リチウムイオン二次電池材料開発の近年の進展と展望

1. はじめに

リチウムイオン二次電池(LIB)は他の二次電池に比べてエ ネルギー密度が大きいことから電池を小型化・軽量化できる 利点があり、スマートフォン、ノート PC、家庭用蓄電池な どに広く利用されている. 最近のエネルギー需要の増加や電 気自動車・プラグインハイブリッド自動車の普及により、 LIB には大容量,長寿命,高レート動作などの高性能化が 求められている.現行のLIB 負極活物質である黒鉛は、ほ ぼ理論容量で利用されており、これ以上の高容量化を達成す るためには、黒鉛に換わる新しい負極活物質の開発が必要と なっている. Si は重量当たりの理論 Li 挿入容量が 3579 mAh/g と現行の黒鉛の 372 mAh/g に比べて約10倍大きい ことから、SiをLIB 負極活物質として応用できれば LIBの 容量の大幅な増加が期待できる⁽¹⁾.しかし、黒鉛にLiを挿 入してLiC₆が生成する際には c 軸方向に体積がわずか10% 程度しか増加しないのに対し、SiにLiを挿入して、Li₁₅Si4 が生成する際には、Si1原子あたりの体積は元の約280%に も増加してしまう⁽¹⁾.この大きな体積膨張が原因となり、Si に Li を挿入すると Si 活物質が自壊して集電体から剥離して しまうため、サイクル数に伴って容量が著しく減少してしま う. 従って, Siを LIB 負極活物質として利用するためには, Li挿入に伴って体積変化が生じても、電極が破壊しない活 物質の形態制御が必要である.

この問題の解決のためにこれまで薄膜,ナノ粒子,ナノワ イヤ,ナノポーラス体等のSiナノ構造体が検討されてき た⁽²⁾⁻⁽⁴⁾.これらのナノ構造体はバルク体やマクロ構造体に 比べて破壊耐性が高く,加えてナノポーラス体ならば,内包 する気孔(ポア)によってLi挿入に伴う体積膨張を効率的に 吸収できると考えられている.このような着想のもとで,ナ ノポーラスSiの合成とLIB 電極への応用に関する研究が進 められてきた.例えば,ナノポーラステンプレート上にSi を堆積させる方法や,SiOの不均化反応によるポーラスSi 作製が報告されている⁽⁵⁾⁽⁶⁾.最近ではナノポーラスSiを単 純工程で大量に作製できるトップダウン型の手法が注目され, Siのエッチング⁽⁷⁾⁽⁸⁾,二酸化ケイ素の還元⁽⁹⁾,Si合金の凝 固組織からのSiの抽出⁽¹⁰⁾⁽¹¹⁾などが考案されている.

最近、我々のグループでは金属溶湯中脱合金化法という独 自技術を用いて Si を含む多種多様のナノオープンポーラス 材料の作製を報告してきた⁽¹²⁾⁽¹³⁾.ナノオープンポーラス材 料とはナノ粒子やナノワイヤなどの孤立したナノ構造物の凝 集体とは異なり、ナノ粒子同士が焼結材料のように化学的に 結合し、ナノポア同士も連結して連通孔を形成したスケルト ン構造のポーラス材料を指す. 材料内部に孤立したナノポア を有するナノクローズドポーラス材料と対照的な材料であ り、比表面積が大きく、液体や気体などの流体を透過できる ことから, 触媒などとして利用されている. ナノオープンポ ーラス構造は LIB 電極活物質の形態としても理想的である と考えられる.なぜならば、この構造によって、Li 挿入時 に大きな体積変化が生じても導電パスを維持できるととも に,その体積変化を活物質内部のポアに収容することで電極 に生じるひずみを低減してサイクル特性を改善でき, 更に は、活物質のポアに電解液が浸透できるために Li 挿入脱離 反応が生じる面積を拡大でき、レート特性を改善できるため である.

本稿では金属溶湯脱合金化法を用いたナノオープンポーラ ス Si を作製と、これを活物質として応用した LIB 負極の特 性および体積変化挙動を紹介する.

2. 金属溶湯中脱合金化法

ナノオープンポーラス金属をトップダウン的に作製できる 技術として,脱合金化法(この他,「脱成分腐食」,「デアロイ ング」とも呼ばれる)が古くから知られている⁽¹⁴⁾.この方法 では,水溶液中の腐食を利用して多元合金から卑な成分を取 り除き,残存する貴な成分のポーラス金属を作製する.しか しながら,この原理故に得られるナノオープンポーラス金属 は主に貴金属に限られており,LIB 負極活物質となる卑・ 半金属群(Al, Zn, Li, C, Si, Ge 等)のナノオープンポーラス化

^{*} 東北大学金属材料研究所;1)准教授 2)教授(〒980-8577 仙台市青葉区片平 2-1-1) Electrochemical Performance and Volume Change of Lithium Ion Secondary Battery Negative Electrode Made with Bicontinuous Nanoporous Si; Takeshi Wada and Hidemi Kato(Institute for Materials Research, Tohoku University, Sendai) Keywords: *nanoporous material, dealloying, silicon, lithium ion battery, anode* 2017年2月28日受理[doi:10.2320/materia.56.438]

は困難であった.

我々の研究グループでは、この脱合金化法の概念を大幅に 拡張し、従来法の課題のブレークスルーとなる、金属溶湯中 脱合金化法を開発した⁽¹⁵⁾.この方法は,前駆合金固体を金 属溶湯に浸漬した際に生じる成分元素の優先的溶出現象を利 用する. その原理を、A金属元素とB金属元素からなる均 一な A-B 合金を C 金属溶湯に浸漬する反応を例として説明 する.ここで、A元素はC金属溶湯に溶出しにくい(混合し にくい)性質を有し, B成分はC溶湯に溶出しやすい(混合 しやすい)性質を有するものとする. A-B 合金を C 金属溶湯 に浸漬すれば、B元素のみがC金属溶湯に選択的に溶出 し,残留したA元素がC金属溶湯中でナノオープンポーラ ス構造を自発的に組織する.この反応は、多元合金から可溶 成分を取り除き、不溶成分のナノオープンポーラス材料を得 るという点では水溶液腐食による脱合金化法に類似ている が,成分の溶出が原子同士の混合によって進行する点が水溶 液中の場合と大きく異なる.これ故,金属溶湯中脱合金化法 では,残留成分Aは貴金属である必要はなく,LIB 電極活 物質である Si や C のナノオープンポーラス体のトップダウ ン的作製を可能とした(16)-(18).

3. 金属溶湯脱合金化法によるナノオープンポーラス Siの作製

金属溶湯中脱合金化法によってナノオープンポーラス Si を作製するための前駆合金と金属溶湯に用いる元素(=前節 において説明した A-B 前駆合金と C 金属溶湯に適合する各 元素)を検討する. B元素はSiと混合して均一な前駆合金を 形成できる必要がある.また,C金属溶湯はSiとは混合せ ず, B元素とは混合する性質を持つ必要がある. 平衡状態 図⁽¹⁹⁾を参考にしてこの条件を満足する前駆合金と金属溶湯 の組み合わせを検討する. BiとSiは分離型の状態図であ り,互いの溶解度が小さいが,MgとBiは共晶の混合型の 状態図であり,混合して合金を形成しやすいことが分かる. また、SiとMgの状態図も共晶型であり均一な合金相であ る Mg₂Si を形成することが分かる. このことから, Mg-Si 前駆合金をBi金属溶湯に浸漬すると、前駆合金からMgが Bi 金属溶湯中に優先的に溶出する脱合金化反応が生じて, ナノオープンポーラスSiが生成すると考えられる.この設 計を基に、Mg72Si28合金(数字は原子%、以下同じ)を作製 し、これを Bi 金属溶湯に様々な温度で浸漬する実験を行っ た.

図1はBi 金属溶湯に浸漬する前の $Mg_{72}Si_{28}$ 合金前駆合金 のエックス線回折パターン,およびそれを773~1073Kの 各温度のBi 金属溶湯に15分間浸漬し,その後,硝酸水溶液 に浸漬してBi成分を取り除いた試料のエックス線回折パタ ーンである. $Mg_{72}Si_{28}$ 前駆合金は主相が Mg_2Si 金属間化合 物であり,Mgが少量分散した二相構造であることが分か る.一方でこの前駆合金をBi 金属溶湯に浸漬して脱合金化 処理を施した試料は,処理温度にかかわらず全てダイヤモン ド構造の Si であると同定された.更には,高温で処理され た試料ほど,回折ピークの半値幅が狭くなる傾向が見られ, 高温で生成した Si ほど,Si の結晶子が大きくなっているこ とを示唆している.

図2はMg₇₂Si₂₈前駆合金を773~1073 KのBi金属溶湯に 15分間浸漬して得られたSiのSEM像である。全ての試料 においてナノ粒子が三次元的に結びついたナノオープンポー ラス構造が確認された(以後,ポーラス体を構成する粒子部 分をリガメントと呼ぶ)が,そのポアサイズやリガメントサ イズは作製温度によって大きく異なっていることが分かる。 画像解析によって算出したポアサイズ,リガメントサイズ,

図1 Mg₇₂Si₂₈ 合金前駆合金およびそれを773~1073 K の各温度の Bi 金属溶湯に15分間浸漬し,その 後,硝酸水溶液に浸漬して Bi 成分を取り除いた 試料のエックス線回折パターン.

図2 Mg₇₂Si₂₈前駆合金を773~1073 KのBi金属溶湯 に15分間浸漬後,硝酸水溶液に浸漬してBi成分 を取り除いたSiのSEM像.

ポロシティを脱合金化処理温度に対して図示したものが図3 である.例えば,773Kで作製されたSiのポアサイズは70 nm 程度であるのに対し, 1073 K で作製されたものは 450 nm 程度となっており、リガメントサイズも同様の傾向を示 し、脱合金化処理温度が高いものほどポアサイズおよびリガ メントサイズが粗大になっていることが分かる.透過電子顕 微鏡トモグラフィによれば、これらのナノオープンポーラス Si はロッド状のSi 単結晶が互いに連結して構成されてお り, それぞれのリガメントの表面は{111}面のファセットで あることが明らかになっている⁽²⁰⁾. Mg-Si 前駆合金を Bi 金属溶湯に浸漬すると、前駆合金表面から Mg が Bi に溶出 し,残留した Si が未反応前駆合金やすでに生成した Si のリ ガメントとの固液界面に蓄積される.この蓄積したSiが初 期段階では微細な Si のリガメントを形成するが、表面積が 大きい状態が不安定であるため、これを減少するためにリガ メントを粗大なものへと成長させる.この成長機構は固液界 面における Si 原子の拡散であることが示唆されている⁽²¹⁾. 高温ほど表面拡散が活性化されるため、高温の Bi 金属溶湯 中で作製される Si ほど, 脱合金化反応やリガメントの成長 速度が速く、得られるポーラス構造が粗大になったと推察さ れる.一方でポロシティは脱合金化処理温度にかかわらず 60~70%のほぼ一定値を取っている.ポロシティは Mg-Si 前駆合金から Bi 溶湯に Mg が溶出することで生じる結晶構 造の変化によって決まると考えられる.図1に示す通り, Mg₇₂Si₂₈前駆合金の主相は蛍石構造のMg₂Siであり、Mg を Bi 溶湯中に放出して、最終的にはダイヤモンド構造の Si に結晶構造を変化させる. Mg₂Si が Si に結晶構造を変化さ せる際には、Si1原子当たりの体積は約68.7%減少すること が格子定数などを基に計算できる.この体積減少率は,実際 に形成した Si のポロシティとよく一致していることから, 本プロセスにおいて導入されるポアの起源は Mg の溶出で あり、その量は前駆合金中の Mg の濃度によりほぼ一意に 定まっていることが分かる.

図3 各脱合金化処理温度で作製したナノオープンポー ラスSiのポアサイズ,リガメントサイズ,ポロ シティ.

ナノオープンポーラス Si を活物質とした LIB 負 極特性と電極体積変化

図2に示した様々なポア・リガメントサイズを有するナ ノオープンポーラス Si を活物質として LIB 電極を作製し た. ナノオープンポーラス Si とカーボンブラック(電気化学 工業社製)とポリイミドバインダ(宇部興産株式会社製)を重 量比60:25:15で混合し、N-メチルピロリドンを適量添加し てスラリーの粘度を調節し、塗工機を用いて Cu 集電体に均 一に塗布した.また、ナノオープンポーラス構造の電極特性 への影響を調査するために、比較試料としてのナノ粒子 Si (粒径約100nm, シグマアルドリッチ社製)を活物質として ナノポーラス Si の場合と同一の工程で途布電極を作製し た. 作製した Si 電極を作用極として,対極に純 Li 箔を用 い、電解液には1mol/lの濃度でLiPF₆を炭酸フルオロエチ レン(FEC)溶媒に溶かしたものを使用して評価セルを組ん だ. FECはSi負極に対して薄く均一なSEI被膜を形成する 溶媒であることが知られている.図4(a)は作製した LIB 電 極の定電流試験における容量-サイクル数曲線である.電流 密度は1Cであり、電位窓は0.005~1Vとした.ナノオープ ンポーラス Si 電極の初回容量は2500~3500 mAh/g と,ナ ノ粒子 Si 電極の1500 mAh/g に比べてかなり高い値を示し ており、ナノオープンポーラス構造が孤立ナノ粒子構造に比 べてLiの挿入脱離の促進に効果的であることが分かる.一 方で、ナノオープンポーラス Si の初回容量は Si 作製温度、 すなわちポアサイズやリガメントサイズによって明確な違い が生じている.例えば 973 K で作製した Si の初回容量はお よそ3500 mAh/g で室温における Si の理論重量容量(Li₁₅Si₄ 時)に近い値を示している.一方で,773Kで作製されたナ ノオープンポーラス Si では2800 mAh/g に留まっている. この理由を調査するために、作製した塗布電極の合剤層の構 造を収束イオンビーム加工装置を用いて観察した.図4(b) は 973 K および 773 K で作製されたナノオープンポーラス Si 電極合材層の充放電試験前の断面 SEM 画像である.この SEM 像は反射電子像であり、原子番号がより高い Si が明る

 図4 (a)ナノオープンポーラスSiを用いて作製した LIB 電極の定電流試験における容量-サイクル数 曲線.(b)973 K および 773 K で作製されたナノ オープンポーラスSi 電極の合剤層断面 SEM 像. (文献(17)より許可を得て転載) (オンラインカラー)

いコントラストとなり, 導電助剤やバインダーなどの炭素を 主成分とする部分は暗いコントラストとなっている. この合 剤層断面の観察結果からわかるように、973 Kで作製した Si は導電助剤であるカーボンブラックと均一に混合され、両者 の接触は良好であるが、773Kで作製されたそれは図中に点 線で囲んだようにナノオープンポーラス Si の塊が不均一に 分散し、その塊の内部にはカーボンブラックは確認できな い.図3に示した通り、973Kおよび773Kで作製された ナノオープンポーラスSiのポアサイズはそれぞれ180,70 nm 程度であるが、カーボンブラックのストラクチャサイズ は100 nm 以上であり、773 K のナノオープンポーラス Si のポアサイズよりも大きいため、両者が均一に混合できず不 均一構造が生じてしまったと考えられる. 導電助剤と接触で きていない Si は電気抵抗が大きいために Li 挿入脱離が困難 となって充放電に関与できず、結果として電極中の Si の利 用率が低下して容量が小さくなったと考えられる.773Kで 作製されたナノオープンポーラス Si はポア・リガメントサ イズが小さく、表面積が大きいため、Liの挿入脱離が容易 になり,破壊に対する耐性も高いと予測され,容量やサイク ル特性が高くなることが期待されたが、実際にはポア・リガ メントサイズは導電助剤等の他の電池材料とスケールを一致 させることが性能を改善するために重要であることが明らか となった.

次に,Si活物質の形態とリチウム挿入脱離時の電極の体 積変化の関係を調べるために,Li挿入脱離反応に伴う電極 の厚さ変化を接触変位計でその場測定した.図5(a)はナノ 粒子Siを用いて作製した電極を0.1Cの定電流において0~ 1Vの範囲でLi挿入脱離させた際の電極厚さの変化率を示 している.グラフの上段にはこのとき計測されたセル電圧-容量曲線を示した.ナノ粒子Si電極は電極厚み測定用セル 中では0.1Cにおいて約1500mAh/gの容量を10サイクル維 持していることが分かる.その際に,電極厚さは初サイクル

図5 (a)ナノ粒子 Si および(b)ナノオープンポーラス Si(973 K)を用いて作製した電極の1500 mAh/g の Li 挿入脱離時の電極厚さの変化. 1500 mAh/g の Li 挿入脱離を10サイクル繰り返した後の(c)ナ ノ粒子および(d)ナノオープンポーラス Si 電極の 表面形態 SEM 像. (文献(17)より許可を得て転 載)

のLi挿入において約40%膨張し、2サイクル目以降では約 20%程度の振幅で膨張と収縮を繰り返していることが読み 取れる.図5(b)はナノオープンポーラスSi電極にLi挿入 量が1500 mAh/g となるように放電時間を定めて Li の挿入 脱離を繰り返した試験で得られた電極厚さの変化である.ナ ノ粒子 Si と同じ容量とすることで,同一 Li 挿入量におけ る,電極の体積変化を比較することを目的としている.ナノ オープンポーラス Si 電極はナノ粒子 Si 電極と同一容量で繰 り返し Li を挿入脱離しているにもかかわらず,その厚さ変 化はナノ粒子 Si 電極のそれよりも小さい約10%程度の振幅 で膨張と収縮を繰り返していることが読み取れる.この結果 からもわかるように,ナノオープンポーラス Si 電極では, Li挿入に伴う体積膨張を活物質内部のポアに収容すること で、電極の巨視的な膨張を抑制していると考えられる.図5 (c)および(d)にLi挿入脱離を10サイクル繰り返したそれぞ れの電極表面形態の SEM 像を示す.ナノ粒子 Si 電極は多 数のクラックが認められたが、ナノオープンポーラス Si 電 極のクラックは比較的少ないことが分かる. これらの結果か らもわかるように、ナノオープンポーラス Si はナノ粒子 Si 電極と比較して、活物質の体積変化を電極内部に収容して電 極に生じるひずみを低減させ、電極の破壊や劣化を抑制して いるものと考えられる.

5. おわりに

本研究では冶金学の知見に基づいて開発された金属溶湯中 脱合金化法を利用してナノオープンポーラス Si の作製に成 功し,それをリチウムイオン二次電池負極として応用するこ とに成功した.ポア・リガメントサイズを適切に制御するこ とで理論容量に匹敵する高い容量が得られることを明らかに した.また,ナノオープンポーラス Si は活物質内部に存在 するポアを利用して,Li挿入に伴う体積膨張を収容する機 能を有しており,これが,電極の破壊を抑制していることが 分かった.このようにナノオープンポーラス Si は高容量と 高サイクル特性を両立できる負極活物質として有望であるこ とを確認した.一方で,本プロセスは多量の Bi 金属溶湯を 必要とするため現状ではコストが高いことが課題となってお り,金属溶湯を精製しリサイクルを行うプロセスも同時に確 立してコストを低下させる必要があると考えている.

文 献

- (1) M. N. Obrovac, L. Christensen, D. B. Le and J. R. Dahn: J. Electrochem. Soc., 154(2007), A849–A855.
- (2) L. B. Chen, J. Y. Xie, H. C. Yu and T. H. Wang: J. Appl. Electrochem., **39**(2009), 1157–1162.
- (3) C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui: Nat. Nanotechnol., 3(2008), 31–35.
- (4) H. Kim, B. Han, J. Choo and J. Cho: Angew. Chem. Int. Ed., 47 (2008), 10151–10154.
- (5) A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin: Nat. Mater., 9(2010), 353–358.

- (6) R. Yi, F. Dai, M. L. Gordin, S. Chen and D. Wang: Adv. Energy Mater., 3(2013), 295–300.
- (7) M. Ge, Y. Lu, P. Ercius, J. Rong, X. Fang, M. Mecklenburg and C. Zhou: Nano Lett., 14(2014), 261–268.
- (8) X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M. J. Sailor, J. G. Zhang and J. Liu: Nat. Commun., 5 (2014), 4105.
- (9) J. Liang, X. Li, Z. Hou, C. Guo, Y. Zhu and Y. Qian: Chem. Commun., 51(2015), 7230–7233.
- (10) Z. Jiang, C. Li, S. Hao, K. Zhu and P. Zhang: Electrochim. Acta, **115**(2014), 393–398.
- (11) W. He, H. Tian, F. Xin and W. Han: J. Mater. Chem. A, 3 (2015), 17956–17962.
- (12)加藤秀実,和田 武,津田雅史:まてりあ,52(2013),395-403.
- (13) 加藤秀実,和田 武:まてりあ,55(2016),519-527.
- $(14)\;\;$ J. Erlebacher and R. Seshadri: MRS Bull., $34(2009),\,561\text{--}568.$
- (15) T. Wada, K. Yubuta, A. Inoue and H. Kato: Mater. Lett., 65 (2011), 1076–1078.
- (16) T. Wada, T. Ichitsubo, K. Yubuta, H. Segawa, H. Yoshida and H. Kato: Nano Lett., 14(2014), 4505–4510.
- (17) T. Wada, J. Yamada and H. Kato: J. Power Sources, 306 (2016), 8–16.
- (18) S. G. Yu, K. Yubuta, T. Wada and H. Kato: Carbon, **96**(2016), 403–410.
- (19) H. Okamoto: Desk Handbook, Phase Diagrams for Binary Al-

loys, ASM International, Materials Park, Ohio, (2000).

- (20) L. Roiban, S. Koneti, T. Wada, H. Kato, F. J. C. S. Aires, S. Curelea, T. Epicier and E. Maire: Mater. Charact., 124 (2017), 165–170.
- (21) M. Tsuda, T. Wada and H. Kato: J. Appl. Phys., 114(2013), 113503.

- 2006年3月 東北大学大学院工学研究科博士課程後期3年の課程修了
- 2006年4月 東北大学金属材料研究所,助手 2016年5月 東北大学金属材料研究所,准教授-現職
- 2016年5月 東北大学金属材料研究所・准教授-5 専門分野:非平衡金属材料・ポーラス金属
- ◎金属ガラスを中心とする非平衡材料の開発と応用に従事.
- 最近では金属ガラス合金開発の知見を応用した新規ボーラス金属作製技術 の開発に取り組んでいる.

和田武

加藤秀実