

# 中性子透過ブラッグエッジ法による 金属組織情報のイメージング

## 佐藤博隆\*

## 1. はじめに

物質・材料のミクロ・ナノ構造の定量解析・評価は,量子 ビーム(電子線・X線・中性子線など)の顕微鏡技術(実空間 解析)や回折・散乱技術(逆空間解析)により行われている が,得られる微視的構造情報を数十 cm の広い範囲に渡って 調べることは難しい.顕微鏡技術は実空間を拡大して微視的 構造を見るものであり,回折・散乱技術は量子ビームの干渉 を解析してある領域に関する微視的構造の平均値を高い統計 で調べるものである.これらの技術で広範囲解析を行おうと すると,実空間あるいは逆空間の分解能が低下する.あるい はマッピングを行おうとすると,長大な測定時間を要する. いずれも多かれ少なかれ困難さがある.しかし,材料全体に 渡って統計の良い微視的構造情報を場所毎にマッピングする ことは,局所的な解析・評価では見ることのできなかった材 料情報を明らかにする上で大変重要である.

筆者の所属するグループでは,より広い視点で材料研究を 行いたいというモチベーションから,物質・材料の微視的構 造情報を広い範囲に渡ってマッピングすることのできる新し い解析技術の開発を行ってきた.具体的なポイントは,①物 質透過能力の高い中性子を利用することでバルク平均の統計 の高い情報を得る,②透過イメージング法を利用することで 高い空間分解能で広い範囲を調べる,③透過分光法を利用す ることで透過スペクトルに現れる透過型回折パターン(ブラ ッグエッジ・ブラッグディップ)を逆空間解析し微視的構造 情報を得る,という三点である.従来はほとんど別々に行っ てきた「実空間解析」と「逆空間解析」とを融合させること で,上記モチベーションを比較的容易に叶えるユニークなツ ールの開発に取り組んできた.本稿では,この新しい材料解 析ツール「中性子透過ブラッグイメージング」の概要につい て述べると共に,いくつかの実験・解析例を紹介し,手法の 現況と応用に関する情報を読者の皆様に紹介したい.

#### 2. パルス中性子透過分光イメージングの原理と特徴

#### (1) 中性子透過率スペクトルとそれに含まれている情報

本手法では、中性子透過スペクトルを測定し、これを逆空 間解析する必要がある.測定方法については2.(2)節で述べ ることとし、ここでは中性子透過スペクトルと、それに含ま れている中性子透過経路中のバルク平均の(統計の高い)微視 的構造情報(1節のポイント①ならびに③)について説明する.

図1(a)に,厚さ5mmの多結晶α-Fe板(JIS-SS400・結 晶粒サイズは数十µm 程度以下)の中性子透過率スペクトル を示す.中性子の透過率を中性子の波長毎に表している.特 徴的なギザギザのスペクトルとなっており、これは中性子の 多結晶回折に起因する「ブラッグエッジ」と呼ばれるもので ある<sup>(1)</sup>. 各エッジには回折指数 {*hkl*} を付記してあるが, この出現波長は $\lambda = 2d_{hkl} \sin 90^{\circ}$ に対応する. そのため, ブ ラッグエッジ出現波長の変化から結晶格子面間隔 d<sub>hkl</sub>の変化 ひいては結晶格子ひずみ(第一種ひずみ・マクロひずみ・平 均ひずみ)を<sup>(2)</sup>,エッジの中性子波長方向に関する拡がりか ら面間隔 d<sub>hkl</sub>の拡がりひいては第二種ひずみ(ミクロひず み・局所ひずみ)を(3)調べることができる.また,エッジよ り短波長側はブラッグ角 $\theta_{hkl}=0^{\circ}\sim90^{\circ}$ の回折強度を反映し たものとなっており,スペクトルの形状変化は結晶面の方位 分布の変化を反映したものとなる. そのため, スペクトルの 形状から集合組織の発達度や優先方位を調べることができ る<sup>(4)</sup>. また,中性子の同一結晶子内多重回折(第一次消衰効 果)により、中性子の透過強度が上がる(回折強度は下がって いる). この現象から結晶子サイズを見積もることができ る<sup>(4)</sup>. さらに, ブラッグエッジの回折指数の出現パターンか

\* 北海道大学大学院工学研究院量子理工学部門;助教(〒060-8628 札幌市北区北13条西8丁目)
Imaging of Crystalline Microstructural Information by Bragg-edge Neutron Transmission Spectroscopy; Hirotaka Sato(Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo)
Keywords: *neutron imaging, Bragg edge, phase, texture, microstructure, strain* 2016年7月25日受理[doi:10.2320/materia.55.532]



図1 中性子透過率スペクトル.(a) 微細結晶粒材料の 透過率スペクトル.(b) 粗大結晶粒材料ならびに単結晶 材料の透過率スペクトル.

ら結晶構造の同定,先述の集合組織・消衰効果に関するスペ クトル強度補正を行っていれば結晶相分率の定量を行うこと もできる<sup>(5)</sup>.

以上のような結晶構造・結晶相・集合組織(優先方位)・結 晶子サイズ・ひずみに関する情報を中性子透過ブラッグエッ ジスペクトルから抽出するデータ解析ソフトウェアが 「RITS(Rietveld Imaging of Transmission Spectra)」であ る<sup>(3)-(7)</sup>. RITSは,種々の結晶組織構造モデル関数ならび に各種回折強度補正関数および非干渉性散乱・非弾性散乱・ 吸収に関するモデル関数を用いて中性子透過率スペクトルを 厳密に計算し,これを実験データに対して最小二乗フィッテ ィングすることで,モデル関数中の各種結晶組織構造パラメ ーターを精密化することによって測定試料の結晶組織構造解 析を行う Rietveld 型解析ソフトウェアである. RITS を利用 したイメージング実験・解析例については,3節(ひずみ)な らびに4節(相・組織)で紹介する.

また,中性子透過経路中の結晶粒数が少ない状態(粗大結 晶粒材料や単結晶材料)の場合,中性子透過率スペクトルは 図1(b)のような「ブラッグディップ」パターンを示す.図 1(b)の「粗大結晶粒」スペクトルは,同図「単結晶」スペ クトルと図1(a)のブラッグエッジスペクトル(「微細結晶粒」 スペクトル)の間の結晶粒数の場合に現れるもので,ディッ プスペクトルパターンの振幅や振動数から,中性子透過経路 中の結晶粒数ならびに結晶粒サイズを見積もれるのではない かと考え,データ解析法を開発中である.単結晶スペクトル についてはデータ解析法が確立しつつあり,ディップ出現パ ターンから結晶方位を同定することができる.この解析方法 を利用した結晶粒の方位イメージング実験・解析例について は、5節で紹介する.

#### (2) パルス中性子透過イメージング実験

2.(1)節では中性子透過経路中のバルク平均の(統計の高い) 結晶組織構造情報の取得方法について述べた.本節では,先 述の中性子透過率スペクトルが,どの程度高い空間分解能で 広い範囲に渡って測定できるのか,すなわちスペクトル解析 で得られる結晶組織構造情報の空間認識特性はどの程度であ るのかについて,ハードウェア方面(1節のポイント②)につ いて説明する.

波長依存の中性子透過率スペクトルは、白色パルス中性子 源と、飛行時間(TOF:Time of Flight)法による中性子の速 度・運動エネルギー・波長分析(分光法)を用いた、中性子透 過画像撮影実験によって得られる.中性子の透過画像撮影 (レントゲン撮影)を行うことに加えて、分光を行っているこ とがポイントである.これにより、中性子透過率の波長依存 性を測定することが可能となる.国内のパルス中性子イメー ジング実験が可能な施設として、大強度陽子加速器施設(J-PARC)物質・生命科学実験施設(MLF)、北海道大学電子加 速器パルス中性子源(HUNS)<sup>(8)</sup>、理化学研究所コンパクト 陽子加速器中性子源(RANS)が挙げられる.特に J-PARC MLF の BL22 には、パルス中性子イメージング専用装置 「螺鈿(RADEN)」が設置されており<sup>(9)</sup>、世界最高性能の中 性子透過ブラッグイメージング実験が実施可能となっている.

パルス中性子イメージング実験の性能は、中性子源のみな らず、TOF分析型中性子画像検出器の性能にも依存する. 画素サイズ3mm角・画像サイズ5cm角(画素数16×16)の <sup>6</sup>Liガラスシンチレーターピクセル直読式検出器<sup>(10)</sup>、画素サ イズ800µm角・画像サイズ10cm角(画素数128×128)の 中性子 GEM 検出器<sup>(11)</sup>、画素サイズ55µm角・画像サイズ 2.8 cm角(画素数512×512)の中性子 MCP 検出器<sup>(12)</sup>などが 利用されており、本手法の空間認識特性(イメージング能力) を決めている.

ハードウェアの最大の課題として、検出器の最大計数率が 低く、高強度中性子ビームを有効利用できない点が挙げられ る.具体的には、RADEN では最高 10<sup>8</sup> n・cm<sup>-2</sup>・s<sup>-1</sup> 程度 の中性子ビームが供給されるが、現在の TOF 分析型中性子 画像検出器の計数性能は約 10<sup>4</sup> n・cm<sup>-2</sup>・s<sup>-1</sup>に制限される ため、ビーム強度を1万分の1 程度に下げて実験を行わざ るを得ない(この強度は中小規模パルス中性子実験施設と同 程度である).このため、測定時間として多くの場合、3~ 12時間を要してしまう.しかし、それでも数万~数十万箇 所の結晶組織構造解析が一度の測定で可能であり、効率は極 めて高いと言える.

#### 3. ブラッグエッジ解析によるひずみイメージング<sup>(3)</sup>

ひずみイメージングの例として、外周部に高周波焼き入れ を施された棒鋼の実験・解析例を紹介する.実験は、J-PARC MLF BL10 中性子源特性試験装置「NOBORU」<sup>(13)</sup>に て、先述の中性子 MCP 検出器を用いて行った(なお、当時 の MCP 検出器は画像サイズ 1.4 cm 角・画素数256×256で あった). 測定試料は,外周部表層から3mm,5mm,7 mmの深さまで焼き入れを施されたα-Fe棒鋼(JIS-S45C) で,それぞれ2本ずつを一度に測定した. 試料寸法は直径 2.6 cm,高さ2 cmであり,中性子を軸方向2 cm厚に透過 させ,ひずみの径依存性を測定する実験体系とした. 円柱の 軸付近にはフェライト相(BCC結晶構造),外周部にはマル テンサイト相(BCT結晶構造)が存在していると見込み,ひ ずみイメージから相イメージを読み取ることも目的とした. この実験では,ミクロひずみイメージングの結果とビッカー ス硬さ試験の結果に興味深い関係が得られたので,このこと も併せて紹介する.

図2(a)にマクロひずみに相当する{110}結晶格子面間隔の 平均値 *d<sub>hkl</sub>のイメージング結果*,図2(b)にミクロひずみに 相当する{110}結晶格子面間隔の分布の半値全幅 *w<sub>hkl</sub>のイメ* ージング結果を示す.表層から3mm 深さまで焼き入れを施 された棒鋼2本に関する結果である.図より,表層にマク ロ・ミクロひずみ共に大きな領域が存在していることがわか る.これは,炭素原子の固溶による結晶格子面間隔の増加, 転位密度の増加,結晶子サイズの微細化などに起因したもの



図2 (a)マクロひずみイメージング<sup>(3)</sup>と(b)ミクロひず みイメージング<sup>(3)</sup>.外周部のマルテンサイト相が可視化 されている.(c)各試料から得られたミクロひずみとビ ッカース硬さの比例関係<sup>(3)</sup>.

である.すなわち,ひずみの大きな領域として,フェライト 鋼中のマルテンサイト相が可視化されているのである.

このことを裏付ける結果として、ビッカース硬さ試験結果 がある.まず、今回測定した全試料について、ビッカース硬 さHv 450(フェライトとマルテンサイトの境界に相当する 限界硬さ)を示した位置と、ミクロひずみの径方向に関する 分布が下に凸から上に凸に変化する変曲点が、一致した<sup>(3)</sup>. さらに興味深い結果として、図2(c)を示す.この図は、今 回測定した全試料について、各位置の*w<sub>hkl</sub>とビッカース*硬 さをプロットしたものである.ビッカース硬さと*w<sub>hkl</sub>の*間 に線形関係(比例関係)があることが明らかとなった.このよ うに、広い範囲に渡って空間依存性を評価することで、これ まで以上に材料の微視的構造と巨視的特性の関係性を明らか にすることができるようになった.

さらに現在,マクロひずみイメージングを発展させるため に,新概念のテンソル CT 法の開発を進めている<sup>(14)</sup>.これ は,従来の CT 法では取り扱うことのできないマクロひずみ (テンソル)の CT すなわち3次元可視化を実現するための取 り組みで,物体内部各場所における各方向に関するマクロひ ずみ要素(スカラー量)を個別に求められるようにすると共 に,各方向に関するマクロひずみ要素の値を用いて,マクロ ひずみ分布の画像を応力分布の画像へと換算(新情報を抽出) することが狙いである.

## ブラッグエッジスペクトル全体解析による相・組 織イメージング<sup>(5)</sup>

相・組織イメージングの例として,JIS-SS400(フェライ ト鋼)とJIS-SUS304(オーステナイト鋼)の異種金属溶接板 の実験・解析例を紹介する.実験は,J-PARC MLF BL20 茨城県材料構造解析装置「iMATERIA」<sup>(15)</sup>に,先述の<sup>6</sup>Li ガラスシンチレーターピクセル直読式検出器(8×8ピクセル 型)を持ち込んで行った.測定試料は片側にフェライト (BCC 結晶構造),もう一方の片側にオーステナイト(FCC 結晶構造)が存在する溶接板で,中性子透過厚さは6mmで ある.得られた中性子透過率スペクトルの解析では,RITS で集合組織・消衰効果の各強度補正を行いながら,各相の 量・集合組織発達度・結晶子サイズを求めた.

図3に各相の原子数密度(#/cm<sup>3</sup>)と実効厚さ(cm)の積 (#/cm<sup>2</sup>)・集合組織発達度(RITS中のMarch-Dollase係数 というパラメーターを使用)・結晶子サイズ(µm)のイメージ ング結果を示す.イメージサイズは全て1.84 cm×1.84 cm である.ここには示していないが,圧延面法線方向(中性子 透過方向・紙面法線方向)に関する優先方位は,フェライト 側で〈111〉,オーステナイト側で〈110〉と妥当なものが同定 された.溶接部における各相の量については,原子数比で, フェライトが57%と見積もられた.また,双方の相につい て,溶接部とその周囲の熱影響部において,圧延集合組織が 緩和していること,結晶子サイズが大きくなっていることも 可視化され,一度の測定で多くの相・組織に関する情報を明 らかにすることができた.



図3 SS400-SUS304 溶接板の結晶相・集合組織・結晶子サイズのイメージング<sup>(5)</sup>. 図中矢印は溶接線の位置を表す. 溶接線の左側にフェライト,右側にオーステナイトが存在している. March-Dollase 係数は1に近付くほど集合 組織が発達していないことを表す.

## 5. ブラッグディップ解析による結晶粒・方位イメー ジング

最後に,図1(b)に示したブラッグディップスペクトルの 応用例として,大きな結晶粒を有する3.4%Si鋼板(電磁鋼 板模擬試料)の結晶粒とその結晶方位の可視化例を紹介す る.近年のTOF分析型中性子画像検出器の高空間分解能化 は著しく,結晶粒サイズに徐々に迫ってきている.そのよう な条件下では,一つの画素領域で観測される結晶粒数が少な くなり,図1(b)のようなスペクトルが観測される.これを 利用し,結晶粒毎の方位イメージングを試みた.なお,海外 では中性子回折イメージング法の開発が進められているが, 本研究では高空間分解能を狙って中性子透過イメージング法 による結晶粒方位可視化に取り組んでいる.途中経過ではあ るが紹介する.

実験は、先述の J-PARC MLF BL10「NOBORU」にて、 先述の中性子 GEM 検出器を用いて行った.測定試料は cm 級の結晶粒を有する 3.4%Si 鋼板であり、中性子透過厚さは 5 mm である. 各画素で得られた単結晶型中性子透過率スペ クトルのブラッグディップ出現パターンを自作のデータベー スと照合し,結晶粒数(単結晶数)と各粒(各単結晶)の結晶方 位を同定した.

図4(a)に中性子透過経路中に一つの単結晶(結晶粒)しか 存在しなかった領域について方位を可視化した結果を,図4 (b)に中性子透過経路中に二つの単結晶(結晶粒)が存在した 領域も方位を可視化した結果を示す.図4(a)には主要な粒 について結晶方位をミラー指数で示してある.図4(a)のデ ータが存在しない白色の領域は,単結晶とみなされなかった (結晶粒が重なっている)領域である.一方,図4(b)より, 「二つの結晶粒の積層」で試料全領域が説明できることがわ かった(すなわち,本試料では5mm厚の方向に三つ以上の 結晶粒が積層している領域はほぼ無い).このように,中性 子透過イメージング法で結晶粒の方位解析が可能であるこ と,中性子透過経路中の結晶粒数が同定できることがわかっ てきた.



図4 結晶粒・結晶方位イメージング.(a)中性子透過 方向に一つの単結晶のみ存在する領域の画像.(b)中性 子透過方向に二つの単結晶が存在する領域の画像.

### 6. おわりに

本稿では、中性子透過ブラッグイメージング法によるバル ク結晶組織構造情報(相・集合組織・結晶子サイズ・ひず み・結晶粒方位)の広範囲イメージングの現況について述べ た. 高空間分解能化や高次元(3次元・4次元)化が、今後の 開発研究課題であることはもちろんのことだが、中性子透過 スペクトルに含まれている物質情報はまだある(未だ抽出で きていない結晶組織構造情報はもちろん、ナノ構造や非晶質 構造,磁気構造,原子分子ダイナミクスに関する情報な ど). 基本的には、全ての中性子散乱技術の逆空間解析法が 中性子透過技術に応用でき、それに伴いイメージング化もあ る程度可能になると見込んでいる(実際,中性子透過ブラッ グエッジ解析は中性子粉末回折法,中性子透過ブラッグディ ップ解析は中性子単結晶回折法の中性子透過法版と言え る). 今後も中性子透過法・イメージング法の開発研究に取 り組み、今まで見えなかった物質・材料の「広い世界」「新 たな情報」を可視化していきたいと考えている.

一連の研究では,北海道大学の鬼柳善明名誉教授(現:名 古屋大学特任教授),古坂道弘特任教授,大沼正人教授,加 美山隆准教授,名古屋大学の塩田佳徳研究員,日本原子力研 究開発機構の篠原武尚研究副主幹,諸岡聡研究員,豊橋技術 科学大学の戸高義一准教授,茨城大学の岩瀬謙二准教授から 多大な指導・助言・協力を賜りました.また,京都大学の大 場洋次郎助教には,パルス中性子透過分光法に関する開発研 究において多大な尽力をいただくと共に,本稿執筆の機会を 頂戴致しました.ここに記して謝意を表します.

## 文 献

- (1) E. Fermi, W. J. Sturm and R. G. Sachs: Phys. Rev., **71**(1947), 589–594.
- (2) J. R. Santisteban, L. Edwards, M. E. Fitzpatrick, A. Steuwer, P. J. Withers, M. R. Daymond, M. W. Johnson, N. Rhodes and E. M. Schooneveld: Nucl. Instrum. Methods A, 481(2002), 765–768.
- (3) H. Sato, T. Sato, Y. Shiota, T. Kamiyama, A. S. Tremsin, M. Ohnuma and Y. Kiyanagi: Mater. Trans., 56(2015), 1147– 1152.
- (4) H. Sato, T. Kamiyama and Y. Kiyanagi: Mater. Trans., **52** (2011), 1294–1302.
- (5) H. Sato, T. Shinohara, R. Kiyanagi, K. Aizawa, M. Ooi, M. Harada, K. Oikawa, F. Maekawa, K. Iwase, T. Kamiyama and Y. Kiyanagi: Phys. Procedia, 43(2013), 186–195.
- (6) H. Sato, T. Kamiyama, K. Iwase, T. Ishigaki and Y. Kiyanagi: Nucl. Instrum. Methods A, 651 (2011), 216–220.
- (7) Y. Kiyanagi, H. Sato, T. Kamiyama and T. Shinohara: J. Phys. Conf. Ser., **340**(2012), 012010.
- (8) H. Sato, Y. Shiota, T. Kamiyama, M. Ohnuma, M. Furusaka and Y. Kiyanagi: Phys. Procedia, 60(2014), 254–263.
- (9) T. Shinohara and T. Kai: Neutron News, **26**(2015), 11–14.
- (10) H. Sato, O. Takada, S. Satoh, T. Kamiyama and Y. Kiyanagi: Nucl. Instrum. Methods A, 623 (2010), 597–599.
- (11) S. Uno, T. Uchida, M. Sekimoto, T. Murakami, K. Miyama, M. Shoji, E. Nakano, T. Koike, K. Morita, H. Satoh, T. Kamiyama and Y. Kiyanagi: Phys. Procedia, 26(2012), 142– 152.
- (12) A. S. Tremsin, J. B. McPhate, A. Steuwer, W. Kockelmann, A. M Paradowska, J. F. Kelleher, J. V. Vallerga, O. H. W. Siegmund and W. B. Feller: Strain, 48(2012), 296–305.
- (13) F. Maekawa, K. Oikawa, M. Harada, T. Kai, S. Meigo, Y. Kasugai, M. Ooi, K. Sakai, M. Teshigawara, S. Hasegawa, Y. Ikeda and N. Watanabe: Nucl. Instrum. Methods A, 600 (2009), 335–337.
- (14) H. Sato, Y. Shiota, T. Shinohara, T. Kamiyama, M. Ohnuma, M. Furusaka and Y. Kiyanagi: Phys. Procedia, 69(2015), 349– 357.
- (15) T. Ishigaki, A. Hoshikawa, M. Yonemura, T. Morishima, T. Kamiyama, R. Oishi, K. Aizawa, T. Sakuma, Y. Tomota, M. Arai, M. Hayashi, K. Ebata, Y. Takano, K. Komatsuzaki, H. Asano, Y. Takano and T. Kasao: Nucl. Instrum. Methods A, 600(2009), 189–191.

究員

2011年4月

2012年4月 現職



佐藤博隆

宇宙線(中性子)ソフトエラー ◎中性子透過法ならびに中性子イメージング法の開発 とその金属材料研究への応用に従事.

専門分野:中性子工学,中性子イメージング,結晶構

\*\*\*\*\*

日本原子力研究開発機構 J-PARC セン ター物質・生命科学ディビジョン博士研

造,金属組織,ひずみ・応力,画像工学,

2008年4月 日本学術振興会特別研究員 DC1 2011年3月 北海道大学大学院工学研究科量子理工学

専攻博士後期課程修了

<sup>\*\*\*\*\*\*</sup>