マグネシウム合金の変形・破壊における 変形双晶の役割と新合金探索

安藤大輔*

shinshinkiei

1. はじめに

このたびは本誌へ執筆の機会を頂き感謝しています. 私は 学部生時代から今まで,汎用 Mg 展伸材である AZ31 合金 や,レアアース(RE)添加 Mg 合金における変形・破壊時の 変形双晶の役割について基礎研究を行ってきました.本稿で は,それら実験結果の紹介と,近年独自に取り組んでいる Mg 合金を Ti 合金のように材料組織制御したいという研究 についても触れさせて頂きます.

2. Mg 合金の現状と低成形性の要因

Mg 合金は構造用金属材料中で最軽量であり、Al 合金に 匹敵する比強度を持つという利点から,現在では携帯電話, カメラ,ノートパソコン等のモバイル機器筐体に採用され, 将来的には自動車や列車等の輸送機器への応用も期待されて いる.輸送機器等の大型部材適用には,高効率・低コストで あるプレス成型が容易に行えることが必要不可欠と考えられ ている.しかしながら,Mg 合金は室温でのプレス成型が困 難であることが知られている.その原因は,Mg 合金が結晶 構造を稠密六方晶とするため,避けることの出来ない変形異 方性が存在し,更に底面すべりが他のすべり系に比べて顕著 に起こりやすく,等方変形に必要な Von Mises の降伏条件 を満たせないことにある.また,この足りないひずみ成分を 変形双晶が補うと考えられており,Mg 合金の変形・破壊を 議論する上では欠かせない因子になっている.

3. 変形双晶タイプと変形・破壊の関係

 $Cntrue \{10\overline{1}1\}, \{10\overline{1}2\}, \{10\overline{1}3\}, \{10\overline{1}5\}, \{10\overline{1}6\}, \{1$ {3034}, {1121}など数多くの変形双晶タイプが報告されてい る⁽¹⁾⁻⁽⁵⁾.また、変形双晶を生じにくくすると延性が低下す ることや、変形後期には変形双晶内で局所的な大変形が生 じ, 晶癖面に沿って微少なクラックが形成され, 試料全体が 変形の限界を迎える前に破壊へ導くとも長年考えられてき た⁽²⁾⁻⁽⁵⁾. これらの研究は1960年代に数多く行われたが、当 時の研究手法では、単結晶試料において底面すべりのすべり 線と晶癖面の角度を光学顕微鏡観察で測り、この晶癖面を双 晶面と考えた場合に幾何学的関係から双晶タイプを決定して きた.しかし、吉永らはこれらの双晶面がしばしば晶癖面か ら逸脱し、見かけからは双晶タイプを推定できないと報告し ている⁽³⁾. 実際, Reed-Hill らは{3034}晶癖双晶を観察し, 破壊と双晶の関係を示唆したが⁽⁴⁾,後に,{3034}晶癖双晶 は{1011}双晶とそれに続く2次{1012}双晶から成る二重双 晶であった,と訂正している⁽⁵⁾.一方,ここ10年において は、走査電子顕微鏡観察(SEM)において電子線後方散乱回 折法(Electron Backscatter Diffraction: EBSD)という結晶解 析が進んでいる.しかしながら、この方法では母相と変形双 晶の底面方位差から変形双晶タイプを考えるため, 複合的な 双晶や未知の双晶が生じた場合には対応出来ないことがあっ た.(この点に関して,最近のめざましい EBSD 測定の高速 度化・高精度化により、極微細な領域の双晶タイプを特定出 来るようになってきた.本稿では、私の10年の研究結果を 振り返るため, EBSD 測定に頼らない実験方法について示

* 東北大学大学院工学研究科·助教(〒980-8579 仙台市青葉区荒巻字青葉 6-6-11-1016)

The Role of Deformation Twinning on Magnesium Alloy during Tensile Deformation and Development of Novel Magnesium Alloy; Daisuke Ando(Department of Materials Science and Engineering, Tohoku University, Sendai) Keywords: magnesium alloy, deformation twin, double twinning, localized deformation, basal texture, non-basal slip, dual phase magnesium

Keywords: magnesium alloy, deformation twin, double twinning, localized deformation, basal texture, non-basal slip, dual phase magnesium alloy

2016年3月1日受理[doi:10.2320/materia.55.377]

す.)また, EBSD 測定を行うためには試料表面を研磨する 必要があり,変形によって生じた大変形部分と変形双晶の関 係を直接的に示すことはできない.つまり,どの変形双晶 が,どの程度変形に寄与するか,などについては分かってい なかった.そこで,私は,この50年来の基礎研究を現代の 最新装置である SEM/EBSD,集束イオンビーム装置(FIB) や透過電子顕微鏡(TEM)を用い,変形双晶個々の役割と早 期破壊に至るメカニズム解明という視点で研究を行った.

4. 実験方法

変形時に形成された局所変形部と変形双晶の関係を明確に するため、以下のような実験方法で研究を行った.

引張試験片を平滑に鏡面研磨し、その後化学研磨(液組 成;硝酸8ml,無水エタノール50ml)を行って表面酸化物 等を除去した.この試料表面に FIB を用い,10 µm 角の格 子状のけがき線を400本描いた.これらの格子は光学顕微鏡 で偏光させなければ観察出来ないほど非常に細かく浅いため に,変形,特に破壊に寄与しない.表面酸化を防ぐために直 ちに同箇所を EBSD 測定し結晶配向の情報を得た.続い て, 引張試験を初期ひずみ速度 10⁻³ s⁻¹ で行った. この過 程により、変形前の結晶配向情報と、変形による格子毎のひ ずみ量実測値の対応が可能となった.また,FIBを用い, 表面起伏やクラックを伴い局所的に大変形した箇所や、双晶 が形成することで初期結晶配向から予測される変形量とは異 なる挙動を示した結晶粒を対象に断面 TEM 試料を作製し, 内部組織を詳細に観察した.また、各変形双晶が引張変形の 過程で形成される量について、試料全体に対する変形双晶の 占める面積率として調査した.

5. 底面集合組織を有する AZ31 合金の場合

AZ31 合金は,第2章で示したように,底面すべりがその 他のすべり系よりも活発に働くために,圧延や押出加工の過 程で強い底面集合組織を形成してしまう.今回実験に用いた 試料は AZ31 合金延板であり,典型的な底面集合組織を有し ていた.

図1に変形前の結晶配向と、変形前後の試料表面の観察結

果を示した. EBSD 結果から,多くの結晶粒が底面配向だ が,その中にも c 軸が引張方向に対して30度ほど傾き,底面 すべりの Schmid 因子が大きい結晶粒も少なからず存在した. 10%のひずみを与えると,そのひずみは結晶粒毎に異なっ た分布をとっていた.ここでは,2つの特徴的な結晶粒に注 目する.1つは,底面すべりの Schmid 因子が大きいのに, 結晶粒内の変形量が著しく少ない結晶粒 A であり,もう一 つは,底面配向し底面すべりの Schmid 因子が0 に近いのに 局所的に大変形している結晶粒 B である.これらの結晶粒 に共通な点は,結晶粒内に変形双晶を伴うことであった.

図2に前者のほとんど変形していない結晶粒Aとその断 面観察結果について示す.このような結晶粒には必ずレンズ 状の変形双晶が形成されていた.この双晶を含む領域から断 面TEM 試料を作製し,観察すると,底面が[1210]軸回り に86度回転していることが制限視野回折より分かった.こ のタイプは{1012}引張双晶である.このように底面すべり の生じやすい結晶粒は,同時に{1012}双晶のSchmid 因子も 大きくなる.底面すべりに続いて{1012}双晶が形成される と,底面すべりのひずみ成分を打ち消すように変形双晶が生 長するために,この結晶粒はほとんど変形しないように振舞 うことがわかった.

それに対し,後者の局所大変形を生じる結晶粒にはバンド 状の変形双晶が必ず形成されており,表面起伏やクラックを 伴っていた.このような結晶粒の一例を図3に示す.図中央

図2 (a)変形量が小さくレンズ状の双晶が形成した結 晶粒 A. (b)レンズ状の双晶を含んだ結晶粒 A の 断面 TEM 像と SAD.

図1 (a)変形前の IPF, (b)変形前, (c)変形後の試料表面格子.

の表面起伏部に変形が集中し、実際の負荷ひずみの数倍変形 している.この表面起伏を断面組織観察した結果,表面起伏 内部はバンド状に折り重なった変形双晶によって構成されて いた.この双晶帯を詳細に観察したところ,はじめに底面配 向した結晶粒内に{1011}圧縮双晶が形成,直ちにその圧縮 双晶内部に{1012}双晶が同じ双晶回転軸で形成して生じる {1011}-{1012}二重双晶であることがわかった. {1011}双晶 内に{1012}双晶が形成される理由は、上記の{1012}双晶の 形成傾向と同様に Schmid 因子に従って生じる. しかしなが ら、{1011}双晶は双晶幅が細いために{1012}双晶はすぐに 双晶内の配向を完全に変化させ,二重双晶内の底面は母相に 対して c 軸が37.5度ほど傾いた配向となる.二重双晶内部が 母相に対して底面すべり変形が容易なため、変形が局在化 し、上記のような表面起伏やクラックを形成して早期破断に 至ると考えられる. また, このときに二重双晶内部に {1012}双晶を再度形成して多重双晶化するが、形成のたび に{1012}双晶形成の Schmid 因子が次第に小さくなるために 局所変形を止めることはできない. これらの成果は、変形双 晶が変形・破壊に関与していることを直接的に示した初めて の結果である.参考文献⁽⁶⁾⁻⁽⁸⁾に詳細があるのでご参照いた だきたい.

次に,変形初期から破壊に至るまでに形成される変形双晶 量の推移について応力-ひずみ曲線との対応を図4(a)に示

図3 (a)変形量が大きくバンド状の双晶が形成した結 晶粒 B. (b)バンド状の双晶を含んだ結晶粒 Bの 断面 TEM 像と SAD.

図4 (a)AZ31 合金引張時の応力-ひずみ曲線と変形双 晶形成量.(b)Mg-Y引張時の応力-ひずみ曲線と 変形双晶形成量.

す.変形双晶は変形初期と後期に著しく増える傾向にあり, 前者はレンズ状の $\{10\overline{1}2\}$ 双晶であり,後者はバンド状の $\{10\overline{1}1\}$ - $\{10\overline{1}2\}$ 二重双晶の形成に由来することがわかってい る⁽⁹⁾. $\{10\overline{1}1\}$ - $\{10\overline{1}2\}$ 二重双晶がわずか数%形成された後に 破断に至ることも,この二重双晶が破壊機構に寄与すると言 えるであろう.そのため,二重双晶形成は敬遠され, $\{10\overline{1}1\}$ 双晶形成を抑制するために結晶粒微細化⁽¹⁰⁾や,初期 結晶配向のランダム化⁽¹¹⁾を目指した研究が数多く行われて いる.

6. 底面集合組織を有さない Mg-0.6 at%Y 合金の場合

RE を Mg に添加することで,結晶粒微細化,底面集合組 織弱化することが経験的に知られており,さらに近年の研究 では非底面すべりが活発になることも報告され,新規 Mg 合金開発に活かされている.なぜ,上記のような効果が現れ るかに関する詳細は参考文献(12)-(14)を読んでいただき, 本稿では,RE 添加合金で代表的な Mg-Y 合金において変形 双晶と変形・破壊との関係性に注目して述べる.結晶粒を微 細化すると変形双晶が形成されにくいので,本実験では AZ31 合金と同様に 50 μm 以上の比較的大きな結晶粒の試 料を用いた.

図4(b)は、変形初期から破壊に至るまでに形成される変 形双晶量の推移について応力-ひずみ曲線との対応を示して いる. Mg-Y 合金の降伏応力は 70 MPa と低いが, 破断伸 びが50%程度であり、底面集合組織を有したマグネシウム 合金と比べて延性に富んでいる.変形双晶の形成量に注目す ると、AZ31 合金の場合と同様に二段階の増加を示した. Mg-Y 合金の場合には双晶タイプ毎に分けてプロットして いる. AZ31 合金と同様に初期にはレンズ状の{1012} 双晶, 後期にはバンド状の圧縮系二重双晶が形成され面積率を増や していた.しかしながら,それらが形成するひずみ量に注目 して欲しい.底面集合組織を有する AZ31 合金では、ひずみ 量が10%程度から二重双晶が形成され始めたのに対して, Mg-Y 合金では30%を超えないと二重双晶は形成されてい ないことがわかる.これは、Mg-Y 合金では底面集合組織 が弱いために{1012}双晶が生じうる結晶配向の結晶粒が多 いことに関係している.つまり、初期配向に{1012}双晶が 生長できるうちは二重双晶の形成が遅延されることを示唆し ている.実際に、図5で示すようにひずみ量が30%の時に 結晶配向が引張方向に対してほぼ垂直で{1012}双晶がこれ 以上形成しがたくなっている.この結晶配向では{1011}圧 縮双晶形成のSchmid 因子が大きくなり,生じやすい. AZ31 合金のように底面が引張方向と垂直,かつ板面に対し て平行な強い底面集合組織が形成される場合には板厚方向に 縮む向きにのみ二重双晶が形成されるのに対して, Mg-Y 合金のように底面集合組織が引張方向と垂直であるが, ND 方向一点に集中せず,ND-TD 面上に c 軸が配向する場合に は、二重双晶は板厚方向並びに板幅方向にも縮むひずみを担 うことが出来る.

また, 双晶形成量に注目すると, AZ31 合金では{1012}双 晶が15%程度、二重双晶が7%程度の面積率形成された時点 で破断に至るのに対して, Mg-Y 合金では{1012}双晶が 20%以上,二重双晶も15%以上も形成している. {1012}双 晶ならびに{1011}双晶は、形成時に13%程度のせん断ひず みを生み出すので,双晶形成量が多いことは,変形双晶が生 み出すひずみ量が多いことを意味する. さらに, AZ31 合金 と同様に圧縮系二重双晶の内部では母相に比べて局所的に大 変形することから、この二重双晶が多く形成出来ることは高 延性への寄与率も大きいと考える. 二重双晶が形成されて も、すぐに破壊に至らない理由は、非底面すべりが活発に生 じるので、底面配向した結晶粒でも比較的変形出来ることが 過度な局所変形に至らないと考えている. 上記の理由から, 底面配向していない Mg 合金板材の引張変形においては, 変形双晶はひずみを担い、等方変形しやすくなり、高延性化 に寄与している.

7. BCC 構造を有する Mg-Sc 合金の開発

従来の Mg 合金における強度・延性を改善する手法は, HCP 母相に対して固溶あるいは析出を利用する方法に限定 され、構造材料としてライバルの Al 合金並の特性を得るに は限界がある.このことは,近年注目されている RE 添加合 金においても同様であり、母相の選択肢に HCP 単相しかな いことが、Mg 合金の組織制御において根本的問題である. Ti 合金のように, HCP+BCC の二相組織を有する高強度・ 高延性 Mg 合金を得ることは長年の夢であるが、いまだ実 現されていない. そのなかで, Mg-Li 合金は唯一 HCP+ BCC 二相組織を有すると報告され、等方変形して破断伸び が30%超、150℃では超塑性を発現するなど興味深い結果が 得られている⁽¹⁵⁾.しかし,室温の引張強度が130 MPa 程度 と非常に低く, Li は卑な金属で耐食性が著しく悪い. また, Mg-Li 合金における HCP/BCC 二相組織は共晶組織(L→ HCP+BCC)であるため, Ti 合金のように BCC/HCP 変態 を利用した加工熱処理プロセスや時効熱処理による組織制御 はできない.

以上の背景より,筆者は,Ti合金のようにBCC/HCP変態 による組織制御が可能なBCC/HCP二相Mg合金の可能性 としてMg-Sc合金を見出し,基礎研究を続けてきた.既存

図6 (a) Mg-16.8 at % Sc 合金 BCC 単相試料の時効硬 化挙動. (b) 最高硬さ時の内部組織 TEM 観察.

の状態図⁽¹⁶⁾によれば Mg–Sc 系は高 Mg 濃度側まで β–Sc の BCC 相が張り出し,同組成において高温相の BCC 相から安 定相の HCP 相が析出しうる唯一の系である.

拡散対法および合金法にて、状態図を再考したところ、過 去に報告されていた状態図(16)において点線表示されていた 二相共存域はさらに低 Sc 側に拡がっていることがわかり, 700℃で均質化し急冷すると Mg-16.8 at%Sc でも BCC 単相 が得られることがわかった. もちろん, この BCC 相は室温 では安定相ではなく、時効熱処理を行うことで微細な HCP 相が Burgers の関係で析出する. 200℃で時効した場合のビ ッカース硬さに関して図6(a)に示す. BCC 相単相の初期硬 さは約100Hvであり、潜伏期間を経て、600sほどから急 激に硬さが上昇する. その後, 18ks でピークをとり230 Hvとなった.この最高硬さ時の組織を図6(b)に示す. BCC 相内部に幅 50 nm 以下,長さ 300 nm 以下の針状の HCP 相が高密度に析出していた.また,初期組織を BCC+ HCP 二相組織として同様の時効熱処理を行っても, BCC 相 中に微細な HCP 相が析出し、バイモーダルな組織とするこ とも出来た. さらに, 高温相の BCC 相からの冷却過程で冷 却速度を変えるだけで析出する HCP 相の様相を変えること もでき、Ti 合金のような組織制御が可能であることがわか った.結果に関する詳細は参考文献(17),(18)を参照いただ きたい.

今後はこの合金系に第三元素を加えて BCC 相が存在でき る Sc 量を低減すること, BCC + HCP 二相組織における変 形破壊機構の調査, Mg-Sc 合金が Ti 合金のように様々な用 途に対応出来るような組織制御などについて研究していく考 えである.今後の展開に期待していただきたい.

8. おわりに

Mg-Sc 合金の研究は JSPS 科研費23860009,25820364の 支援により行われ,Mg-Y 合金に関する研究はトヨタ自動 車株式会社との共同研究により行われました.この場を借り まして感謝申し上げます.また,研究を遂行するにあたり, 東北大学小池淳一教授,須藤祐司准教授から多大なるご指 導,ご助言頂きました.本誌面を借りて心より御礼申し上げ ます.

文 献

- (1) S. L. Couling and C. S. Roberts: Acta Crystallogr., **9**(1956), 972–973.
- (2) J. van Der Planken and A. Deruyttere: Phys. Stat. Sol., 28 (1968), K9–K10.
- (3) H. Yoshinaga, T. Obara and S. Morozum: Mater. Sci. Eng., **12** (1973), 225–264.
- (4) R. E. Reed-Hill and W. D. Robertson: Acta Met., 5(1957), 717-727.
- (5) R. E. Reed-Hill: Trans. AIME, 218(1960), 554-558.
- (6) 安藤大輔,小池淳一:日本金属学会誌,71(2007),684-687.
- (7) D. Ando, J. Koike and Y. Sutou: Acta Met., 58(2010), 4316– 4324.

- (8) D. Ando, J. Koike and Y. Sutou: Mater. Sci. Eng. A, 600 (2014), 145–152.
- (9) 小池淳一, 宮村剛夫: 軽金属, 54(2004), 460-464.
- (10) K. Kubota, M. Mabuchi and K. Higashi: J. Mater. Sci., 34 (1999), 2255–2262.
- (11) A. Yamashita, Z. Horita and T. G. Langdon: Mater. Sci. Eng. A, **300**(2001), 142–147.
- (12) S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi and R. Gonzalez-Martinez: Acta Mater., 59(2011), 429–439.
- (13) J. P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J. A. Wollmershauser and S. R. Agnew: Metall. Mat. Trans., 43A (2012), 1347–1362.
- $(14)\;$ D. Griffiths: Mater. Sci. Technol., $\mathbf{31}(2015),\,10\text{--}24.$
- (15) F. E. Hauser, P. R. Landon and I. E. Dorn: Trans. ASM, 50 (1958), 856–883.
- (16) B. J. Beaudry and A. H. Daane: J. Less-Common. Met., 18 (1969), 305–308.
- (17) D. Ando, Y. Ogawa, T. Suzuki, Y. Sutou and J. Koike: Mater. Lett., 161 (2015), 5–8.
- (18) 小川由希子,安藤大輔,須藤祐司,小池淳一:日本金属学会 誌,80(2016),171-175.

安藤大輔

の解明に従事. ★★★★★★★★★★★★★★★★★★