

多岐にわたる RIETAN-FP の諸機能をこの小文ですべて 網羅するのは到底無理である.そこで,RIETAN-FP によ る結晶構造の精密化(リートベルト解析)と積分強度の決定 (パターン分解)においてキーポイントとなる機能のうち,粉 末 X 線回折に関する書籍⁽¹⁾を始めとする文献[†]に詳述しなか った比較的新しいものをピックアップし,以下紹介していく.

2·1 X線分散の補正項の計算とグラフ化

放射光の利用が拡大の一途をたどっている.そこで hoge.ins においてf' = f'' = 0と入力した元素については,任 意の波長における X線(異常)分散補正項の実部f'と虚部 f''を自動計算できるようにしてある.

hoge.ins 中で NPRINT=2 に設定し, xdc マクロを実行し て元素記号を入力すると, RIETAN-FP がカレント・フォ ルダーに出力したスクリプト・ファイル xdc.plt とデータフ ァイル xdc.gpd を gnuplot で処理することにより xdc-*.pdf (* は元素記号)が生成する.

xdc-*.pdf では当該元素の $f', f'', 質量減衰係数 \mu_m が波長 <math>\lambda(7_x \vdash \nabla \cdot x \land n \neq - E)$ に対してプロットされる(図 2.1). 吸収端の位置が一目で分かるだけでなく,特定の波長 における X 線吸収や蛍光 X 線のレベルを推測するのにも役 立つ.すなわち, μ_m は K 吸収端よりわずかに短波長側(高 エネルギー側)で数倍に跳ね上がり,外殻電子が内殻空孔に 遷移するとき放出される蛍光 X 線は吸収端より短波長側で 強まるのである.

2・2 結晶軸の設定と空間群のシンボル

RIETAN-FP では標準化した結晶構造データを用いると 決めておくと、単純で良い. RIETAN-FP に STRUCTURE TIDY⁽²⁾を実装したのはそのためである.結晶構造データは シミュレーション・モード (NMODE = 1)で標準化する. VESTA の Utilities メニューで Standardization of Crystal Data を選ぶという手もある.

STRUCTURE TIDY では,

- (1) 単斜晶系: b 軸を主軸(β≠90°)とする.
- (2) 三方晶系:六方格子とする.
- (3) 対称心を含む空間群:対称心を原点に置く.

を標準の軸設定としている.対称心を原点に置く設定(3)

^{*} 物質・材料研究機構 先端材料解析研究拠点 客員研究者(〒305-0047 つくば市千現 1-2-1) Structure Analysis by Powder Diffraction with the RIETAN-FP-VENUS System and External Programs —2. Rietveld Analysis and Pattern Decomposition—; Fujio Izumi (Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Tsukuba)

Keywords: powder diffraction, Rietveld analysis, structure refinement, pattern decomposition, Le Bail analysis

[†] RIETAN-FP・VENUS システム配付ファイルの Web ページ(http://fujioizumi.verse.jp/download/download.html)の参考文献を見よ. 2016年10月31日受理[doi:10.2320/materia.56.453]

は,一般等価位置の座標に(-x, -y, -z)が含まれることで 容易に見分けが付く.

空間群のシンボルとしては, RIETAN_VENUS フォルダ ー中のテキストファイル Spgr.daf に記録されている最初の 短縮形を入力する.文字列中のスペースも含めて入力するの で, Spgr.daf からコピー・アンド・ペーストするのが安全 である.

2·3 収束の安定化

リートベルト法では回折強度を計算するためのパラメータ ーの初期値を入力し,非線形最小二乗のサイクルを通じて徐 々に収束させていく.できるだけ真の値に近い初期値を与え ることが順調な収束につながる.解析前にできるだけ計算パ ターンを実測パターンに当てはめておくことが望ましい.多 すぎるパラメーターを一度に精密化したり,互いに相関の強 いパラメーターを同時に精密化したりすると,すんなり収束 しない(ときには発散する)可能性が増す.段階的精密化の利 用が得策である.解析中に実測・計算・残差パターンをプロ ットし,必要なら一部の領域を拡大表示し,未収束の原因を 探ることも推奨する.

とくに重要なのが格子定数の初期値である.分解能が高い 回折データではなおさら注意しなければならない.前号で述 べたようにピークサーチと指数づけで得られた値を使うのが もっとも手軽な実践法である.

粉末 X 線回折では,

ゼロ点シフト

•X線の試料透過(試料の密度と質量減衰係数に依存)

軸発散による回折プロファイルの非対称化

などがピーク位置をシフトさせる. ピーク・シフトに関係す るパラメーターは格子定数との相関がきわめて強く,格子定 数と同時に精密化するのは不可能に近い. 厳密に言えば,格 子定数を高確度で決定するには,NIST SRM 640e (Si粉 末)のような回折角度標準試料を内部標準として混ぜ,標準 試料の格子定数を固定した多相リートベルト解析を行うべき である.とはいえ,標準試料は非常に高価であり,試料が回 収できなくなり,しかも多相試料だと解析の確度・精度が悪 化してしまう.したがって,リートベルト解析のたびに標準 試料を混ぜて回折データを測定するのは現実的でない.

測定試料と同程度の線減衰係数µをもつ物質と標準試料 を混合して測定した強度データから決定したパラメーターに 固定するという妥協策をとることを推奨する.ただし,測定 ごとに変わりやすいゼロ点シフトZは常に精密化する方が よかろう.もちろん外部標準は回折計の使用条件や試料など に応じて臨機応変に添加すべきである.

2・4 散乱能が近い元素の占有率の見積もり

一般に,占有率gと等方性原子変位パラメーターBは互いに相関が強く,同時に精密化するのが難しい.構造因子の

図2.2 0.5~1.5 Å² の B に対するデバイ-ワラー因子の sin θ/λ 依存性.

計算式の右辺にはgとデバイーワラー(温度)因子 Tの積が含 まれている. gが sin θ/λ と無関係に一定なのに対し Tは sin θ/λ に依存する.

5つの異なるBに対しTを $\sin \theta/\lambda$ の関数としてプロット したグラフを図2.2に示す.この図から明らかなように,sin θ/λ の増加とともにTはゆるやかに減少する.T=1に漸近 していく低角領域を除いて各曲線を平行移動すると,他の曲 線とほぼ重なる.このような傾向から,gとBの相関が非常 に強く,低角領域の反射が確度・精度の高いgとBを得る のに役立つことが直感的に理解できよう.逆に低角反射が測 定されていないと,gとBの確度・精度は低下してしまう. 開き角の大きなソーラースリットを装着したブラッグ-ブレ ンターノ型回折計を使う場合は,そういう恐れがあることを 覚悟しておくべきである.またBが小さい方が $\sin \theta/\lambda$ の増 加に伴うTの減衰が緩やかなので,gとBの相関は必然的 に強まる.原子散乱因子がかなり違う金属を数%以上置換す る場合は,gを精密化することによって比較的容易に金属の 分配が決定できる.

一方,原子散乱因子が互いに近く,しかも置換量が比較的 少ないときは,高確度のgを得るのが困難となる.上述のよ うに,gはBとの相関が強く,いろいろな誤差の「はきだめ」 と化しやすいためである.しかも,非常に20が低い領域の 反射を含むX線回折データを解析する際には,金属の酸化 状態(たとえばFe,Fe²⁺,Fe³⁺,Fe⁴⁺)としてどれを選ぶかで, gの値が変わってくる.外核電子は低角反射に主として寄与 するからである.原子番号が比較的小さい金属で,この効果 はとりわけ増大する.

そこで,格子定数や分率座標はgよりはるかに高い確度と 精度で精密化しうるという事実に基づき,当該金属に配位し ている陰イオンとの結合距離(格子定数と各サイトの分率座 標から計算)に着目することを推奨したい.固溶体の場合, 端成分も含め,ドープ量の異なる試料を数個,用意する.こ れらの試料のリートベルト解析結果から結合距離を計算し, 各金属サイトについて結合距離の固溶量依存性を調べる.ド ープした金属イオンのイオン半径が置換される金属イオンの イオン半径とかなり異なる場合は,こうして混合金属サイト のgを推定できる可能性がある.たとえば、Jones⁽³⁾はAl とSiが同一サイトを占めるアルミノケイ酸塩の場合、(Si, Al)-O 結合距離から $g(Si) \ge g(Al)$ をかなり高い確度で推定 できることを明らかにした.

2・5 結合距離・結合角に対する抑制条件付加の自動化

非対称単位内の原子が多く複雑な構造をもつ化合物を扱う 際には、幾何学的パラメーター(結合距離や結合角など)に対 する抑制条件の数が増え、それらの入力に長時聞を費やすこ とになる. 必然的に入力ミスも増える. RIETAN-FP に は、結合を形成する化学種を指定するだけで全抑制条件を自 動的に発生する機能が備わっている.

抑制条件の自動発生機能を利用する際には,RIETAN-FP の標準入力ファイル hoge.ins において,各サイトのラベル (サイト名)を化学種+通し番号(たとえば Fe1, Ti2, O3)と いう形で入力する.化学種名はサイト名の先頭のアルファベ ット(大文字・小文字)部分であり,元素記号と無関係に与え られる.

この方式では、便宜上、Car(芳香環中の炭素. ar: aromatic ring), Cth(sp³ 混成軌道をもつ四面体配位の炭素.th: tetrahedral), Ctr(sp² 混成軌道をもつ平面 3 配位炭素.tr: triangular), Osb(単結合の酸素. sb: single bond), Odb(二 重結合の酸素. d: double bond), Alt(4 配位のアルミニウム. t: tetrahedral), Alo(6 配位のアルミニウム, o: octahedral) というようなサイト名の使用により、結合距離の異なる化学 種を容易に区別できる.情報処理の分野ではデータに関する 情報を記述した付加的なデータをメタデータ(meta data)と 呼ぶ. サイト名はそのサイトを占める化学種の結合距離につ いての情報を含むことから、一種のメタデータとみなせる. 抑制条件は,結合に含まれる原子の化学種名,hoge.ffeから 選び出す結合距離あるいは結合角の最小値,最大値,予想 値,許容範囲を入力することにより指定する.最小値を入力 するのは、分割原子モデルにおいて、みかけ上、異常に短い 結合が選ばれる恐れがあるためである.

2・6 VESTA におけるサイト名と幾何学的パラメー ターの表示

リートベルト解析では幾何学的パラメーターのチェックが 欠かせない. ORFFE の出力ファイル hoge.dst は数値デー タしか含んでいないので, VESTA でサイト名を表示した上 で,各幾何学的パラメーターが球棒模型のどれに相当するの かを把握することが,精密化した構造の妥当性を検証するの に役立つ.

サイト名を表示するには,オブジェクトタブをクリック し,各原子の'L' (Label)をチェックすればよい.

ORFFE を二回続けて実行すると結合距離と結合角が次の 3 段階で計算される.

(1) 201命令を実行した後、特定サイトの結合をすべて組み

 図2.3 BaSO₄のリートベルト解析後に ORFFE で原子
 間距離と結合角を計算し, Geometrical Parameters ダイアログボックス(左)でO3-S-O2 結合角をクリックして, 球棒模型でハイライ ト表示したところ.(オンラインカラー)

合わせた002命令が hoge.xyz の末尾に追加される.

- (2) hoge.ffe を更新するために削除しておく.
- (3) 201命令を再実行した後,002命令により結合角が計算 される.

次に VESTA で hoge.lst を読み込んで球棒模型を表示 し、サイト名を表示した後、Utilities メニューで Geometrical Parameters を選んで hoge.ffe を読み込む.次に Interatomic Distance または Bond Angle タブをクリックし、目的 の幾何学的パラメーターをクリックすると、結晶模型上の該 当原子に黄色の+印と輪郭が施され、一目で識別できるよう になる(図2.3).

二面角に対する抑制条件は分子中の5・6員環が同一平面 から逸脱するのを防ぐのに役立つ. VESTA で二面角に関す る情報を取得するには,まず hoge.ins あるいは hoge.lst を 読み込み,球棒模型を表示する. Manipulation パネルで Angle モードをチェックし、シフトキーを押しながら4個の 原子1,2,3,4を選択すると、グラフィックエリアの下(テ キストエリア)に二面角とともにそれらの原子のサイト番 号、サイト名、化学種、分率座標x,y,z(a,b,c方向への並 進)+、等価位置の座標が出力される. これら4行を hoge.ins にコピー・アンド・ペーストすると、当該二面角に 抑制条件を付加するのに再利用できる.

2.7 結晶子サイズとミクロ歪みの決定

RIETAN-FPではWilliamson-Hall⁽⁴⁾ およびHalder-Wagner⁽⁵⁾の方法により結晶子サイズDとミクロ歪み ε (格子面間隔dの変動 $\Delta d/d$)を見積もる.リートベルト解析だけでなくLe Bail 解析やハイブリッド・パターン分解(2・8参照)でも利用できる.擬フォークト関数に含まれるU, X, Yのような他のプロファイル・パラメーターとの相関が強いプロファイル・パラメーターとのおより

図2.4 CeO₂ナノ結晶の Halder-Wagner プロット. 直 線は線形回帰により求めた.

健全かつ合理的に見える.

MSCS マクロを実行すると、ストリーム・エディター sed が hoge.plt の後半部分から注釈化された Williamson-Hall ま たは Halder-Wagner プロットの作画命令を抜き出し、パイ プを通じて gnuplot に渡す. その結果生成した PDF ファイ ル hoge-mscs.pdf は PDF 閲覧プログラムで表示される.

 $D \ge \varepsilon$ によるプロファイルの広がりが実質的に無視できる 標準試料の回折データを事前に解析し、得られた hoge.gpd を instrument.gpd と改名してカレントフォルダーに置く と、観測された積分幅 β (obs)(=ピーク面積/ピーク強度)か ら装置に由来する広がりの寄与 β (instr)を

[β (sample)]ⁿ=[β (obs)]ⁿ-[β (instr)]ⁿ という式で差し引くことにより試料の広がり β (sample)を算 出できる. hoge.ins にデータをコピーする必要がないので, 利便性が高い. *n*は1~2の実数であり, *n*=1がローレンツ 関数, *n*=2がガウス関数で表現される広がりに相当する.

 $CeO_2 \pm J$ 結晶のラウンドロビン試料⁽⁶⁾の Halder-Wagner プロットを図2.4に示す.回帰直線の傾きから求めた体積加 重平均結晶子サイズ〈D〉_Vは 28.92 nm だった.この値はラ ウンドロビンの結果〈D〉_V=(32±11) nm とよく一致してい る.縦軸の切片から、ミクロ歪みが無視できるほど小さいこ とが一目でわかる.

2.8 ハイブリッド・パターン分解

粉末回折データから積分強度 $|F|^2$ を求めるパターン分解 は Le Bail 法⁽⁷⁾と Pawley 法に二分される. 既成ソフトを超 えるパフォーマンスの実現を目指し, ハイブリッド・パター ン分解と呼ばれる折衷法を RIETAN-FP に追加した.

ハイブリッド・パターン分解の手続きは

- (1) バックグラウンド・ファイル hoge.bkg の作成(前処理),
- (2) Le Bail 解析,
- (3) |F|² だけを精密化する一連の個別プロファイル・フィ ッティング(以後「積分強度の精密化」と呼ぶ),
- (4) Marquardt 法により全パラメーターを1サイクルだけ 精密化する Le Bail 解析

という4つのプロセスからなる.ハイブリッド・パターン分 解では、Le Bail 解析と積分強度の精密化が互いに相補的な 役割を担うことにより、最終的に最良のフィットをもたらす.

1・5 で述べたように粉末回折用グラフィックツール Win-PLOTR はバックグラウンド(離散点)を計算し,拡張子 bgr のファイルに出力できる.グラフをチェックして不要なバッ クグラウンドを除去し,より適切のように思えるバックグラ ウンドの追加が可能なので,バックグラウンド強度の見積も りの柔軟性が高まる.WinPLOTR は一般(X-Y)形式などの 強度ファイルを直接入力できるので,WinPLOTR による hoge.bgr の作成には,さほど時間と手間がかからない.そ こで,RIETAN-FP が特定の条件下で hoge.bgr 中の離散バ ックグラウンド強度の補間により hoge.bkg を作成できるよ うにしてある.

積分強度の精密化ではプロファイル・パラメーター,格子 定数,バックグラウンド・パラメーターはLe Bail 解析で精 密化された値に固定し,Le Bail 解析で求めた積分強度を出 発値とし,限られた20範囲の粉末回折データを対象として 共役方向法により残差二乗和を最小化する積分強度を逐次求 める.Le Bail 法で推定した積分強度の場合,系統的な相関 (serial correlation)が目立つ20領域におけるフィットが向 上する.残差二乗和を共役方向法で最小化するのは,プログ ラミングが簡単で,微分係数を使うMarquardt 法や Gauss-Newton 法に比べ,局所的な最小値に落ち込みにくいためで ある.局所的なカーブフィッティングを繰り返すという仕様 を採用したのは,

- ・残差二乗和に対する各反射の積分強度の寄与を十分大きく するため、
- ・共役方向法では精密化するパラメーターの数が増すと急激に収束が遅くなるため
- という二つの理由に基づく.

当初は hoge.ins におけるバックグラウンド・パラメータ 一の入力行を

 BKGD
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t

NOPT=1に設定すると,通常のLe Bail 解析の後に積分 強度の精密化へと移行する.ただしハイブリッド・パターン 分解は単相試料にしか適用できない.

こうして精密化した積分強度をフィードバックした Le Bail 解析を1サイクルだけ実行すれば、結晶構造と無関係なすべてのパラメーターが同時に精密化され、極限までフィットを改善しうる.

Cul 含有 Na-FAU の放射光粉末 X 線回折データ(λ=0.85 Å)のハイブリッド・パターン分解で得た解析パターンを図 2.5に示す.計算パターンがブラッグ反射だけでなく複雑に うねっているバックグラウンドにもよく当てはまっているの

図2.5 Cul を含むゼオライト Na-FAU の放射光粉末回 折データをハイブリッド・パターン分解で解析 した結果.池田卓史博士(産業技術総合研究所) に提供して頂いた.(オンラインカラー) が一目瞭然である.

前号の1・4で述べたように,等分配された重畳反射の積 分強度は MEP 法で改善できる. MEP 法は未知構造の解析 で威力を発揮する可能性があるので,その利用を強く呼びか けたい.

(つづく)

文 献

- (1) 粉末 X 線解析の実際, 第2版, 朝倉書店, (2009), 7, 9, 11章.
- (2) L. M. Gelato and E. Parthé: J. Appl. Crystallogr., **20**(1987), 139–143.
- (3) J. B. Jones: Acta Crystallogr., Sect. B, 24(1968), 355-358.
- (4) G. K. Williamson and W. H. Hall: Acta Metall., 1(1953), 22-31.
- (5) N. C. Halder and C. N. J. Wagner: Acta Crystallogr., **20**(1966), 312–313.
- (6) D. Balzar et al.: J. Appl. Crystallogr., 37(2004), 911–924.
- (7) A. Le Bail, H. Duroy and J. L. Fourquet: Mater. Res. Bull., 23 (1988), 447–452.