第一原理計算による半導体の 物性予測と物質探索

1. はじめに

昨今の資源・環境問題やエネルギー情勢を背景に、卓越し た機能だけでなく、地球上に豊富に存在する元素により構成 され,安価で高い環境調和性を示す新材料が望まれている. 社会に役立つ「材料」へと昇華できる新物質を見いだすため には、的確に設計・探索の指針を立てることが重要であるこ とは言うまでもない. そして次の関門が, いかに広い探索空 間をカバーするか、その中からどのように有望な物質を絞り 込むかである. 最近では計算科学の進展とスーパーコンピュ ータの演算能力の向上により、第一原理計算等の計算科学手 法を用いることで物質の安定性や特性を高精度かつ網羅的に 予測できるようになってきた(図1). これにデータ科学手 法、更にはコンビナトリアル合成・評価等を連携させること で、新物質・新材料の開発を加速し、同時に膨大なデータの 解析から設計・探索指針を得ようとする試みが世界各国で盛 んになっている.いわゆる「マテリアルズ・インフォマティ クス」によるアプローチである.

所望の機能に対して,量子力学に基づいて算出可能な物理 量がよい記述子となる場合は,第一原理計算を用いた候補物 質のスクリーニングが威力を発揮する.一方,複合的な因子 からなる複雑な機能が対象の場合は,第一原理計算のみによ るアプローチは困難であり,マルチフィジクス・シミュレー ションやデータ科学手法によるモデリング等に期待がかかっ ている.本稿で紹介する半導体材料については,バンドギャ ップや有効質量等の基礎物性,点欠陥の形成エネルギーや準 位,界面におけるバンドオフセット等,直接計算可能な物理 量がよい指標となることから,第一原理計算によるアプロー チが有効である.ここで問題となるのは,計算精度と計算対 象数の両観点から見た理論予測・スクリーニングの信頼性で ある.基礎物性や格子欠陥の特性を高精度かつ高速に算出す るためには,高精度と低計算コストを両立した近似や手法が 不可欠になる.本稿では,このような半導体に関する理論予 測の現状と新物質探索への展開について,筆者らの最近の研 究⁽¹⁾⁻⁽⁶⁾を中心に紹介する.

2. 半導体の基礎物性

半導体の最も基本的な物性は、バンドギャップと有効質量 である.強相関系を除いた標準的な電子構造の半導体におい ては、これらの物性を一電子あるいは準粒子のバンド構造か ら予測することができる.第一原理計算に用いられる近似の 中でも、密度汎関数理論(density functional theory: DFT)の 枠組みでの標準的な近似である局所密度近似(local density approximation: LDA)⁽⁷⁾⁽⁸⁾や一般化勾配近似(generalized gradient approximation: GGA)⁽⁹⁾⁽¹⁰⁾を用いると、バンドギャ ップが過小評価されることが知られている.例えば、Si で

Keywords: first-principles calculations, semiconductors, point defects, surfaces, interfaces, materials exploration 2017年7月11日受理[doi:10.2320/materia.56.554]

^{*} 東京工業大学科学技術創成研究院フロンティア材料研究所;教授(〒226-8503 横浜市緑区長津田町4259 R3-7)

^{**} 東京工業大学元素戦略研究センター;1)教授 2)特任准教授

^{***} 物質·材料研究機構統合型材料開発·情報基盤部門情報統合型物質·材料研究拠点;特別研究員(兼任)

^{****} 千葉大学先進科学センター;特任助教

^{*****} 科学技術振興機構;さきがけ研究者(兼任)

Prediction of Fundamental Properties of Semiconductors and Materials Exploration Using First-Principles Calculations; Fumiyasu Oba^{*,**,***}, Yoyo Hinuma^{****,****} and Yu Kumagai^{**,*****} (*Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama. **Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama. **Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba. ****Center for Frontier Science, Chiba University, Chiba. ****PRESTO, Japan Science and Technology Agency, Kawaguchi)

図1 計算科学手法を用いた候補物質のスクリーニングによる物質探索の概念図.

 図2 半導体のバンドギャップの計算値と実験値の比較⁽¹⁾⁽²⁾. PBE-GGA は密度汎関数理論への標準的な近似, HSE06 hybrid は半導体の計算に適したハイブリッド汎関数による計算結果を示す. GW₀@PBE は多体摂動論 に基づく標準的な GW 近似での計算結果(PBE による波動関数及び RPA レベルの遮蔽されたクーロン相互作 用 Wを使用), GW^{TC-TC}@HSE06 は Wにバーテックス補正を加えた結果(HSE06 による波動関数を使用), GWF¹@HSE06 は更に自己エネルギーの1次のバーテックス補正を加えた結果である.

は実験値の半分程度, ZnO では 1/4 程度になってしまう. そこで, LDA や GGA に Hartree-Fock 交換項を混合するこ とにより電子構造の再現性を向上したハイブリッド汎関 数⁽¹¹⁾⁻⁽¹⁴⁾や, 多体摂動論に基づいた *GW* 近似⁽¹⁵⁾⁽¹⁶⁾が広く 用いられるようになってきた.

例として、図2にPerdew-Burke-Ernzerhof(PBE)型の GGA⁽¹⁰⁾, Heyd-Scuseria-Ernzerhof(HSE06)型のハイブリ ッド汎関数⁽¹³⁾⁽¹⁴⁾及びGW近似を用いて計算された半導体 のバンドギャップを示す⁽¹⁾⁽²⁾. GW近似については, random phase approximation(RPA)レベルの標準的なGW₀, 遮蔽されたクーロン相互作用Wへのバーテックス補正を加 えた $GW^{\text{TC-TC}}$, さらには自己エネルギーへの1次のバーテ ックス補正を加えた $GW\Gamma^1$ 近似の結果を示している.な お,本稿で紹介する計算結果は,VASP コード⁽¹⁷⁾⁽¹⁸⁾に実装 された projector augmented-wave 法⁽¹⁹⁾を用いて得たもので ある.

HSE06型のハイブリッド汎関数は、ZnO等のバンドギャ ップを過小評価しているものの、PBE-GGAに比べて半導 体の電子構造をかなり改善することがわかる. ZnOのよう なワイドギャップ系に対しては、近年提案された誘電率依存 型のハイブリッド汎関数を用いることで、バンドギャップの 再現性が向上することが報告されている^{(6) (20)-(24)}.

一方, GW 近似は全物質に対してバンドギャップをバラ ンス良く改善している. ここで, GWTC-TC 及び GWF1 近似 がバンドギャップをやや過大評価する傾向が見られるが、本 計算では電子-フォノン相互作用⁽²⁵⁾や格子分極の電子間相互 作用の遮蔽への寄与⁽²⁶⁾を考慮しておらず、これらがバンド ギャップを低下させることを踏まえると⁽²⁵⁾⁽²⁶⁾,過大評価は 好ましい結果であると考えられる. ハイブリッド汎関数や GW 近似の計算コストは LDA や GGA の数十倍から数千倍 程度とかなり高くなるが、最近のコンピュータを使えばユニ ットセルが数十原子からなる物質の計算もできるようになっ ている.実験値が報告されていない物質を対象に理論予測を 行う際,これらの近似による計算が威力を発揮する.とくに 高精度と高速の両立には、ハイブリッド汎関数を non-selfconsistent に適用する手法⁽⁶⁾が有効と考えており、現在この アプローチにより既知物質の系統的な計算とその結果のデー タベース化を進めている.

有効質量の算出については、標準的な電子構造の半導体に 対しては LDA や GGA を用いても実験値に近い値が得られ る場合が多い.これは、バンドギャップが過小評価されてい ても、価電子帯内、伝導帯内それぞれの電子構造が比較的よ く再現されるからである.しかし、Cu や Zn を含む化合物 等では、空間的に局在した 3d オービタル由来のバンドと他 のバンドとの位置関係が適切に表現されず、その結果として 有効質量の再現性も悪くなる.これを改善するためには、一 般にハイブリッド汎関数や GW 近似のような、より高レベ ルの近似の適用が必要になる⁽¹⁾が、LDA や GGA における 3d オービタルのオンサイト・クーロン相互作用をハバード モデルに基づいて簡便に補正した LDA/GGA+U法⁽²⁷⁾を用 いることも有効である.

なお,バンドギャップや有効質量の算出には,バンド構造 の作図が必須になる.従来,多様な結晶を対象として多くの 作図を行うには多大な労力を要してきたが,最近では結晶学 の慣習に則した全結晶系のバンド経路作成プログラムが利用 できるようになっている⁽²⁸⁾.

3. 表面·界面におけるバンドアライメント

半導体ヘテロ構造を用いた電子・光電子デバイスや太陽電 池等を設計する際,界面を構成する2つの物質の価電子帯 上端あるいは伝導帯下端の位置関係(バンドオフセット)が重 要なパラメータになる.このバンドオフセットは,界面に形 成されるダイポールの寄与を含むことから,本質的に界面の 方位,組成,原子・電子構造等に依存する量である.一方, 半導体表面におけるバンド位置は,触媒や光触媒等の表面機 能を考える上で重要であるだけでなく,半導体ヘテロ界面に おけるバンドオフセットの概算にも利用できる.真空準位か ら測った価電子帯上端のエネルギーはイオン化エネルギーあ るいはイオン化ポテンシャル(ionization potential: IP),伝 導帯下端のエネルギーは電子親和力(electron affinity: EA) と呼ばれ,これらは真空準位とフェルミ準位の差に相当する

 図3 半導体のバンドアライメント⁽¹⁾⁽²⁾.各半導体の無 極性表面について *GWI*¹@HSE06 による計算結 果を,イオン化ポテンシャル(IP)及び電子親和力 (EA)の実験値⁽²⁹⁾と比較して示す.

仕事関数と区別される. IP 及び EA も本質的に表面のダイ ポール,すなわち表面の種類や状態に敏感な量であるため, 物質によっては理想的な表面に対する値を得ることが困難で ある.そこで,第一原理計算により IP 及び EA をできる限 り精確に予測するための手法開発を進めている.

図3に様々な半導体の無極性表面について*GWI*¹近似に より計算されたバンドアライメント⁽¹⁾⁽²⁾を実験値⁽²⁹⁾と比較 して示す.全般的に実験値がよく再現されていることから, この計算手法を用いれば,実験値が報告されていない物質に ついても信頼性の高い予測が可能であると考えられる.ただ し,この手法は計算コストが非常に高く,現状ではユニット セルの大きな物質に適用するのは現実的でない.そこで,著 者らは上述のバンドギャップと同様に,non-self-consistent 誘電率依存型ハイブリッド汎関数によるアプローチにより, 高精度と高速を両立したバンドアライメントの算出を進めて いる⁽⁶⁾.また,任意の結晶について,無極性表面を自動的に 選定し,第一原理計算用のスラブモデルを作成するアルゴリ ズムを提案している⁽³⁰⁾.

典型的な半導体のヘテロ界面におけるバンドオフセットに ついては、バンド位置のエラーのキャンセルにより、LDA やGGAを用いても比較的よい結果が得られる場合が多 い⁽²⁾.一方で、界面を構成する2つの物質の化学結合状態 が大きく異なる場合は、このようなエラーのキャンセルが十 分に起こらないため、一般に高レベルの近似を用いるのが望 ましい⁽³¹⁾.このヘテロ界面バンドオフセットの算出におい ても、non-self-consistent 誘電率依存型ハイブリッド汎関数 によるアプローチが有効である⁽⁶⁾.

4. 点欠陥とドーピング

半導体中の点欠陥としては,透明導電膜のように縮退する ほどの高濃度ドーピングを施す場合を除き,希薄な固有点欠 陥やドーパントが主な対象になる.この場合,欠陥間の相互 作用が弱いことを踏まえると,孤立した点欠陥のモデルがよ い出発点になる.しかし,点欠陥をスーパーセル法により扱う場合,3次元周期的境界条件に由来する荷電欠陥間並びに 荷電欠陥-補償電荷間の静電相互作用が大きな問題となる. そこで,この相互作用を補正するための手法の開発が進めら れている⁽³⁾⁽³²⁾⁻⁽³⁴⁾.

図4に、様々なホスト物質中の点欠陥について、著者が開

図4 点欠陥形成エネルギーへのセルサイズ補正の効果⁽³⁾.各物質中の点欠陥について,括弧内に示した原子数のスーパーセルにより算出した補正前後の形成エネルギーを,希薄極限(セルサイズ無限大の極限)への外挿値に対する相対値として示す.

発した補正法の効果を示す⁽³⁾.本手法は,異方性のある結晶 や格子緩和後の点欠陥についても精度良く補正ができるよう に,Freysoldtらの手法⁽³³⁾を拡張したものである.60~100 原子程度からなる典型的なサイズのセルを用いた場合,補正 なしでは多くの欠陥種について eV オーダーのエラーが見ら れるが,これに補正を加えることで,全ての欠陥についてエ ラーが概ね0.1 eV 程度に低減されることがわかる.このよ うな静電相互作用によるエラーはセルサイズに対してゆっく り収束するため,補正なしでは数千原子からなるセルを用い ても不十分な場合が多い.したがって,希薄な点欠陥の性質 を精確に予測するためには,セルサイズ補正が不可欠である.

著者らは、このようなセルサイズ補正法を適用することで、 SnS_x⁽⁴⁾、ZnSnP₂⁽³⁵⁾、Zn₃N₂⁽³⁶⁾等、様々な化合物半導体中の 固有点欠陥及びドーパントの性質やキャリア生成・補償への 寄与を予測している. 図5に、新規太陽電池光吸収層材料と して期待されているSn₂S₃のp型ドーピング法を提案した例 を示す⁽⁴⁾.様々な固有点欠陥及びドーパントの検討から、 Sn や陽イオンドーパントが広い格子間サイトに挿入されて ドナーとして働くことにより、Sn₂S₃が n型の指向性を示す ことが示唆された.そこで、ドーパントとしてサイズの大き なKを選択すると、図5に示すように格子間サイトへの挿 入が抑えられてSn サイトを優先的に置換し、Kがアクセプ タとして有効に働くことが予測される.

物質探索への展開

上述のような基礎物性・欠陥特性や安定性に関する第一原

図5 Sn_2S_3 の p 型化のためのドーパントの理論的検討⁽⁴⁾. Sn_2S_3 及び SnS, SnS₂の結晶構造(上) と Cu, Na, K ドーパントの形成エネルギーのフェルミレベル依存性(下).

理計算を多くの候補物質を対象に実行し、スクリーニングを かけることで物質探索が可能になる.計算精度の向上は一般 に計算コストの上昇を伴うため、対象物質の数と精度のトレ ードオフを考慮して手法を選択することが重要になる.例え ば、まず計算コストの低い LDA や GGA で予備的なスクリ ーニングを行い、有望と考えられる物質に候補を絞ってか ら、より高精度な計算に進むといった手順を経ることで、ス クリーニングプロセスを効率化できる.

第一原理計算に基づいた半導体のスクリーニングは、米国 コロラド大のZungerら⁽³⁷⁾⁽³⁸⁾, NRELのZakutayevと Lanyら⁽³⁸⁾, ベルギーUCLのHautierら⁽³⁹⁾⁽⁴⁰⁾が先駆的に 進めており,計算により提案された物質を実際に合成した例 も報告されている⁽³⁷⁾⁽³⁸⁾⁽⁴⁰⁾⁽⁴¹⁾. 筆者らも第一原理計算によ り基礎物性,熱力学的安定性,格子欠陥の特性を系統的に評

図6 第一原理計算を用いたスクリーニングにより約 600種類の候補物質から選出された21種類の窒化 物半導体⁽⁵⁾. 価するためのハイスループットスクリーニング基盤を構築 し、様々な物質の探索へと展開している.その一例として、 最近、約600種類の候補物質のスクリーニングにより、図6 に示す11種類の新規窒化物半導体を提案している⁽⁵⁾.この うち、図7に示す CaZn₂N₂は、地球上に豊富に存在する元 素のみで構成され、赤色発光が期待できる直接遷移型のバン ド構造や小さな電子とホールの有効質量を持つことから、有 望な新物質と考えられる.共同研究者が1200℃、5 GPa で の高圧合成によりこの CaZn₂N₂ を合成し、予測された結晶 構造や光学物性を実証することに成功している⁽⁵⁾.

6. おわりに

第一原理計算による半導体の物性の予測と物質探索への展 開について,我々の最近の研究を中心に紹介した.計算手法 の進展により,様々な基礎物性や格子欠陥の特性が高精度か つ高速に予測可能になってきており,これを活かしてハイス ループットスクリーニングを実行することで,有望な物質を 効率的に見いだせると考えている.このような先進計算科学 を駆使したアプローチは,近年進展の著しいデータ科学手法 との相性もよく,マテリアルズ・インフォマティクスの発展 並びにその材料開発への応用において,今後一層重要な役割 を果たすであろう.

本稿で紹介した研究は、ウィーン大学の Andreas Grüneis 氏, Georg Kresse 氏,京都大学の田中功氏,東京工業大学

伝導帯

価電子帯

A

L H

図7 第一原理計算により予測された新物質 CaZn₂N₂の結晶構造,バンド構造と高圧合成により得られた多結晶試料のX線回折パターン及び赤色フォトルミネッセンス像⁽⁵⁾.

8

6

の Lee A. Burton 氏(現 ベルギー UCL), 畠山泰典氏, 佐藤 光氏,飯村壮史氏,村場善行氏,平松秀典氏,細野秀雄氏と 共同で行われました. また文部科学省元素戦略プロジェクト 東工大元素戦略拠点(TIES),科学技術振興機構イノベーシ ョンハブ構築支援事業「情報統合型物質・材料開発イニシア ティブ(MI²I)」, さきがけ(JPMJPR16N4), 科研費新学術領 域研究「ナノ構造情報」(25106005), 基盤研究B (15H04125)の成果です. ここに謝意を表します.

文 献

- (1) A. Grüneis, G. Kresse, Y. Hinuma and F. Oba: Phys. Rev. Lett., 112(2014), 096401.
- (2) Y. Hinuma, A. Grüneis, G. Kresse and F. Oba: Phys. Rev. B, 90 (2014), 155405.
- (3) Y. Kumagai and F. Oba: Phys. Rev. B, 89(2014), 195205.
- (4) Y. Kumagai, L. A. Burton, A. Walsh and F. Oba: Phys. Rev. Appl., 6(2016), 014009.
- (5) Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono and F. Oba: Nat. Commun., 7(2016), 11962.
- (6) Y. Hinuma, Y. Kumagai, I. Tanaka and F. Oba: Phys. Rev. B, **95**(2017), 075302.
- (7) S. H. Vosko, L. Wilk and M. Nusair: Can. J. Phys., 58(1980), 1200 - 1211
- (8) J. P. Perdew and A. Zunger: Phys. Rev. B, 23(1981), 5048-5079.
- (9) A. D. Becke: Phys. Rev. A, 38(1988), 3098-3100.
- (10) J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett., 77 (1996), 3865-3868; ibid., 78(1997), 1396-1396.
- (11) A. D. Becke: J. Chem. Phys., 98(1993), 1372-1377.
- (12) J. P. Perdew, M. Ernzerhof and K. Burke: J. Chem. Phys., 105 (1996), 9982-9985.
- (13) J. Heyd, G. Scuseria and M. Ernzerhof: J. Chem. Phys., 118 (2003), 8207-8215.
- (14) A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria: J. Chem. Phys., 125 (2006), 224106.
- (15) L. Hedin: Phys. Rev., 139(1965), A796-A823.
- (16) M. S. Hybertsen and S. G. Louie: Phys. Rev. B, 34(1986), 5390-5413.
- (17) G. Kresse and J. Furthmüller: Phys. Rev. B, 54(1996), 11169-11186.
- (18) G. Kresse and D. Joubert: Phys. Rev. B, 59 (1999), 1758-1775.
- (19) P. E. Blöchl: Phys. Rev. B, 50(1994), 17953–17979.
- (20) M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining and S. Botti: Phys. Rev. B, 83(2011), 035119.
- (21) M. Gerosa, C. E. Bottani, L. Caramella, G. Onida, C. Di Valentin and G. Pacchioni: Phys. Rev. B, 91 (2015), 155201.
- (22) J. H. Skone, M. Govoni and G. Galli: Phys. Rev. B, 89(2014), 195112.
- (23) T. Shimazaki and T. Nakajima: J. Chem. Phys., 141(2014), 114109.
- (24) J. H. Skone, M. Govoni and G. Galli: Phys. Rev. B, 93(2016), 235106.

- (25) F. Giustino, S. G. Louie and M. L. Cohen: Phys. Rev. Lett., 105 (2010), 265501.
- (26) F. Bechstedt, K. Seino, P. H. Hahn and W. G. Schmid: Phys. Rev. B, 72(2005), 245114.
- (27) V. I. Anisimov, J. Zaanen and O. K. Andersen: Phys. Rev. B, 44(1991), 943-954.
- (28) Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba and I. Tanaka: Comput. Mater. Sci., 128 (2017), 140-184.
- (29) W. Mönch: Semiconductor Surfaces and Interfaces (Springer, New York, 2001).
- (30) Y. Hinuma, Y. Kumagai, F. Oba and I. Tanaka: Comput. Mater. Sci., 113 (2016), 221-230.
- (31) R. Shaltaf, G. M. Rignanese, X. Gonze, F. Giustino and A. Pasquarello: Phys. Rev. Lett., 100(2008), 186401.
- (32) I. Dabo, B. Kozinsky, N. E. Singh-Miller and N. Marzari: Phys. Rev. B, 77 (2008), 115139.
- (33) C. Freysoldt, J. Neugebauer and C. G. Van de Walle: Phys. Rev. Lett., 102 (2009), 016402.
- (34) H.-P. Komsa, T. T. Rantala and A. Pasquarello: Phys. Rev. B, 86(2012), 045112.
- (35) Y. Kumagai, M. Choi, Y. Nose and F. Oba: Phys. Rev. B, 90 (2014), 125202.
- (36) Y. Kumagai, K. Harada, H. Akamatsu, K. Matsuzaki and F. Oba: Phys. Rev. Appl., 8(2017), 014015.
- (37) R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T. O. L. Sunde, D. Chon, K. R. Poeppelmeier and A. Zunger: Nat. Chem., 7 (2015), 308-316.
- (38) A. Zakutayev, X. Zhang, A. Nagaraja, L. Yu, S. Lany, T. O. Mason, D. S. Ginley and A. Zunger: J. Am. Chem. Soc., 135 (2013), 10048-10054.
- (39) G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese and X. Gonze: Nat. Commun., 4(2013), 2292.
- (40) A. Bhatia, G. Hautier, T. Nilgianskul, A. Miglio, J. Sun, H. J. Kim, K. H. Kim, S. Chen, G.-M. Rignanese, X. Gonze and J. Suntivich: Chem. Mater., 28(2016), 30-34.
- (41) Q. Yan, J. Yu, S. K. Suram, L. Zhou, A. Shinde, P. F. Newhouse, W. Chen, G. Li, K. A. Persson, J. M. Gregoire and J. B. Neaton: Proc. Natl. Acad. Sci. USA, 114(2017), 3040-3043.

********* 大場史康 2000年9月

京都大学大学院工学研究科博士後期課程修了 2004年2月 京都大学大学院工学研究科 助手 京都大学大学院工学研究科 准教授 2009年8月 2015年4月 東京工業大学応用セラミックス研究所 教授 2016年4月から現職 専門分野:計算材料科学,第一原理計算,固体電子論 ◎第一原理計算による電子材料の設計・探索に従事.

日沼洋陽

大場史康

能谷 悠