希土類系金属ガラスにおける 動的緩和挙動の支配因子

山 崎 由 勝*

1. 緒 言

(1) 金属ガラス

ガラス物質の歴史は古く,紀元前4,000年より前から製造 が始まったとされている.酸化物ガラスやポリマーなど,金 属を除いた無機・有機物質の分野においては決して珍しいも のではない.しかし,金属においては従来,ガラス状態は得 られないと考えられてきた.ところが,1960年にDuwezら によって,Au-Si共晶合金の液体を超急冷(冷却速度:10⁶ K/s以上)することで,金属ガラスが得られることが初めて 見出された⁽¹⁾.1990年頃になると,Inoueらによって,Mg 基やLa基,Zr基など,過冷却液体における熱的安定性が高 い金属ガラスが相次いで開発された⁽²⁾.これにより,現在で は金属ガラスの研究が飛躍的に進んでいる.

(2) 金属ガラスにおける動的緩和現象

ガラス形成過程は、液体構造が冷却過程中で準安定平衡状態まで緩和せず、非平衡状態においてキネティクスが凍結される現象と理解される. 過冷却液体及びガラス固体における 緩和現象を深く理解するということは、ガラス構造の理解や その制御方法の確立などに繋がり、これまで"物性物理学に おける主要な未解決問題"とされてきたガラス科学にブレー クスルーをもたらす切っ掛けになるかもしれない.

金属ガラスにおける過冷却液体状態は、他のガラス物質と 比べて熱的安定性が低く、比較的短時間で結晶状態へと変態 してしまうため、金属ガラスにおける緩和現象の研究のほと んどは、ガラス転移温度以下のガラス固体温度領域で行われ てきた.特に、Pelletier らが、 $Pd_{43}Cu_{27}Ni_{10}P_{20}$ 金属ガラス において観測される動的ガラス転移及び $sub-T_g$ 緩和がそれ ぞれ、他のガラス物質においても観測される α 緩和及び β 緩和に対応することを指摘して⁽³⁾以降,金属ガラスの動的緩 和現象の解釈が大きく進んだ.

ほとんどの金属ガラスは共通してα緩和が観測される一 方で, β緩和がα緩和の低温側又は高周波側にPeakや Shoulder として明瞭に観測される合金系は限られている. β 緩和が明瞭に観測されない合金系の代表として, Zr-Cu系 金属ガラスが挙げられる. Rösner らは, Zr₆₅Cu₂₇₅Al₇₅金属 ガラスにおいて、α緩和ピークの低温側に Excess wing と呼 ばれる別の緩和モードが存在することを示すと共に, Excess wing と β 緩和との関係について言及した⁽⁴⁾. Ngai ら は、カップリングモデル解析により、Zr₆₅Cu_{27.5}Al_{7.5} 金属ガ ラスの Johari-Goldstein (J-G)緩和⁽⁵⁾が Excess wing の観測 された温度・周波数領域で発生し得ることを示し、Excess wing とβ緩和が同一の現象であるとする Rösner らの考え を支持した⁽⁶⁾.これにより,α緩和及びβ緩和は金属ガラス において普遍的に存在し、Excess wing は β 緩和が α 緩和に 一部埋没しているために明瞭に観測されないとの見方が一般 的になった.

(3) α 緩和とβ緩和のカップリング度

金属元素のみから構成される、いわゆる金属-金属系の金 属ガラスのほとんどは、 β 緩和が α 緩和の低温側又は高周波 側に Excess wing として観測される⁽⁷⁾. これは α 緩和と β 緩和の活性化エネルギーの差が小さいことを意味しており、 ガラス構造が共有結合と比較して異方性の小さい金属結合に よる均質的な構造で形成されていることを考えると、一見自 然であるように思える. ところが、同じく金属-金属系に分 類される RE-TM 系(RE:希土類元素、TM=Ni, Co)金属 ガラスにおいては、 β 緩和が α 緩和から明瞭に分離して Peak として観測され⁽⁸⁾⁽⁹⁾、これは直感的には理解し難い挙 動である.

 ^{*} 宇部工業高等専門学校;助教(〒755-8555 宇部市常盤台 2-14-1)
 Dominant Factor of Dynamic Relaxation Behaviors in Rare-earth-based Metallic Glasses; Yoshikatsu Yamazaki* (*Research Group, Department of Mechanical Engineering, Ube National College of Technology, Ube)
 Keywords: *metallic glass, amorphous alloy, dynamic relaxation, α-relaxation, β-relaxation* 2017年6月28日受理[doi:10.2320/materia.56.604]

これまでの研究を鑑みると, 金属ガラスにおけるα緩和 とβ緩和のそれぞれの緩和時間分布の重なり度合い、つま り、カップリング度の大小には、構成元素濃度よりも構成 元素種の方が大きく影響しているように思える⁽⁸⁾⁻⁽¹⁰⁾.例え ば、 $Y_{60}TM_{15}Al_{25}$ (TM=Ni, Co, Cu, Fe)系⁽⁹⁾や La₇₀TM₁₅ Al₁₅ (TM=Ni, Co, Cu)系⁽⁸⁾金属ガラスにおいて, 添加する 遷移金属の種類によって、α緩和とβ緩和のカップリング度 の大小が顕著に変化することが報告されている.Yuらは, このような α緩和とβ緩和のカップリング度の大小におけ る合金組成依存性について、"異種元素間の混合エンタルピ ーが全て似たような値であり、かつ、それらの値が負に大き いほど, α緩和とβ緩和のカップリング度は小さくなる"と いう経験則を見出している⁽¹¹⁾. 一方で, Pd₄₃Cu₂₇Ni₁₀P₂₀金 属ガラスにおいて, α緩和は構成元素中で最も原子半径が大 きい Pd の拡散, β緩和は構成元素中で最も原子半径が小さ いPの拡散が密接に関係していることが実験的に示されて いる⁽⁷⁾.この結果は、構成元素間の原子サイズのミスマッチ も、α緩和とβ緩和のカップリング度の大小に影響を与えて いることを示唆している.

ところで、これまで金属ガラスの合金設計には、①構成元 素数、②原子半径比、③混合エンタルピー、④換算ガラス化 温度 $T_g/T_1(T_g: ガラス転移温度, T_1: 液相線温度)$ といった 因子がしばしば用いられてきた⁽²⁾. これらの因子は簡便であ るという利点をもつ、 α 緩和と β 緩和のカップリング度の大 小を支配する因子についても、このような簡便な因子によっ て説明ができれば、合金設計指針として即座に展開可能にな る.以降、著者らが、①原子半径比、②混合エンタルピー、 ③構成元素の融点といった各因子と、 α 緩和と β 緩和のカッ プリング度の大小との関係について検討した結果⁽¹²⁾を紹介 する. 前述したように、ガラス形成の本質は緩和現象にある ため、本結果はガラス構造の不均質性やガラス形成能、塑性 変形能など様々な性質の理解において、重要な手掛かりにな ると著者らは考えている.

La 基金属ガラスを用いた α, β 緩和カップリング 度の支配因子の検討

前述したように、希土類基金属ガラスにおける α 緩和と β 緩和のカップリング度の大小は、添加する遷移金属の種類に 敏感であることが報告されている.これまでガラス形成する ことが報告されている La-Al 系金属ガラスは、La-TM-Al (TM=Ni, Cu, Co, Pd, Au)である⁽¹⁰⁾⁽¹³⁾⁻⁽¹⁵⁾.著者らは、新 たに La-TM-Al (TM=Ag, Pt, Rh, Ir)においてもガラス形 成することを見出している⁽¹²⁾.これらは、La の原子半径が 1.88 Å(0.188 nm)、Al の原子半径が 1.43 Å(0.14 nm)であ り、遷移金属 TM(Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir)は原子 半径が 1.25 ~ 1.45 Å(0.125 ~ 0.145 nm)と幅広い値を持 つ⁽¹⁶⁾.構成元素間の混合エンタルピーは、La-Al 間が – 38 kJ/mol であり、Cu-Al 間の – 1 kJ/mol から La-Pt 間の – 80 kJ/mol まで幅広い値を持つ⁽¹⁷⁾.構成元素の融点は、La が 1193 K、Al が 933 K であり、Cu の 1358 K から Ir の 2739 K までこれも幅広い値を持つ.従って、 α 緩和と β 緩和のカ ップリング度の大小と、①原子半径比、②混合エンタルピー、 ③構成元素の融点といった各因子との関係を系統的に調査す る上で最適な合金系だと言える.また、調査対象を La-Al 系金属ガラスに限定することで、汎用性は欠くが議論の複雑 性を排除することができる.よって、差し当たり La-Al 系 金属ガラスを調査対象として絞り、導出した結果の一般性は 後に議論することにした.

(1) 混合エンタルピー差が動的緩和挙動に及ぼす影響

 $\boxtimes 1(a) \sim (d) \subset La_{60}TM_{10}Al_{30}$ (TM = Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir) 金属ガラスの動的緩和挙動を示す. 定速加熱 (3K/min)・定周波数(1Hz)下での動的な応力緩和挙動を測 定しており、横軸は温度 $T \epsilon_{\alpha}$ 緩和のピーク温度 T_{α} で規格 化した値 T/T_{α} ,縦軸は損失弾性率 $E'' を \alpha 緩和のピーク強度$ E''_{α} で規格化した値 E''/E''_{α} である.図1(a)に示されるよう に, La₆₀(Ni, Co)₁₀Al₃₀ 金属ガラスにおいては β 緩和が α 緩 和の低温側に Peak として観測され (Peak 型), La₆₀Cu₁₀Al₃₀ 金属ガラスにおいては β 緩和が α 緩和の低温側にShoulder として観測された(Shoulder 型). この傾向は従来の結果と 一致している⁽⁸⁾. Ni, Co, Cu は原子半径がそれぞれ1.25, 1.25, 1.28 Å(0.125, 0.125, 0.128 nm)⁽¹⁶⁾と比較的近く, Yu らが指摘するように合金中の混合エンタルピー環境の差異が α緩和とβ緩和のカップリング度の大小に影響を与えている と考えられる⁽¹¹⁾. Yuらの経験則⁽¹¹⁾は、"各異種原子ペアの 混合エンタルピー △Hmix の差が小さい"と言い換えること ができる.今,La-TM-Al系金属ガラスにおいて遷移金属 TM のみを変えているため, TM 周りの混合エンタルピー環 境のみに着目すればよい. つまり,構成元素間の混合エンタ ルピー差として、 $|\Delta H_{\text{TM}-\text{La}}^{-} - \Delta H_{\text{TM}-\text{AI}}^{-}|$ をパラメータとして 導入する.ここで、△H門 は元素 i-j 間の混合エンタルピー を表す. La₆₀Ni₁₀Al₃₀及び La₆₀Co₁₀Al₃₀ 金属ガラスにおける 混合エンタルピー差 $|\Delta H_{\text{TM-La}}^{\text{mix}} - \Delta H_{\text{TM-Al}}^{\text{mix}}|$ はそれぞれ,5及び 2 kJ/mol と求まる. 一方, La₆₀Cu₁₀Al₃₀ 金属ガラスにおいて は20kJ/molと求まる.ここで、構成元素間の混合エンタ ルピーには, Takeuchi らによって報告されている計算値を 用いた⁽¹⁷⁾.

β緩和 Peak 型である La₆₀ (Ni, Co)₁₀Al₃₀ 金属ガラスと混 合エンタルピー環境が似ている合金として La₆₀Rh₁₀Al₃₀ 金属 ガラスが挙げられる.La₆₀Rh₁₀Al₃₀金属ガラスにおける混合 エンタルピー差 $| \Delta H_{\text{Rh-La}}^{\text{mix}} - \Delta H_{\text{Rh-Al}}^{\text{mix}} | は 4 \text{ kJ} / \text{mol} であり,$ La₆₀(Ni, Co)₁₀Al₃₀ 金属ガラスにおよそ近い値を有する.従 って、La₆₀Rh₁₀Al₃₀ 金属ガラスは、α緩和とβ緩和のカップ リング度は小さく、β緩和 Peak 型を示すと予測される.ま た、 β 緩和 Shoulder 型である $La_{60}Cu_{10}Al_{30}$ 金属ガラスと混 合エンタルピー環境が似ている合金としてLa₆₀(Ag, Ir)₁₀Al₃₀ 金属ガラスが挙げられる. La₆₀Ag₁₀Al₃₀ 金属ガラス における混合エンタルピー差 $| \Delta H_{Ag-La}^{mix} - \Delta H_{Ag-Al}^{mix} | は 23 kJ /$ mol, La₆₀Ir₁₀Al₃₀金属ガラスにおける混合エンタルピー差 $| \Delta H_{\text{Ir-La}}^{\text{mix}} - \Delta H_{\text{Ir-Al}}^{\text{mix}} | は 18 kJ / mol であり, これらは$ La₆₀Cu₁₀Al₃₀ 金属ガラスにおよそ近い値を有する.従って, La₆₀(Ag, Ir)₁₀Al₃₀金属ガラスは α緩和とβ緩和のカップリン グ度は中程度であり、β緩和 Shoulder 型を示すと予測され

図1 $La_{60}TM_{10}Al_{30}(TM: 遷移金属)金属ガラスにおける α緩$ $和のピーク強度で規格化した損失弾性率 <math>E''/E''_{\alpha}$ の温度 依存性. 温度 Tは α緩和のピーク温度 T_{α} で規格化し た. このときの印加周波数は 1 Hz, 加熱速度は 3 K/min とした. (a) $La_{60}TM_{10}Al_{30}(TM = Ni, Co, Cu)$, (b) $La_{60}TM_{10}Al_{30}(TM = Ni, Co, Rh)$, (c) $La_{60}TM_{10}Al_{30}(TM$ = Cu, Ir, Ag), (d) $La_{60}TM_{10}Al_{30}(TM = Pd, Pt, Au)$.

る.しかし,図1(b),(c)に示されるように,La₆₀Rh₁₀Al₃₀ 金属ガラスは β 緩和 Shoulder型,La₆₀(Ag,Ir)₁₀Al₃₀ 金属ガ ラスは β 緩和 Excess wing型であった.従って,La-TM-Al 系金属ガラスにおいて,構成元素間の混合エンタルピー 差だけでは、 α 緩和と β 緩和のカップリング度の大小は説明 できない.しかし、金属ガラスにおける α 緩和と β 緩和の カップリング度の大小は、Yu らの経験則⁽¹¹⁾で概ね説明でき るため、構成元素間の混合エンタルピーが主要な因子の一つ であることには間違いないであろう.

(2) 原子半径比が動的緩和挙動に及ぼす影響

第二の因子として、構成元素間の原子半径比 R_{TM}/R_L を 導入し検討する.ここで、R_{TM}は溶質元素である遷移金属 TM の原子半径(*R*_{TM}=1.25~1.45Å), *R*_{La}は主成分元素で ある La の原子半径 (R_{La}=1.88 Å)を表しており,原子半径 は文献値(16)を用いた.表1に、La₆₀TM₁₀Al₃₀(TM=Cu, Ag, Ni, Co, Rh, Ir) 金属ガラスにおける,構成元素間の混合 エンタルピー差 $|\Delta H_{\text{TM-La}}^{\text{mix}} - \Delta H_{\text{TM-Al}}^{\text{mix}}|$ 及び原子半径比 $R_{\text{TM}}/$ R_{La} を示す. β 緩和 Peak 型である La₆₀(Ni, Co)₁₀Al₃₀ 金属ガ ラスとβ緩和 Shoulder 型である La₆₀Rh₁₀Al₃₀ 金属ガラス は、構成元素間の原子半径比 R_{TM}/R_{La} が La₆₀Rh₁₀Al₃₀ 金属 ガラスの方が大きい($R_{\rm Ni}/R_{\rm La} = R_{\rm Co}/R_{\rm La} < R_{\rm Rh}/R_{\rm La}$). そして, β緩和 Shoulder 型である La₆₀Cu₁₀Al₃₀ 金属ガラスとβ緩和 Excess wing 型である La₆₀ (Ag, Ir)₁₀Al₃₀ 金属ガラスは,構 成元素間の原子半径比 R_{TM}/R_{La} がLa₆₀(Ag, Ir)₁₀Al₃₀ 金属ガ ラスの方が大きい($R_{Cu}/R_{La} < R_{Ir}/R_{La} < R_{Ag}/R_{La}$).従って, 構成元素間の原子半径比 R_{TM}/R_{La} が小さくなる、つまり原 子サイズのミスマッチが大きくなるほど, α緩和とβ緩和の カップリング度は小さくなる傾向にあると言えそうである.

ところが、図1(d)に示されるように、La₆₀TM₁₀Al₃₀ (TM =Pd, Pt, Au)金属ガラスは、構成元素間の混合エンタルピ 一差| ΔH TM_{T-La}- ΔH TM_{T-Al}|及び原子半径比 R_{TM}/R_{La} が β 緩和 Excess wing型であるLa₆₀Ir₁₀Al₃₀金属ガラスよりも大きい が、La₆₀Pd₁₀Al₃₀金属ガラスが例外的に β 緩和 Shoulder 型 を示した.ただ、La₆₀Pd₁₀Al₃₀金属ガラスで見られる β 緩和 はLa₆₀(Cu, Rh)₁₀Al₃₀金属ガラスよりも不明瞭であり、 α 緩 和と β 緩和のカップリング度は比較的大きいと言える.従 って、La-TM-Al系金属ガラスにおける α 緩和と β 緩和の カップリング度は、構成元素間の混合エンタルピー差及び原 子半径比によりほとんど説明でき、別に第三の因子がマイナ ーな因子として働いていると考えられる。著者らは、この第

表1 La₆₀TM₁₀Al₃₀(TM=Ni, Co, Rh, Cu, Ir, Ag)金属ガラスに おける構成元素間の混合エンタルピー差 | *ΔH*^{min}_{M-La}-*ΔH*^{min}_{M-Al}|,原子半径比*R*_{TM}/*R*_{La}.ここで,*ΔH*^{mix}_Mは元素 i-j間の混合エンタルピー,*R*_iは元素 i の原子半径を表す.

$La_{60}Al_{30}TM_{10} \\$	$ \varDelta H_{\mathrm{TM-La}}^{\mathrm{mix}} - \varDelta H_{\mathrm{TM-Al}}^{\mathrm{mix}} [\mathrm{kJ/mol}]$	$R_{ m TM}/R_{ m La}$
Ni	5	0.66
Co	2	0.66
Rh	4	0.72
Cu	20	0.68
Ir	18	0.72
Ag	23	0.77

図2 α, β緩和カップリング度ダイアグラムにおける, La₆₀TM₁₀Al₃₀(TM=Ni, Co, Rh, Cu, Ir, Ag, Pd, Pt, Au) 金属ガラスのマッピング結果.

三の因子についても検討しており,各構成元素間の融点差又 は凝集エネルギー差が小さいほど,α緩和とβ緩和のカップ リング度は小さくなることを明らかにしている⁽¹²⁾.混合エ ンタルピーが異種元素間の化学結合力を反映したパラメータ であるのに対し,凝集エネルギーは同種元素間の化学結合力 を反映したパラメータと言える.

(3) α, β緩和カップリング度ダイアグラムの作成

構成元素間の混合エンタルピー差を | ΔH 飛_{-La}- $\Delta H_{\text{TM-Al}}$,原子半径比を $R_{\text{TM}}/R_{\text{La}}$,凝集エネルギー差を $\{ | (E_{\text{TM}}^{\text{coh}} - E_{\text{La}}^{\text{coh}}) / E_{\text{La}}^{\text{coh}} | + 1 \} \times \{ | (E_{\text{TM}}^{\text{coh}} - E_{\text{Al}}^{\text{coh}}) / E_{\text{Al}}^{\text{coh}} | + 1 \} \succeq \mathcal{E}$ ぞれ定義して用い、α緩和とβ緩和のカップリング度の大小 を記述するダイアグラムを作成した.その結果を図2に示 す. 横軸には化学結合的な因子として,構成元素間の混合エ ンタルピー差 $| \Delta H_{\text{FM}-\text{La}}^{\text{FM}} - \Delta H_{\text{FM}-\text{Al}}^{\text{FM}} | に凝集エネルギー差$ $\{|(E_{TM}^{coh}-E_{La}^{coh})/E_{La}^{coh}|+1\}\times\{|(E_{TM}^{coh}-E_{Al}^{coh})/E_{Al}^{coh}|+1\}$ を補正 因子として乗じたパラメータをとり、縦軸には幾何学的な因 子として構成元素間の原子半径比 $R_{\rm TM}/R_{\rm La}$ をとっている. ここで, E^{coh}はi元素の凝集エネルギーを表し, 文献値(16) を用いた. $La_{60}TM_{10}Al_{30}$ (TM=Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir) 金属ガラスにおいては、α緩和とβ緩和のカップリン グ度の大小がこれらの三つの因子により見事に説明できてい るのが分かる.更に,著者らは,このダイアグラムを Zr-Al 系や Pd-Si 系といった他の金属ガラスにも拡張し、金属-金 属系である Zr-Al 系金属ガラスにおいては今回議論した三 つの因子で説明できるが、金属-半金属系である Pd-Si 系金 属ガラスにおいては説明できないことを示している⁽¹²⁾.従 って,金属-金属系の金属ガラスにおいては,α緩和とβ緩 和のカップリング度の大小は、主として構成元素間の混合エ ンタルピー差と原子半径比によって支配され、構成元素間の 融点差又は凝集エネルギー差も僅かに寄与していると結論付 けられる.

3. おわりに

本稿では,金属ガラスにおける動的緩和挙動の支配因子に 関する研究を掻い摘んで紹介した.電子雲を形成して凝集す るため他の結合様式と比較して異方性が小さく原子移動の自 由度が高いと考えられる金属において,結晶状態へ変態する ことなく液体構造を維持しながら,最終的にガラス形成に至 るという事実は誠に不思議である.ガラス形成機構が"物性 物理学における主要な未解決問題"に位置付けられてから, 多くの研究者がこの挑戦的な課題に取り組んできたが,詳細 は十分には明らかになっていないのが現状である.金属ガラ スの発見は,一見この課題をより難解にさせる物質に思え る.しかし,構造や結合性の観点で他のガラス物質と比較し てより単純な金属ガラスこそ,ガラス形成の本質的な答えを 教えてくれると著者は強く信じている.本稿で紹介した研究 成果はその僅かな一端にすぎないが,ガラス形成機構の解明 への一助となれば幸いである.

本稿で紹介した研究成果は主に,著者が東北大学の博士課 程後期在籍時に同大学金属材料研究所の加藤秀実教授のご指 導の下で得られたものである.このような"挑戦的な"テー マに全力で取り組む機会ならびに終始懇切なご指導ご鞭撻を いただけたことに,この場を借りて心より感謝を申し上げ る.最後にまてりあ「新進気鋭」に寄稿する機会を与えてい ただいた関係者各位に感謝の意を表する.

文 献

- (1) W. Klement, R. H. Williens and P. Duwez: Nature, **187** (1960), 869–870.
- (2) A. Inoue: Acta Mater., 48(2000), 279–306.
- (3) J. M. Pelletier, B. Van de Mootele and I. R. Lu: Mater. Sci. Eng. A, 336(2002), 190–195.
- (4) P. Rösner, K. Samwer and P. Lunkenheimer: Europhys. Lett., **68**(2004), 226–232.
- (5) G. P. Johari and M. Goldstein: J. Chem. Phys., 53(1970), 2372–2388.
- (6) K. L. Ngai: J. Non-Cryst. Solids, 352(2006), 404-408.
- (7) H. B. Yu, W. H. Wang and K. Samwer: Mater. Today, 16 (2013), 183–191.
- (8) Z. Wang, H. B. Yu, P. Wen, H. Y. Bai and W. H. Wang: J. Phys.: Condens. Mater., 23(2011), 142202.
- (9) P. Luo, Z. Lu, Z. G. Zhu, Y. Z. Li, H. Y. Bai and W. H. Wang: Appl. Phys. Lett., **106**(2015), 031907.
- (10) H. Okumura, A. Inoue and T. Masumoto: Sci. Rep. RITU A, 36(1992), 239–260.
- (11) H. B. Yu, K. Samwer, W. H. Wang and H. Y. Bai: Nat. Commun., 4(2013), 2204.
- (12) Y. Yamazaki and H. Kato: in preparation.
- (13) A. Inoue, T. Zhang and T. Masumoto: Mater. Trans., 30 (1989), 965–972.
- (14) A. Inoue, H. Yamaguchi, T. Zhang and T. Masumoto: Mater. Trans., 31 (1990), 104–109.
- (15) R. Li, M. Stocia, G. Wang, J. M. Park, Y. Li, T. Zhang and J. Eckert: J. Mater. Res., 25 (2010), 1398–1404.
- (16) C. Kittel: Introduction to Solid State Physics, John Wiley & Sons, (2005).
- (17) A. Takeuchi and A. Inoue: Mater. Trans., 46 (2005), 2817– 2829.

- 2016年10月 于部工美局等專门字校機械工字科 助 教 (現職) 専門分野:金属物性学,材料工学,非平衡物質工学
 - ◎ガラス物質、特に金属ガラスのガラス形成や緩和機
 - 構に関する研究に従事. ★★★★★★★★★★★★★★★★★★★★

山崎由勝