バイオアダプティブマテリアル~生体の仕組みに根差した金属系生体材料の設計~

骨芽細胞の活性化機序に基づく 金属イオン徐放足場材の創製

亜希子* 小 幡 春 Ħ 宏2) 敏

1. はじめに

生体組織の再生を促す機能を有した生体材料開発が長年進 められている.これまでに様々なアプローチが報告されてい るが、そのうちの一つにイオンの効果に着目した例がある. 特に、数種のイオンが骨や皮膚などの再生を担う細胞である 骨芽細胞や線維芽細胞に対し、ポジティブな作用を及ぼすこ とが見出されており、この効果を積極的に利用した新規生体 材料の開発が近年増えつつある⁽¹⁾.材料から溶出されるイオ ンによる細胞への作用が着目されるきっかけとなったのが、 45S5 Bioglass[®]に関する研究報告である. 45S5 Bioglass[®] は、生体活性を示す人工材料として世界で初めて開発された ガラス材料であり、その組成は、46.1 SiO₂-26.9 CaO-24.4 Na₂O-2.6 P₂O₅ (mol%)である⁽²⁾. ここで生体活性とは、特 に硬組織再建用の材料において自家骨と材料が化学的な結合 を介して直接接合する機能を意味する. この機序はいくつか 報告されているが、45S5 Bioglass®においては主に材料表面 で起こる骨類似アパタイトの形成や、材料から溶出されるイ オンによる細胞の活性化効果といわれている(2).

45S5 Bioglass®を生体内に埋め込むと徐々に溶解を始め, ガラス組成に由来した種々のイオンを周囲の体液中へ放出す る.本ガラスの様なシリカの含有量が低いケイ酸塩ガラスに おいては、生体内に埋め込むと周辺体液の中に存在するプロ トンと迅速にイオン交換を行い、これによりガラス中の Na+ や Ca²⁺ イオンが溶出される. これに続いてシラノール 基が形成され、さらにシラノール基同士の縮合によりシリカ ゲル層が形成される⁽²⁾. そのため,一定期間が経過した後は 溶出が緩やかとなる特徴がある.

45S5 Bioglass[®]から溶出するイオンのうち, Na⁺ や Ca²⁺

イオンは体液中に比較的多量に存在するが、一方でケイ酸イ オンにおいてはほとんど含まれていない.しかし,骨組織に はごく微量だけ含まれており、この微量のケイ酸イオンの存 在は,骨の成長に影響をもたらすことが見出されている⁽³⁾. 細胞単位で見てみると、例えばヒト由来の骨芽細胞を培養し た際,45S5 Bioglass[®]から溶出したイオンを含む細胞培養培 地において細胞の増殖が促進されることがわかっている⁽⁴⁾. この時、イオンによってもたらされたと考えられる細胞の遺 伝子発現の変化が、このような促進効果に寄与したと報告さ れている(5).

イオンが骨形成を促進するメカニズム 2.

各イオンが細胞に作用を及ぼすメカニズムについては、い まだ不明な部分は多い.特に、体液中には本来ほとんど含有 されていないケイ酸イオンなどについては、現在研究が進め られていると言える.しかしこれまでの報告より、少なくと も骨芽細胞においては、ある特定の遺伝子発現がケイ酸イオ ンによって有意に増大されることがわかっている. Hench らは、45S5 Bioglass[®]から溶出するイオンで処理した初代骨 芽細胞の遺伝子を網羅的に解析した結果,7つのファミリー が増大されていることを見出している(2). この中には,成長 因子, 転写制御因子, そしてシグナル伝達に関係するものが 含まれる. Han らはケイ酸イオンで処理した骨髄間質細胞 において,骨形成に関連する遺伝子だけでなく WNT およ び SHH シグナル伝達経路に関連する遺伝子の発現が増大す ると報告しており⁽⁶⁾, Shie らはケイ酸イオンによって骨芽 細胞様細胞の MAPK-ERK 経路の関連遺伝子の発現が増大 すると報告している⁽⁷⁾.一方で Varanasi らは,骨形成に必 須な転写制御因子である osterix/Sp7 が、ケイ酸イオンによ

* 名古屋工業大学大学院工学研究科生命・応用化学系プログラム:1)准教授 2)教授 (〒466-8555 名古屋市昭和区御器所町)

Development of Scaffold Materials with Ion-releasing Ability for Stimulating Osteoblasts; Akiko Obata and Toshihiro Kasuga(Life Science and Applied Chemistry, Department of Engineering, Nagoya Institute of Technology, Nagoya) Keywords: biomaterials, osteoblast-like cells, Ions, ceramic, cell cunctions 2020年6月17日受理[doi:10.2320/materia.59.606]

るコラーゲン産生の促進作用に関与していると報告してい る⁽⁸⁾.この様にケイ酸イオンにおいては、ある種のシグナル 伝達経路や転写制御因子の活性化を介して、細胞機能や骨形 成を促進すると考えられている.その他のイオンについて も、イオンの種類に依存した特有のメカニズムが存在すると 予想される.

3. イオン徐放足場材の設計に向けて

上述のように、45S5 Bioglass®から溶出したイオンに対す る報告を皮切りとして、イオンによる細胞へのポジティブな 作用に関する研究が広く実施されるようになった.現在まで に、様々な種類のイオンがその種類に依存した作用をもたら すことも見出されてきている.そしてこれらの研究成果をベ ースに、新規ガラス・セラミック材料も開発研究されてい る.特にガラス材料は組成の自由度が高いため、任意のイオ ンの供給源として設計しやすいだけでなく、組成をデザイン することで化学的耐久性の制御も可能なため供給スピードを 調整しやすい.また、ガラス単体で利用するだけでなく、金 属系基板材料や有機ポリマー材料との複合化の例も数多く報 告されており、様々な材料に対して「イオン供給源」として 機能することが可能といえる.

これまで多くの知見が報告されてきたイオン種として、ケ イ酸イオン, Ca²⁺ イオン, Mg²⁺ イオンなどがあげられ る.特に骨形成に寄与する骨芽細胞や骨髄由来間葉系幹細胞 に対する各イオンの作用について, イオンの濃度依存性にも 着目しながら詳細なデータが報告されており、ある特定濃度 条件においてポジティブな作用をもたらすことが分かってい る⁽¹⁾.しかし、これら報告内にて着目されたイオンの種類は 一種ずつであり、異なる種類のイオンが同時に細胞に供給さ れた際の相互作用についてはほとんど着目されていなかっ た.しかし、例えばガラス材料の場合、その多くは複数種の 元素から構成されており、これが溶解した際は程度の差こそ あれ複数種のイオンが同時に溶出することが予想される.こ の複数種のイオンによる細胞への作用が組み合わさった際, 例えば単一種が供給された時と比較してどのような違いがあ るか考察することは、生体組織の再生に対する理想的なイオ ン供給システムをデザインするのに重要と考えた.

以上のことをふまえ,我々のグループではケイ酸イオン, Ca²⁺ イオン,Mg²⁺ イオンの3種に着目し,これらのイオ ンが単独で供給された際,および複数種が同時に供給された 際の組合せ効果について検討してきた⁽⁹⁾.本稿では,マウス 由来骨芽細胞様細胞(MC3T3-E1細胞)を用いた培養試験に より得られた成果を中心に紹介する.なお以降にて,上記3 種のイオンをそれぞれ Si, Ca, Mg イオンと表記する.

4. 細胞の接着

はじめに,培養試験および評価方法について説明する.系 統的な条件にて培養試験を実施すべく,細胞培養培地にイオ ン源となる化合物を溶解させることで「イオン添加培地」を 作製し、これを用いて細胞を培養することで、イオンによる 細胞機能への影響を調査した。用いた化合物は、Si源とし てシリカゲル(3-アミノプロピルトリエトキシシランを加水 分解および縮重合させて得たもの)、Ca源として CaCl₂、 Mg 源として MgSO₄ · 7H₂O である.

各イオンの濃度範囲は、過去の報告にて骨芽細胞や間葉系 幹細胞に対して作用することが見出されている条件を参照し て設定し、組合せ効果におけるイオン濃度依存性も検討し た.具体的には、Siイオンは10~70 ppm、Caは80~400 ppm、そして Mgは25~500 ppmとした⁽¹⁰⁾⁻⁽¹²⁾.上記の各濃 度範囲内にてそれぞれ4~5 段階の濃度条件を設定し、1、 2、そして3種のイオンを添加した培地を作製した.サンプ ル名は各イオンの濃度数値を用いて表記し、例えば10 ppm のSiイオンのみを添加した培地の場合は10Siと表記し、一 方で10 ppmのSiイオン、80 ppmのCaイオン、そして25 ppmのMgイオンを組み合わせて添加した場合は、10Si-80Ca-25Mgと表記する.また、何も添加していない通常の 細胞培養培地をコントロールサンプルと表記する.

細胞の接着過程に対するイオンの作用を検討するために、 まずは上記のように作製した各イオン添加培地またはコント ロールサンプルを用いて細胞懸濁液を作製した.得られた細 胞懸濁液を播種し、37℃の CO₂ インキュベーターにて3時 間培養した.培養後、リン酸緩衝液でリンスした後にウェル 底に接着している生細胞の数を代謝活性値から算出すべく、 Cell Counting Kit-8 を用いて吸光度測定から求めた.

上述のような方法により得られた接着生細胞数の測定結果 を用いて,複数種のイオンの供給による組み合わせ効果を評 価した.評価方法は既報を参照して,図1に示す通り実施し た⁽¹³⁾.まず,複数種のイオンを組み合わせて供給した培養 系から実測値(Pobserved)を求める.一方で,各種イオンを単 独で供給した培養系の結果を用いて,複数種のイオンを組み

図1 本研究の培養系と組み合わせ効果の評価方法の概 略図.

合わせた場合の結果の予測値 (P_{expected})を算出する.最後 に,得られた数値の差分 (実測値-予測値)を算出する.この 値が正の値の場合は「相乗効果」,負の値の場合は「拮抗作 用」が生じたと判断した.

接着生細胞数の測定結果および,複数種のイオンの組み合わせによる効果の検討結果を図2および3に示す⁽⁹⁾.まず,単一種を供給した際の結果より,多くの条件においてコントロールサンプルと有意差のない値を示した.一方で,30Siおよび50Siにおいて有意に高い値が,240Caにおいて有意に低い値が確認された.また,図3中の左列のグラフが示すように,複数種のイオンを供給した培養系での実測値はほ

ぼ全条件において正の値を示しており,接着に対して促進効 果があることがわかった.さらに,図3中の中列のグラフ が示すのは単一種を供給した結果から算出した予測値であ り,これら予測値と実測値を用いて組み合わせによる効果を 評価した結果を右列に示す.得られたグラフより,Mgイオ ンの濃度が支配的に影響を及ぼしていることがわかった.ま た,Mgイオン濃度が高くなるにつれて組み合わせによる相 乗効果が大きくなっていることから,SiおよびCaイオンと 共に多量のMgイオンを供給することで,細胞の接着をよ り促進させることが可能と示唆された.一方で,Siおよび Caイオンについては,各々の量に依存した組み合わせによ

図 2 単一種のイオンを添加した培地を用いて 3 時間培養した時の接着生細胞数の測定結果⁽⁹⁾. Si イオン(a), Ca イ オン(b), Mg イオン(c). (*p<0.05).

図3 細胞の接着に対するイオンの組み合わせ効果の評価結果⁽⁹⁾.3種のイオンを添加した培地を用いて3時間培養 した時の接着生細胞数の実測値(左列),単一種のイオンを添加した時の結果から算出した予測値(中列),実測 値と予測値の差分(右列).

る効果への影響は観察されなかった.しかし,単一種を供給 した時に一部の条件でしか促進効果が観察されず,一方で3 種を供給した時に促進効果が確認されたことから,一定量以 上のSiおよびCaイオンの同時供給は接着の促進に重要と いえる.

5. 細胞の増殖

細胞の増殖に対する組み合わせの効果を検討すべく、上述 とほぼ同様な方法にて5日間まで培養を行い、培養開始後1、 3、5日目の生細胞数をカウントすることで増殖挙動を観察 した.なお、接着過程におけるイオンの影響を排除すべく、 本実験ではコントロールサンプルである通常培地を用いて細 胞懸濁液を作製および播種し,培養3時間後に各種イオン 添加培地に入れ替えた.培養期間中においては,1および3 日目にフレッシュなイオン添加培地に交換した.

測定結果を図4および5に示す.単一種を供給した結果に おいて,70Siを除くSiおよびCaイオン添加培地では増殖 が促進される様子が観察された.一方でMgイオン添加培 地においては,100Mgを除く条件においてコントロールサ ンプルと同等もしくは抑制されたことがわかった.複数種の イオンが供給された系においては,多くの条件において促進 されたことがわかった.一方で,組み合わせの効果に着目す ると,70Siが添加された条件を除くほぼ全ての条件におい

図4 単一種のイオンを添加した培地を用いて5日間培養した時の接着生細胞数の測定結果⁽⁹⁾. Si イオン(a), Ca イ オン(b), Mg イオン(c). (*p<0.05).

図5 細胞の増殖に対するイオンの組み合わせ効果の評価結果⁽⁹⁾.3種のイオンを添加した培地を用いて5日間培養 した時の接着生細胞数の実測値(左列),単一種のイオンを添加した時の結果から算出した予測値(中列),実測 値と予測値の差分(右列).

て拮抗作用が観察された. つまり, 増殖に対するイオンの組 み合わせの効果においては, Si イオン濃度が支配的に影響 を及ぼすことがわかった. また, Si イオン濃度が高い条件 にて組み合わせによる相乗効果が確認されたことから, Ca および Mg イオンと共に多量の Si イオンを供給すること で,細胞の増殖をより促進させることが可能と示唆された.

以上のように、単一種のイオンによる影響および複数種の イオンの組み合わせの効果において、細胞の接着と増殖に対 する作用は異なることがわかった.特に組み合わせの効果に おいては、接着に対しては Mg イオンが、増殖に対しては Si イオンがより強く影響を及ぼすことが示唆された.さら に、単一種のイオン供給では促進効果が観察されなくとも、 複数種を供給した場合には観察されたことから、今回着目し た3種のイオンにおいては、どれもある一定量以上の供給 が促進効果を発現するには必要であると考えられる.

組み合わせの効果

イオンの組み合わせの効果に着目した報告例はまだ数少な いが、このうちの一つに、Mg と Ca イオンによる細胞の接 着に対する影響に関する報告がある. Grzesiak らは、コラ ーゲン結合インテグリンの一種である α2β1 インテグリンを 介した線維芽細胞(線維性組織の形成を担う細胞)の移動にお いて、Mg イオンを供給した場合に促進効果を観察したこと を報告している. さらに, Mg と Ca イオンを同時に供給し た際, Mg イオン単体を供給した時に比べてさらに2倍の促 |進効果を確認している⁽¹⁴⁾.本稿で紹介した実験結果と比較| すると、Mg イオンのみを供給した際の促進効果の発現の有 無に違いはあるが、2種を組み合わせた際に促進効果が観察 されている点においては共通する.実際,我々のグループで 開発された Si と Ca イオンの供給機能を有するセラミック 粒子であるシロキサン含有バテライトに, Mg イオン供給機 能をさらに加えた材料を作製し培養試験を行ったところ、細 胞の接着を促す効果があることを見出している⁽¹⁵⁾.

一方で、Shie らはケイ酸カルシウムセメント上にてヒト 由来間葉系幹細胞および歯髄細胞を培養した際、セメント組 成中のケイ酸量の割合が高いほど細胞表面でのインテグリン の発現が促進され、加えてインテグリン媒介シグナル伝達に 関与する focal adhesion kinase (FAK)なども活性化される ことを報告している⁽¹⁶⁾.しかし、我々の実験結果において 接着に対する Si イオンの濃度依存性は確認されなかった.

これら報告例においては,促進・抑制効果の発現における 各イオンの濃度依存性について具体的な数値をもって検討さ れておらず,また,用いた細胞の種類も各々異なるため,一 概に我々の実験結果と比較するのは難しいかもしれない.し かし我々の実験結果と合わせて考察するに,イオンによる細 胞の接着に対する作用は,濃度だけでなく同時に供給される イオン種の組み合わせも重要であることは明らかと考える.

細胞の増殖に対するイオンの組み合わせの効果に関する報 告例については,著者の知る限りでは,上記した接着に関す る報告例ほど明確に"組み合わせ"を見据えた内容のものは ない.しかし,例えばSiイオンによる細胞の活性化効果を 利用して,既存のリン酸カルシウム系や炭酸カルシウム系材 料に新たにSiを添加し,その結果,より高い活性化効果を 得たといった報告例はある⁽¹⁷⁾⁽¹⁸⁾.敢えて"組み合わせ"を 意識したものではないにせよ,結果的に組み合わせによる効 果を反映した結果といえる.我々の実験結果においても,今 回着目した3種のイオンについては,2種または3種が同時 に供給されることで促進効果が確認されており,既報と共通 する部分があると考える.これに加えて今回,この促進効果 を高める因子としてSiイオンが支配的であるという事実も 新たに見出すことができた.このことから,今後は標的とす る細胞の挙動に対してより有効な材料組成の設計が可能にな ると考える.

7. おわりに

本稿では細胞の接着および増殖に対する3種のイオンの 効果,およびそれらの組み合わせの効果について紹介した. 一方で,今回は取り上げなかったが,分化および石灰化に対 する効果についても同様に検討している.詳細は割愛する が,細胞の各挙動に対してポジティブな作用を示すイオンの 供給条件は異なることを見出している.さらに,今回は骨芽 細胞様細胞を用いた試験結果を紹介したが,破骨細胞様細胞 を用いた検討も進めている.以上の様な検討を進めること で,骨形成のプロセスに対して理想的なイオンの種類や組み 合わせを導くことが可能と考えている.さらに,骨組織に限 らず皮膚や血管などの軟組織の再生に対しても今後は展開し ていく予定である.

本研究の一部は,泉科学技術振興財団の助成を受けたもの です.ここに感謝申し上げます.

文 献

- (1) A. Hoppe, N. S. Guldal and A. R. Boccaccini: Biomaterials, **32** (2011), 2757–2774.
- (2) L. L. Hench and I. Thompson: J. R. Soc. Interface, 7(2010), S379–S391.
- (3) E. M. Carlisle: Silicon biochemistry, Novartis Foundation Symposium, ed. by D. Evered and M. O'Connor, Wiley, Chichester, (1986), 123–139.
- (4) I. D. Xynos, A. J. Edgar, L. D. K. Buttery, L. L. Hench and J. M. Polak: Biochem. Biophys. Res. Commun., 276 (2000), 461– 465.
- (5) I. D. Xynos, A. J. Edgar, L. D. K. Buttery, L. L. Hench and J. M. Polak: J. Biomed. Mater. Res., 55(2001), 151–157.
- (6) P. Han, C. Wu and Y. Xiao: Biomatr. Sci., 1(2013), 379–392.
- (7) M. Y. Shie, S. J. Ding and H. C. Chang: Acta Biomater., 7 (2011), 2604–2614.
- (8) V. G. Varanasi, T. Odatsu, T. Bishop, J. Chang, J. Owyoung and P. M. Loomer: J. Biomed. Mater. Res. PartA, 104A (2016), 2605–2615.
- (9) A. Obata, T. Ogasawara and T. Kasuga: J. Biomed. Mater. Res. PartA, 107A(2019), 1042–1051.

- (10) A. Obata, N. Iwanaga, A. Terada, G. Jell and T. Kasuga: J. Mater. Sci., 52(2017), 8942–8956.
- (11) S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi and J. Tanaka: Biomaterials, 26 (2005), 4847–4855.
- (12) S. Keim, J. G. Brunner, B. Fabry and S. Virtanen: J. Biomed. Mater. Res. B Appl. Biomater., 96B(2011), 84–90.
- (13) J. C. Wataha, C. T. Hanks and R. G. Craig: J. Biomed. Mater. Res., 26 (1992), 1297–1309.
- (14) J. J. Grzesiak, G. E. Davis, D. Kirchhofer and M. D. Pierschbacher: J. Cell Biol., **117**(1992), 1109–1117.
- (15) S. Yamada, Y. Ota, A. Obata and T. Kasuga: Bio–Med. Mater. Eng., 28 (2017), 47–56.
- (16) M. Y. Shie, H. C. Chang and S. J. Ding: Int. Endod. J., 45 (2012), 337–345.
- (17) K. A. Hing, P. A. Revell, N. Smith and T. Buckland: Biomaterials, 27 (2006), 5014–5026.
- (18) A. Obata, S. Tokuda and T. Kasuga: Acta Biomater., **5**(2009), 57–62.

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★ 小幡亜希子

2004年 東京医科歯科大学大学院医歯学総合研究科博士後期課程修了 2008年 名古屋工業大学大学院工学研究科 助教

2015年 現職

専門分野:バイオマテリアル, 無機材料

◎セラミックス,ガラス,そして無機有機複合材料を用いた新規バイオマテ リアルの開発研究に従事.

小幡亜希子

春日敏宏