SIP-MI プロジェクトにおける 性能予測システムの開発

学*

1. はじめに

構造物の多くは長期間使用され、人々の安心・安全に直接 関わる.そのため材料および構造物の特性・性能評価は時間 とコストをかけて行われている.例えば、繰り返し荷重下で 長期に使われる構造材料では、様々な試験法を用いて入念に 評価され、実使用期間に相当する時間をかけて疲労特性が評 価され、実構造体に近いスケールでも評価されてきた.これ らは構造物の信頼性を確保する上で必要であるが、材料開発 が長期化・高コスト化する主要因となっており、計算手法を 駆使して性能予測をいかに効率的かつ正確に行うかが、今後 の構造材料の開発において強い競争力を維持するため重要で ある.

内閣府の戦略的イノベーション創造プログラム(SIP)「革 新的構造材料」(マテリアルズインテグレーション)プロジェ クトでは,疲労強度・クリープ強度・水素脆化・脆性破壊等 の性能に関して,理論式,経験式を網羅した順解析を行う計 算モジュールを開発するとともに,性能に関する膨大なデー タを解析して得られるデータベースモジュールの開発も行 い,実際の構造材料開発に役立つような性能予測システムの 開発を目指した.また,多様な素材,プロセスから製造され て部材や構造体に用いられる構造材料の組織と時間依存の性 能の予測を,理論や経験則,数値モデリング,データベー ス,データ駆動予測などの融合(インテグレーション)から可 能とするマテリアルズインテグレーションシステムの構築を 目的とした.その取り組みの一部を紹介する.

2. 性能予測システムの概要

本システムでは,組織予測システムを用いて得られた組織 情報から,疲労強度・クリープ強度・水素脆化・脆性破壊等 の構造材料における時間依存の性能を予測するシステムの開 発を行った.性能予測システムは大きく分けて,理論的な物 理モデルを用いて順解析を行う計算モジュール群と,これま で蓄積されてきた性能データを用いるデータベースモジュー ル群から成る.また,予測された性能の妥当性を評価するた めの検証も行うことにより,性能予測システムの有効性の確 認を行った.また,組織情報が必ずしも得られない場合にお いても,材料・溶接条件・溶接構造を用いて,ある使用条件 下における時間依存の性能を予測するモジュールに関しても 開発を行った.

榎

疲労性能予測モジュールにおいては,図1に示したような 計算を連続的に行うことにより、鉄鋼材料の溶接部の疲労特 性をばらつきも含めて予測を可能としている⁽¹⁾. 疲労性能予 測モジュールは,三次元組織情報を入力データして,例えば き裂発生モデル等を用いて高精度な予測をするモジュール と、抽出された組織パラメータから得られる比較的な単純な 構造体モデルを用いることより、高速で予測をするモジュー ルから構成される. 開発されたそれぞれのモジュールを用い た予測結果を比較することにより、各モジュールの最適化を 図っている⁽²⁾⁻⁽⁴⁾.図2に示したクリープ性能予測モジュー ルでは、各種クリープ構成則によるクリープ変形解析、損傷 力学・破壊力学・拡散方程式等によるクリープ損傷と破壊の 計算解析を行う.厚肉構造部材や溶接継手のクリープ寿命予 測では、多軸応力場の影響が重要になるが、これを考慮した 計算コードの開発を行っている⁽⁵⁾⁽⁶⁾.図3の水素脆化予測モ ジュールにおいては、応力誘起水素拡散を支配する構成方程 式の解析を行うことにより、構造体での水素拡散輸送に関す る計算を行う.この結果を溶接部の三次元の応力場と連成さ せることにより水素脆化割れを予測する. また溶接部の不均 一組織による水素トラップ効果の違いから、拡散現象も組織 に依存する. そのため、組織予測システムで得られた情報を 参照しながらこれら影響も考慮する⁽⁷⁾.図4で示した脆性破 壊予測モジュールにおいては, 溶接部での熱影響部や溶接金 属内の位置によって異なるミクロ組織から靱性を予測し、さ らにこれまでに得られているシャルピー衝撃試験結果などの データを有機的に組み合わせることにより溶接部の靭性を予 測することを試みている(8).

 ^{*} 東京大学大学院工学系研究科; 教授(〒113-8656 東京都文京区本郷 7-3-1)
Development of Performance Prediction System on SIP-MI Project; Manabu Enoki(The University of Tokyo, Tokyo)
Keywords: materials integration, materials informatics, structural materials, welding, performance prediction, integrated computational materials engineering, data driven approach, fatigue, creep, hydrogen embrittlement, fracture toughness
2019年5月20日受理[doi:10.2320/materia.58.498]

図2 クリープ性能予測モジュールのワークロー. (オンラインカラー)

図4 脆性破壊予測モジュールのワークロー. (オンラインカラー)

3. 疲労性能予測

(1) 概要

以下での疲労性能予測の例について述べる⁽¹⁾.新しい材料 や構造の開発においては、その性能を評価するためにしばし ばかなりの時間とコストを要する.溶接構造物の疲労特性の 場合、疲労破壊の統計的挙動を検証するために、膨大な量の 疲労試験を実施する必要がある.したがって、より短時間で の疲労特性の評価は非常に重要になる.従来の疲労評価では、 S-N曲線に基づく疲労設計曲線(応力範囲と破断回数との関 係に対する逆べき乗則)が用いられている.このアプローチ では、主に接合の形状が考慮され、ほとんどの場合残留応力 と微細構造の影響は無視される.一方、疲労特性を改善する ためのいくつかの新しい材料が開発されている.例えば、低 変態温度溶接材料は残留応力を低減し、二相鋼は微細構造を 制御することによって疲労特性を改善する.したがって、残 留応力および微細構造の影響の評価がますます重要になって きている.

このような背景から,溶接継手の疲労に関する数値シミュ レーション技術が提案されている.フェイズフィールド法 は,複雑な微細構造を予測する有望な方法の1つであり, また結晶すべりや双晶などの物理的変形メカニズムを考慮し た結晶塑性モデルが近年注目されている⁽⁹⁾.微視組織と結晶 の塑性に基づく疲労き裂発生寿命の予測が精力的に行われて いる⁽¹⁰⁾.また拡張有限要素法(X-FEM)は,疲労き裂の進展 を予測するための強力かつ広く使用されているツールであ り,更なる改良も進められている.

この研究の目的は,溶接継手の疲労性能を予測するため に,先に説明した最新の計算技術を統合して包括的な枠組み (フレームワーク)を開発することである.溶接継手の疲労寿 命予測法の概要を図1に示す.この方法は,市販のソフト ウェアとデータベースを用いて,以下の手順からなる.(1) CCT 曲線を含む材料特性と鋼の機械的および熱的特性の推 定,(2)熱応力有限要素法(FEM)による巨視的的モデル上で 溶接プロセス中に生じる温度場,残留応力およびひずみの計 算,(3)硬化構成モデルを用いた FEM による繰り返し荷重下 での巨視的応力場の計算,(4)巨視的モデルにおける応力集中 領域の検出および微細多結晶構造モデルの作成,Tanaka-Mura モデルによる疲労き裂発生寿命(Ni)の解析,(5)拡張有 限要素法(X-FEM)による初期き裂からの疲労き裂伝播寿命 (Np)の解析,最終的な Ni と Np の合計による破断寿命の推 定.前述のステップを自動的に実行する計算のフレームワー クが構築された.一例として,低炭素鋼(0.15%C)を用いて 広く使用されている突合せ継手における疲労寿命を提案され た方法によって評価した.

(2) 解析方法

提案された方法の第1段階では,市販のソフトウェア JMatPro v9.0を使用して化学組成から様々な材料特性を計 算した.化学組成から,連続冷却変態(CCT)図,密度,比 熱,熱伝導率,ヤング率,ポアソン比,熱膨張率,降伏応 力,硬化勾配を求めた.最大加熱温度1350℃,旧オーステ ナイト粒径500 µm の計算を行った.ソフトウェアの計算手 順は,CALPHAD(状態図の計算)方法と関連する経験式に 基づいている.応力-ひずみ曲線は,SYSWELDの混合物の 規則によって計算した.降伏応力は,個々の相の降伏応力の 平均として計算した.

提案手法の第2ステップは,残留応力と微細構造分布を 解析する溶接シミュレーションである. Abaqus CAE で, 板厚や止端半径などの形状パラメータに基づいて,2次元の 有限要素モデルを作成した.幾何形状は,測定された止端半 径と余盛角の平均値に対応するように選択された. 有限要素 モデルでは,最小サイズ0.005 mmの4ノード平面ひずみ要 素(CPE4)を使用した.前節で計算された材料特性がモデル に適用された. 母材の初期組織は75%のフェライトと25% のパーライトで構成されていた.溶接部の材料特性は,単純 化のために母材の材料特性と同じであると仮定した.

熱入力分布は Goldak の二重楕円熱源モデルによって定義 された. Goldak の熱源モデルは、三次元の二重楕円体のガ ウス熱分布関数であり、アーク溶接プロセスの熱伝達解析に 広く使用されている. 前楕円体の長さ、後楕円体の長さ、熱 源の深さ,熱源の幅は,それぞれ10,20,10,および7.5 mm に設定した.幅および深さの値は,溶接金属のすべての元素 が溶融するように選択された.熱源は板の中心線に沿って1 mm/sの速度で移動した.熱入力の合計量は1.5 kJ/mm と した.シングルパス溶接が完了した後,突合せ継手を室温ま で冷却させた.

一般に,熱伝導解析,相変態解析および応力解析が,溶接 プロセス中の微細構造および応力-ひずみ状態を得るために 必要である.このシミュレーションでは,熱伝達と相変態の 問題は強結合法によって解かれた.熱伝達の問題はフーリエ 方程式と潜熱を考慮して計算した.相変態解析では,拡散タ イプとマルテンサイトタイプの相変態がそれぞれ予測され た.ビッカース硬さの分布は,実験式に従って,700℃(Vr) における化学組成および冷却速度からも導出された.オース テナイト結晶粒度はまた,Leblond らによって提案された増 分方程式によって計算された.相転移に伴う熱伝達解析後, 伝熱解析により算出された温度分布及び相変態履歴に基づい て,熱弾塑性解析を行い,残留応力を算出した.この解析で は,弾性ひずみ,塑性ひずみ,熱ひずみ,変形ひずみを考慮 した.これらの計算は,市販のFEM コード SYSWELD に よって実行された.

第3のステップは、巨視的な応力解析である.この段階 の入力データは、硬度分布、前のステップから得られた残留 応力分布、荷重条件である.この硬度分布から、前のステッ プで用いた有限要素モデルを10領域に分割し、各領域に異 なる応力–ひずみ曲線を与えた.応力–ひずみ曲線は、SYS-WELDの混合則によって計算した.負荷する前に残留応力 のすべての成分がモデルに導入された.このモデルは、応力 比 $\mathbf{R} = -1$ および7つの異なる応力振幅、すなわち100,150, 200,300,400,500および600 MPaで10回の繰返し負荷を受 けた.巨視的応力解析の後、最大主応力の最大値を有する要 素の位置を記録し、次のステップで使用した.

第4ステップは、結晶塑性有限要素法(CP-FEM)を用い たメゾスコピック応力場の解析とき裂発生である.このステ ップでは、第2ステップおよび第3ステップの結果を入力 値として使用した.微視構造モデルの形状とメッシュが図5 に示めされている.モデルの形状は、巨視的モデルの最も高 い応力位置周辺の領域から切り取られた.この領域は、マル テンサイトの体積分率が第2段階で約100%と予測されたた め、マルテンサイト単相であると推定した.旧オーステナイ トの平均粒径は、第2ステップで算出した粒度分布を参考 にして求めた.再構築された粒の形態は、以前の研究(2)で説 明したテッセレーション手法によって生成された.微細構造 モデルのサイズは、約40個の粒子を含むように選択され た.モデルは、平均サイズ50 μm の4 ノード平面ひずみ要 素(CPE4)のメッシュで、結晶方位はランダムに割り当てら れた.

微視構造モデルの弾性-塑性変形挙動を計算するために, Hutchinson らによって提案された現象論的構成則を考慮し た先進材料シミュレーションキット(DAMASK)⁽¹¹⁾を使用 した. 非直線的な硬化は,Armstrong-Frederick硬化法によ ってモデル化されている.ここで,塑性せん断ひずみ速度, 分解せん断応力,臨界分解せん断応力(CRSS),すべり系の

図5 メゾスコピックモデルの幾何形状とメッシュ. (オンラインカラー)

背応力などこのシミュレーションで使用された結晶塑性パラ メータの一部は文献から得られた.このシミュレーションの 境界条件は、巨視的モデルの変位場によって定義された.

き裂発生解析は、すべり帯に蓄積された不可逆的エネルギ ーを考慮した Tanaka-Mura モデル⁽¹²⁾に基づいて行った. Ni の値は、すべり線に平行に定義された潜在的なき裂経路 を平均して評価した.最初のき裂のみが計算コストを節約す るために考慮された.さらに、7つの異なる微細構造モデル を、き裂発生寿命のばらつきを評価するために、同じ手順お よび同じ平均粒径を用いてランダムに作成した.

最後のステップは,X-FEM を用いた疲労き裂進展解析で ある.この方法では,き裂はジャンプ関数によって表され, 有限要素メッシュはき裂経路に従う必要はない.前のステッ プで得られた初期き裂の位置と長さを巨視的モデルに導入し た.き裂成長速度は,パリス則から計算された.応力拡大係 数は,Abaqus内のバーチャルクラック閉鎖法によって計算 された.これらの定数は,溶接鋼構造物の疲労設計指針にし たがったものが用いられた⁽¹³⁾.第1ステップから第5ステ ップまでの一連の計算を自動的に実行する python スクリプ トが開発された.

(3) 結果

JMatProで熱伝導率,降伏応力,CCT 図が計算された. 熱伝導率と降伏応力を各相の温度の関数として求めた. CCT 曲線は,溶接に用いられた低炭素鋼(C 0.1~0.2%)の 実験的に求められた CCT 図と定性的に類似していた.密度,比熱,ヤング率,ポアソン比,熱膨張係数,硬化勾配も 化学組成から求めた.これらの特性を用いて溶接シミュレー ションを実施した.フェライト,パーライト,ベイナイトの 体積分率も計算した.熱源から遠い母材は,初期微細構造 (フェライト75%およびパーライト25%)と同じであった. HAZ の旧オーステナイト粒径は約1mmと推定された.ビ ッカース硬さは143~377に分布していた.母材と同じ材料 特性が溶接材料に割り当てられているので,溶接金属と母材 との間の界面で分布が連続していた.実際の溶接では, HAZ の硬度の低下がしばしば見られるが,硬度は溶融帯か らほぼ単調に減少する.正確な残留応力と微細構造分布を得

図6 各すべり系における累積塑性せん断ひずみの例 (*Δ*σ=300 MPa).(オンラインカラー)

るためには,実験データに基づいて熱源モデルのパラメータ と境界条件を較正する必要がある.この研究で構築された自 動計算システムは,較正のために有効である.

すべり系の累積せん断ひずみが図6に示されており、累積 せん断塑性ひずみは溶接止端部付近で高い値を示した. 図に 示すように、塑性ひずみは、結晶方位の違いにより非常に不 均質な分布を示した. 鋼中のいくつかの異種のせん断ひずみ 分布をデジタル画像相関法(DIC)によって実験的に観測され ている.結晶塑性解析により求めたミーゼス応力分布から, 各粒における全てのすべり面とすべり方向に対して Ni が評 価され,Ni が最小となるすべり系でき裂が発生すると仮定 した. さらに X-FEM によりき裂進展経路を計算した. き 裂は最初のき裂に平行に伝播し、その後荷重方向に対してほ ぼ垂直に成長した.き裂伝播の回数 Np は、き裂の長さが板 厚の3分の1に達するときに定義された. 最終的に破断ま での総サイクル数は,NiとNpの合計として得られた.7つ の応力レベルと7つの異なる微細構造モデルの組み合わせ で、合計49回の一連のシミュレーションを実施した. すべ ての結果は図7に示されている.○の記号はき裂発生であ り,●は破断までの総繰返し数である.溶接止端部を研削す ることによって幾何学的形状が改善された場合、または非破 壊試験を使用して溶接部に重大な欠陥がないことが示されて いる場合, 突合せ継手はクラスCに分類される. □は JSSC 推薦書⁽¹³⁾のクラスCに属する実験結果である.計算結果は 実験値の傾向とよく対応していた.

4. おわりに

「マテリアルズインテグレーション」における物理モデル を用いた性能予測について紹介した.またここでは紹介をは ぶいたが,各リンク自体における非線形性に対しては,ベイ ズの定理を用いたデータ駆動型アプローチによる解析が有効 な手法となる.今後さらに,性能予測を行う上で重要となる 組織-特性のリンクに対して,組織解析,結晶塑性解析,疲 労試験結果を組み合わせた逆問題解析について検討すること が重要と思われる.このようなマテリアルズインテグレーシ ョンシステムの構築により,構造材料の開発期間の短縮,コ スト低減,材料製造や利用加工のプロセス条件の最適化,さ らに構造体設計時の材料選択の最適化・信頼性向上が期待さ れる.

図7 予測された疲労寿命と JSSC が推奨する疲労設計 曲線.(オンラインカラー)

本研究は、内閣府総合科学技術・イノベーション会議の戦略的イノベーション創造プログラム(SIP)「革新的構造材料」 (管理法人:JST)によって実施された.ここに感謝する次第 である.

文 献

- T. Shiraiwa, F. Briffod and M. Enoki: Engineering Fracture Mechanics, 198 (2018), 158–170.
- (2) F. Briffod, T. Shiraiwa and M. Enoki: Mater. Sci. & Eng., A 695 (2017), 165–177.
- (3) F. Briffod, T. Shiraiwa and M. Enoki: Int. J. Fatigue, 107 (2018), 72–82.
- (4) K. Shibanuma, K. Ueda, H. Ito, Y. Nemoto, M. Kinefuchi, K. Suzuki and M. Enoki: Mater. & Design, 139(2018), 269–282.
- (5) M. Tabuchi, H. Hongo and T. Matsunaga: Mater. at High Temperatures, **34**(2017), 466–472.
- (6) K. Koiwa, M. Tabuchi, M. Demura, M. Yamazaki and M. Watanabe: Mater. Trans., 60(2019), 213–221.
- (7) A. T. Yokobori Jr., G. Ozeki, T. Ohmi, T. Kasuya, N. Ishikawa, S. Minamoto and M. Enoki: Mater. Trans., 60 (2019), 222–229.
- (8)井元雅弘・岡崎喜臣・欅田真大・栗飯原周二・川畑友弥・糟谷正,鋼溶接熱影響部における組織及びシャルピー衝撃特性 予測モデルの統合,CAMP-ISJ第177回春季講演大会,32 (2019),353.
- (9) F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler and D. Raabe: Acta Mater., 58(2010), 1152–1211.
- (10) D. L. McDowell and F. P. E. Dunne: Int. J. Fatigue, 32(2010), 1521–1542.
- (11) F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl and D. Raabe: Procedia IUTAM, 3(2012), 3–10.
- (12) K. Tanaka and T. Mura: J. Appl. Mech., 48(1981), 97-103.
- (13) JSSC, Fatigue Design Recommendations for Steel Structures, Giho-do, Tokyo, Japan, (2010).

★★★★★★★★★★★★★★★★★★★★★ 1989年 東京大学大学院工学系研究科博士課程修了 東京大学先端科学技術研究センター助手,助教授.東 京大学大学院工学系研究科マテリアル工学専攻准教授 2009年1月より現職 専門分野:信頼性材料工学

◎AE(アコースティック・エミッション)などの非破壊評価手法を用いた破壊挙動に関する研究に従事.材料プロセス中に生じる損傷モニタリング,供用中における構造ヘルスモニタリング,マテリアルズインテグレーションによる性能予測など,構造材料の力学的信頼性について研究を進めている.

^{*****}