜)	Sintering 2022 国 際会議組織委員会	https://www.sintering2022.org	
29	キンク研究会:2021年度研究会「ミルフィーユ構 造物質におけるキンク形成とキンク強化の理論構 築」(Web 開催)(本号195頁)	研究会 No.75	fujii.t.af@m.titech.ac.jp	事前 3.27
2021年5月 15~16	軽金属学会第140回寿期大会(Web 開催)	軽金属学会	https://www.jilm.or.jp/convention/index	車前
10 10		在11月11日		4.15 5.10
19~20	第37回希土類討論会(松山)	日本希土類学会	TEL 06-6879-7352 kidorui@chem.eng.osaka-u.ac.jp http://www.kidorui.org/	発表 1.22
20	ナノ学会第19回大会(名大)	ナノ学会	nano19@mtg-officepolaris.com https://mtg-officepolaris.com/nano19/	
24~30	第414回講習会「製造現場での IoT 活用術―今日 から始めるひと工夫―」(Web 開催)	精密工学会	TEL 03-5226-5191 https://www2.jspe.or.jp/	
26~28	第26回計算工学会講演会(北九州)	日本計算工学会	TEL 03-3868-8957 conf.office@jsces.org http://www.jsces.org/koenkai/26/	
2021年6月				
$3 \sim 5$	2021年度塑性加工春季講演会(Web 開催)	日本塑性加工学会	http://www.jstp.or.jp	
2021年7月 5~8	The 7th International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI2022) (富士吉田)	粉体工学会	http://ceramics.ynu.ac.jp/iccci2022/index. html iccci2022@ynu.ac.jp	

開催日	名称·開催地·掲載号	主催	問合先	締切
2021年9月		·		
2 ~ 4	日本金属学会秋期講演大会(名城大学)	日本金属学会	TEL 022–223–3685 FAX 022–223–6312 annualm@jim.or.jp	
$8 \sim 10$	2021年度工学教育研究講演会(信州大)	日本工学教育協 会・川上	TEL 03–5442–1021 kawakami@jsee.or.jp http://www.jsee.or.jp/	
2021年11月				
$3\sim 6$	The 16th International Symposium on Advanced Science and Technology in Experimental Mechanics (Vietnam)	日本実験力学会・ 小林(新潟大)	TEL 025–368–9310 office-jsem@clg.niigata-u.ac.jp http://isem16.imech.ac.vn/	
28~12.2	The 9th International Symposium on Surface Science (ISSS-9)(高松)	日本表面真空学会	isss9@jvssjp https://www.jvss.jp/isss9/	
2021年12月				
$1\sim 3$	EcoDesign2021(奈良)	エコデザイン学会 連合	ecodesign2021_secretariat@ecodenet.com http://ecodenet.com/ed2021/	
2022年9月				
$4 \sim 8$	第18回アルミニウム合金国際会議(ICAA18)(富 山)	軽金属学会	http://www.icaa18.org/	

 \diamond \diamond \diamond

本会元会長 加藤 雅治 先生を偲んで

本会元会長,東京工業大学名誉教授,日本製鉄株式会社 顧問 加藤雅治 先生は,2020年11月23日にご逝去されました.享年70歳でした.会員の皆 様にご報告申し上げますとともに,先生のご生前のご功績を偲び,謹んで 哀悼の意を表します.

先生は、1973年に東京工業大学理学部物理学科を卒業され、1978年に同 大学大学院理工学研究科博士課程を修了後、米国ノースウエスタン大学博 士研究員、ミシガン州立大学工学部助教授を経て、1983年に帰国され東京 工業大学大学院総合理工学研究科助教授に着任され、1995年に同大学教授 に昇任されました. 在職中には教育と研究に尽力されるとともに、同大学 評議員を4年間つとめられました. 2016年に定年退職された後、日本製鉄 株式会社顧問をつとめておられました. 学協会においては、本会理事およ び会長を、また、日本鉄鋼協会では理事、副会長そして会長を歴任されま した. さらに、Materials Science and Engineering A の Regional Editor を 11年間にわたってつとめられ、日本発の研究成果の発信にも多大な貢献を 果たされました.

先生は、金属材料の組織と力学特性に関する多岐にわたる研究を進めて こられました.たとえば、母相中の固相第二相の安定形状や母相との方位 関係の弾性論と結晶学に基づく予測、鉄鋼材料での応力誘起マルテンサイ

ト変態における変態初期の応力効果の解明,薄膜系でのエピタキシーや転位上優先析出におけるバリアント選択の 理論的クライテリアの提唱等,この分野において示唆に富む知見を提示されました.さらに,各種の金属・合金の 強化機構に関する一連の研究として,スピノーダル合金の革新的な強化理論や粒界上転位の depinning 機構を考慮 した超微細粒材料の力学特性の理論的説明は,特筆すべきご業績です.

先生の講義や講演の明快さは会員の多くの方が知るところであり、ミシガン州立大学在職中には The Teacher-Scholar Award を受賞されました.先生のこれまでの卓越したご業績に対して、本会では複数回にわたる論文賞、 功績賞、谷川・ハリス賞、そして学会賞が授与されています.さらに日本鉄鋼協会からも、西山記念賞、俵論文 賞、西山賞と数多くの賞を受賞されました.生前の功績により、瑞宝中綬章を受けられ、正四位に叙されました. 先生の著書のひとつ「入門 転位論」は、材料学の深奥に迫る名著であります.常に「ロマンと好奇心を持つこ と」を説かれた先生は、情誼に厚く、学界や産業界を超えて幅広い分野の人から敬愛されておられました.ここ に、先生のご遺徳を偲び、心よりご冥福をお祈り申し上げます.

 \diamond \diamond \diamond

まてりあ第60巻第3号(2021) 発行日 2021年	3月1日	式 日	≧価(:	本体1,700円+税)送料120円
発行所 公益社団法人日本金属学会 〒980-8544 仙台市青葉区一番町一丁目14-3 TEL 022-223-3685 FAX 022-223-6312	発 32 印 2 発	行 刷 売	人所所	山村英明 小宮山印刷工業株式会社 丸善雄松堂株式会社 〒160-0002 東京都新宿区四谷坂町 10-10

追

悼

在明報在IEL:03-3546-1 www.meihosha.co.jp

日本の未来にとって とても大切なプロジェク 廃炉へのみちを支えています

(AEA) 国立研究開発法人

Atomic Energy

福島第一 原子力発電所

●グローブボックス ●ガス循環精製装置

CLADS

- ●クリーンオーブン ●ドライルーム
- ●アイソレーター
 ●ラミネート装置
- ●高気密恒温恒湿室

※当社のすべての製品は、日本国内でのみご利用いただけます。

本社・工場 〒567-0028 大阪府茨木市畑田町11番50号 TEL: 072-625-1138 FAX: 072-625-1178 〒101-0042 東京都千代田区神田東松下町32番地 東京営業所 TEL: 03-5256-1138 FAX: 03-5256-1145

URL: http://www.miwass.co.jp E-mail: info@miwass.co.jp