講義ノート

鉄鋼の相変態 —マルテンサイト変態編 Ⅱ — 鉄合金マルテンサイトの内部微視組織 および加工誘起変態 —

2. 鉄合金マルテンサイトの内部微視組織

2.1 はじめに

前号の図1・3で示したように,鉄合金のα'マルテンサイトには、ラス、バタフライ、レンズ、薄板状の4つの形態のマルテンサイトが存在し、それぞれが異なった生成温度範囲を持っている⁽¹⁾⁻⁽³⁾.図2・1⁽²⁾はFe-Ni-C合金で生成するマルテンサイトの形態と生成温度の関係をまとめたもので、 生成温度が高温から低温になるにつれて、ラス→バタフライ

図2·1 Fe-Ni-C 合金において生成する α' マルテンサ イトの形態と生成温度および C 量の関係.

牧 正 志*

→レンズ→薄板状と変化していく.この図では、各マルテン サイトの生成温度を炭素(C)量で整理してあり、同じC量で はNi量が増すほどマルテンサイトの生成温度(M_s 点)が低 下する.

これらのうち, ラスは熱処理用鋼に現れる実用上最も重要 なマルテンサイトであり, 薄板状マルテンサイトは形状記憶 効果を示すものとして重要である.また, レンズマルテンサ イトは内部微視組織や結晶学的特徴がラスと薄板状の両方の 特徴をもっているため, α' マルテンサイトの形態変化がお こる理由を解明するための情報が得られる.ここでは,これ らのマルテンサイトの内部微視組織について最近の知見を含 めて述べる.

2.2 ラスマルテンサイト

2.2.1 ラスマルテンサイトの生成挙動と組織の特徴

ラス(lath)マルテンサイトの形態は図2・2(a)に示したよう に一方向(矢印方向)に伸びた幅のせまい薄い板状であり,板 面が晶癖面である. 個々のラスは厚さが約 0.2 µm 程度と極 めて微細である. 一般に,母相とK-S 関係を満たし,晶癖 面は最密面平行関係の $\{111\}_y$ 近傍,ラスの長手方向は最密 方向平行関係の $\{111\}_y$ である. ただし最近の EBSD 法によ る詳細な観察により,結晶方位関係は厳密に K-S 関係では なく,それより数度ずれており,ラス間でもばらつきがある ことが報告されている⁽⁴⁾.

ラスマルテンサイトは、図2・2(b)のようにオーステナイ ト粒界で核生成し、その後粒内に向かって同じ晶癖面を持つ ラスが隣接し次々と核生成して平行なラスの集団を形成す

* 京都大学;名誉教授

Phase Transformations in Steel —Martensite Transformation II: Substructure of Martensite and Deformation–Induced Transformation in Ferrous Alloys—; Tadashi Maki(Emeritus Professor, Kyoto University, Kyoto)

Keywords: martensitic transformation, ferrous alloy, substructure, lath martensite, variant, deformation-induced transformation, transformation-induced plasiticity (TRIP), shape memory effect

2014年11月7日受理[doi:10.2320/materia.54.626]

図2・2 (a) 一つのラスの3次元的形態,(b) 個々のラス の生成挙動,(c) ラスマルテンサイトの光顕組 織(Fe-0.2%C).

る. 光学顕微鏡では,個々のラスは細かいのでその一つひと つを識別することはできないが,特定の配列をして生成する ために,図2・2(c)のように平行な白黒のコントラストから 成る特徴的な組織(パケットやブロック)を示す.

図2・3は図2・2(c)に対応する低炭素鋼のラスマルテンサイトの組織構成を模式的に示したものである.一つのオーステナイト粒は数個のパケットに分割される.パケットは平行な(つまり同じ晶癖面の)ラスの集団からなる領域である.各パケットはさらにいくつかの帯状のブロックに分割されている.ブロックは同じ晶癖面でかつ結晶方位が同じ(つまり,後述するバリアントが同じ)ラスの集団である.ただし,低炭素鋼の場合には、ブロック内に小角をなすサブブロックを含むようになる⁽⁵⁾.このように、ラスマルテンサイト組織は、いくつかの階層組織から構成されており、旧オーステナイト粒界、パケットおよびブロック境界は大角(方位差が15°以上)をなし、サブブロックとその中の個々のラス境界の方位差は小さい.それ故、大角粒界の中の最小の組織単位であるブロックが、ラスマルテンサイトの変形や破壊を支配する有効結晶粒と考えられている.

2.2.2 結晶方位関係とバリアント

パケットやブロック内の隣接するラス間の方位関係を考え る場合には、マルテンサイトとオーステナイトの結晶方位関 係のバリアントの理解が必要である.

図2·3 低炭素ラスマルテンサイトの光顕組織の組織構成.

K-S関係の場合には、最密面平行関係になる母相{111}面 には等価な面が4つあり、それぞれの面内にある最密方向 平行関係の組み合わせが6通りあるので、K-S関係には 表2・1に示すような24通りの結晶学的に等価な組み合わせが 存在する. つまり, 一つのオーステナイトから, 同じ結晶方 位関係(この場合は K-S 関係)を持って生成しても,24通り の結晶方位が異なるマルテンサイトが生成するわけで、これ らをバリアント(兄弟晶)という. 図2・4には, K-S 関係の24 通りのバリアントの相対的な方位関係を示してある.表2.1 中の CP は最密面平行関係を共有するバリアントグループで CP1~CP4の4種類あり,例えばCP1にはV1~V6が属す る. この表には参考までに Bain グループも示されている. ベイングループは Bain の方位関係に近い方位 (図2・4の 〈001〉,近傍にあるもの)を持つバリアントグループのことで, $B1 \sim B3 \circ 3$ 種類ある⁽⁴⁾. たとえば、B1には、 $22.4 \circ$ [001],近傍の V1, V4, V8, V11, V13, V16, V21, V24 が属 し, それぞれの方位差は小さい.

パケットは同じ晶癖面つまり同じ最密面平行関係を共有す る CP グループに属する 6 つのバリアントのラスにより構成 される.図2・5に(111),を最密面平行関係にもつ CP1 グル ープに属する V1~V6 のバリアントの相対的な方位の関係 を示す.図2・4と図2・5から分かるように、V1-V4, V3-V6, V5-V2 間の方位差は小角(10.5°)であり、それ以外の組み合 わせは大角をなす.パケット内のブロックは単一のバリアン トまたは互いに小角をなす V1-V4 のようなバリアントから 成っている.ブロック内の小角をなすラスの集団をサブブロ ックと呼ぶ.

なお,この様に同一 CP グループの6つのバリアントのラ スが隣接して生成する理由は,マルテンサイト生成に伴い導 入される周囲母相の弾性エネルギーをなるべく低下させるよ うなバリアントが集団で生成する自己緩和機構が働くためで ある.

2·2·3 内部微視組織

ラスマルテンサイトの内部には高密度の転位(転位密度は

表2·1 K-S関係の24通りのバリアント, CP グルー プ:同じ最密面平行関係を持つグループ, Bain グループ:同じベイン対応を持つグループ.

バリアント 番号	最密面平行関係	最密方向平行関係	Bain グループ
1		$\lceil \overline{1}01 \rceil \gamma / / \lceil \overline{1}\overline{1}1 \rceil \alpha'$	B1
2	(111)//(011) /	$[\overline{1}01]\gamma//[\overline{1}1\overline{1}]\alpha'$	B2
3	$(111)\gamma/(011)\alpha$ 星密西グル、プロ	$[01\overline{1}]\gamma//[\overline{1}\overline{1}1]\alpha'$	B3
4	取留面グルーノI CD 1	$[01\overline{1}]\gamma//[\overline{1}1\overline{1}]lpha'$	B1
5	CP 1	$[1\overline{1}0]\gamma//[\overline{1}\overline{1}1]lpha'$	B2
6		$[1\overline{1}0]\gamma//[\overline{1}1\overline{1}]lpha'$	B3
7		$[10\overline{1}]\gamma//[\overline{1}\overline{1}1]lpha'$	B2
8		$[10\overline{1}]\gamma//[\overline{1}1\overline{1}]lpha'$	B1
9	$(1\bar{1}1)\gamma //(011)\alpha '$	$[\overline{1}\overline{1}0]\gamma//[\overline{1}\overline{1}1]lpha'$	B3
10	CP 2	$[\bar{1}\bar{1}0]\gamma//[\bar{1}1\bar{1}]lpha'$	B2
11		$[011]\gamma//[\overline{1}\overline{1}1]lpha'$	B1
12		$[011]\gamma//[ar{1}1ar{1}]lpha'$	B3
13		$[0\overline{1}1]\gamma//[\overline{1}\overline{1}1]lpha'$	B1
14		$[0ar{1}1]\gamma//[ar{1}1ar{1}]lpha'$	B3
15	$(\bar{1}11)\gamma //(011)\alpha '$	$[\overline{1}0\overline{1}]\gamma//[\overline{1}\overline{1}1]lpha'$	B2
16	CP 3	$[\overline{1}0\overline{1}]\gamma//[\overline{1}1\overline{1}]lpha'$	B1
17		$[110]\gamma//[\overline{1}\overline{1}1]lpha'$	B3
18		$[110]\gamma//[\overline{1}1\overline{1}]lpha'$	B2
19		$[\bar{1}10]\gamma//[\bar{1}\bar{1}1]\alpha'$	B3
20		$[\overline{1}10]\gamma//[\overline{1}1\overline{1}]\alpha'$	B2
21	$(11\overline{1})\gamma/(011)lpha'$	$[0\overline{1}\overline{1}]\gamma//[\overline{1}\overline{1}1]lpha'$	B1
22	CP 4	$[0\overline{1}\overline{1}]\gamma//[\overline{1}1\overline{1}]lpha'$	B3
23		$[101]\gamma//[\overline{1}\overline{1}1]lpha'$	B2
24		$[101]\gamma//[\overline{1}1\overline{1}]lpha'$	B1

図2・4 オーステナイトの001標準投影図に示した K-S 関係の24通りのバリアント(各バリアントの <001>方向を表示).

10¹⁵~10¹⁶ m⁻² のオーダー)が存在し,図2·6に示すように絡 み合ったセル状の転位組織を呈するのが特徴である. 図2·7⁽⁶⁾は転位密度に及ぼす C 量の影響を示しており,C 量 が増すにつれて転位密度が大きくなる.なお,転位密度の測 定法には,X線回折法と透過電顕観察があるが,一般に, 前者の方が大きい値が得られる傾向がある.また,C 量が増 えると,ラス内に転位以外に変態双晶が局在して存在するよ

バリアント番号:γとの結晶方位関係	V1との方位差
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	双晶関係 双晶関係から10.53° 小角(10.53°) 双晶関係から10.53° 双晶関係から21.06°

図2·5 K-S関係において同じ最密面平行関係を持つバ リアント(CP1グループのV1~V6)間の相対的 方位関係(紙面は(111)_y//(011)_α).

図2·6 ラスマルテンサイトの透過電顕組織(Fe-1.5%Mn).

うになるが、その量は少なく主要な欠陥ではない.

図1・11(前号)で述べたように、C量が約0.6%以上の高炭 素になると残留オーステナイトが存在するようになる.約 0.4%C以下の低炭素鋼では、X線測定ではほとんど残留オ ーステナイトは検出されないが、ラスの境界にCが濃縮し た非常に薄いフィルム状の残留オーステナイトが存在するこ とがある.その成因は、ラスの変態温度が高温にあるのでC の拡散が容易におこり、変態後マルテンサイト中のCが周 囲のオーステナイトに拡散して濃化し安定になったためであ る.

図2・7 Fe-C ラスマルテンサイトの転位密度におよぼ す C 量の影響(透過電顕による測定結果).

2.3 薄板状マルテンサイト

2·3·1 内部微視組織

薄板状マルテンサイトは、図2・8に示すように、界面が平 滑で、その内部は薄い(112)双晶(約10~20 nm 厚)が貫通し た完全双晶マルテンサイトである. このマルテンサイトに特 徴的なことは、マルテンサイトの周囲のオーステナイトに転 位が存在していないこと、つまり、変態歪が母相では弾性変 形によって緩和されていることである. ラスやレンズマルテ ンサイトでは、周囲のオーステナイトは変態歪により塑性変 形を受け、多くの転位が存在する.

薄板状マルテンサイトは,晶癖面が $\{3\ 15\ 10\}_y$,母相との結晶方位関係は G-T 関係であり,現象論的理論から予想されるものとよく一致する.現象論的理論が合うのは,鉄合金の α' マルテンサイトの中では薄板状マルテンサイトだけである.このマルテンサイトが生成する合金としては,Fe-Ni-C, Fe-Ni-Co-Ti, Fe-Pt 合金などが報告されており,いずれの合金でも bct 構造である.

2.3.2 薄板状マルテンサイトの変態挙動

レンズやラスマルテンサイトは核生成後最終の大きさまで 瞬時に成長し、その後さらに冷却しても界面の移動度を失っ ているため成長しない(前号の図1·10参照).しかし、薄板 状マルテンサイトは、図2·9に示すように冷却時に温度低下 とともに界面が移動して厚さを増し、加熱すると界面の移動 によって収縮し母相にもどる⁽²⁾.母相とマルテンサイトの界 面が移動度を保持している理由は、界面の整合性が維持され ているためで、それにはマルテンサイト変態時に母相が塑性 変形しないことが関与していると考えられる.この界面の可 逆的な移動によりマルテンサイトが成長・収縮するという性 質は、Ti-Ni などの非鉄の形状記憶合金の熱弾性マルテンサ イトの特徴と同じで、薄板状マルテンサイトを使えば鉄合金 でも形状記憶合金になる可能性があることを意味する.

2.4 レンズマルテンサイト

2.4.1 レンズマルテンサイトの生成挙動

レンズマルテンサイトは Ms 点で一度に多量のマルテンサ

図2·8 薄板状マルテンサイトの透過電顕組織(Fe-30% Ni-0.42%C).

図2・9 薄板状マルテンサイトの冷却・加熱時の正変 態・逆変態挙動.

イトが爆発的に生成し、図1·3(前号)に示したように稲妻状 を呈する.これをバースト現象といい、 M_s 点の代わりに M_b 点と呼ばれることもある.また、図1·10(前号)に示した ように、 M_s 直下で生成したものはオーステナイトの粒界か ら粒界まで瞬時に成長するので、マルテンサイトの大きさは オーステナイトの粒径に支配される.ところが温度低下によ って変態が進行すると、最初のマルテンサイトによって分割 されたオーステナイト内で変態が次々とおこる.このような 分割効果のために変態の後期に生成するマルテンサイトは非 常に小さくなる.ラスマルテンサイトの場合には、図2·2(b) に示したように、一つのラスの近傍に次々と新しいラスが生 成し、オーステナイトの分割効果がないので、ラスの大きさ はオーステナイト粒径に依存しない.

2·4·2 内部微視組織

レンズマルテンサイトは、図2·10(a)のように界面は凸レ ンズ状に湾曲しており、生成温度(Ms 点)が高くなるほど凹 凸を呈して不規則になる.内部微視組織はラスや薄板状に比 べて非常に複雑で、図2·10(b)に示したように中央部の完全 双晶から成るミドリブ(通常 0.5~1.0 µm 程度の幅),その周 囲に部分的に変態双晶が存在する双晶領域,さらにその外側 の転位が存在する非双晶領域,の3つの領域から構成され ている.レンズマルテンサイトの界面は平滑でないので、習 慣的に中央の薄い板状のミドリブを晶癖面とみなして解析さ れている.

双晶領域(図2·10(c))では、ミドリブから外周部に行くに つれて双晶密度が徐々に小さくなる.非双晶部では、図2・ 10(d)に示すように、複数種類の直線的な転位(らせん転位) が存在し、絡み合ったセル状の転位が存在するラスマルテン サイト(図2・6)とはその様相が大きく異なる.

レンズマルテンサイトの,成長に伴う内部組織の変化は 図2・11⁽⁷⁾のように考えられる.レンズマルテンサイトでも変 態初期にはまず薄板状マルテンサイトが生成し,その後瞬時 に側面への成長がおこる.このとき,変態時の発熱による局 所的な温度上昇によって格子不変変形の様式が双晶からすべ りに変化して,双晶領域および非双晶領域が形成される.さ らに非双晶領域の転位組織も変化する.双晶領域に近いとこ ろでは図2・10(d)のような直線的な複数組のらせん転位が存 在する.一方,界面近傍になるとラスと同様の湾曲し絡み合 った転位が存在するようになり,これは周囲のオーステナイ トに導入された転位がマルテンサイト内に受け継がれたもの である⁽⁷⁾.この結果は,ラスマルテンサイトの絡み合ったセ ル状の転位組織(図2・6)の本性は,変態歪を緩和するために 母相に導入された転位が受け継がれたものであることを示唆 するものである.

図2・11に示したような成長に伴う内部微視組織の変化に 対応して、ひとつのレンズマルテンサイトでもミドリブ近傍

図2·10 レンズマルテンサイト: (a), (b) 光顕組織 (Fe-

明図, (c),(d)透過電顕組織(Fe-33%Ni).

31%Ni-0.28%C.5%ナイタール腐食)とその説

Μ

(a)

(c)

100um

では結晶方位関係が G-T 関係を満たしているが,界面に向 かうにつれて K-S 関係に徐々に変化していく⁽⁸⁾. また, M_S 点が高いレンズマルテンサイトの界面は不規則な凹凸状を呈 し,ラスマルテンサイトの晶癖面に近い $\{111\}_{\gamma} \sim \{225\}_{\gamma}$ の ファセットを持つようになる⁽⁷⁾. このような観察結果より, 鉄合金の α' マルテンサイトの形態を支配する本質的な因子 は格子不変変形の様式であり,双晶変形がおこれば薄板状 が,すべり変形が起こればラスの形態になると結論できる⁽⁹⁾.

3. 加工誘起マルテンサイト変態と関連現象

3.1 加工誘起マルテンサイト変態

3·1·1 準安定オーステナイトと加工誘起マルテンサイト 変態

マルテンサイト変態は M_s 点まで冷却されて開始する.しかし,図2・12に示した様に, T_0 以下の温度ではマルテンサイトの方がオーステナイトよりも安定でありマルテンサイト変態の駆動力は発生しているが, $T_0 \sim M_s$ の間では変態の駆動力が変態をおこさせるに必要な駆動力($\Delta G_{M_s}^{\gamma \uparrow \alpha'}$)よりも小さいため,変態はおこらない.このような熱力学的に不安定な状態のオーステナイトを準安定オーステナイトという.例えば,18-8 オーステナイト系ステンレス鋼(18%Cr-8%Ni)

図2・12 オーステナイトとマルテンサイトの自由エネ ルギーと駆動力の説明図.

550

完全双晶)

(部分双晶) _____ 非双晶領域 (転位)

M)

(b)

(d)

図2·11 Fe-Ni レンズマルテンサイトの生成・成長時の内部組織変化.

準安定オーステナイトに引張または圧縮によるせん断応力 がかかると、これが一種の駆動力として作用し、変態がおこ る.この様な応力の作用による駆動力を力学的駆動力とい う.これに対して図2·12に示したような自由エネルギー差 によって発生する駆動力を化学的駆動力という. M_s 点以上 の温度でも、例えば図2·12の温度 T_1 では、化学的駆動力 $\Delta G_{T_1}^{\gamma \to \alpha}$ と力学的駆動力 U'の和が $\Delta G_{M_s}^{\gamma \to \alpha}$ に等しくなると、 マルテンサイト変態が加工によっておこる.この現象を加工 誘起マルテンサイト変態と呼ぶ.

3·1·2 力学的駆動力

力学的駆動力は、付加応力がマルテンサイト変態時に発生 するせん断変形になした仕事と等しいと考え、次のようにし て見積もることができる⁽¹⁰⁾.

図2・13(a)に示すように、マルテンサイト変態によるせん 断ひずみ量Pを、晶癖面での変態せん断量 γ_0 と晶癖面に垂 直方向の膨張量 ε_0 に分解し、単純引張または圧縮時の変態 誘起に寄与する力学的駆動力(U)をせん断応力による仕事 ($\tau\gamma_0$)と静水圧的応力による仕事($\sigma\varepsilon_0$)の和と考え、

$$U = \tau \gamma_0 + \sigma \varepsilon_0 \tag{1}$$

で示す.ここに、 τ は晶癖面において変態せん断方向にかか るせん断応力、 σ は晶癖面法線方向に働く応力である.なお、 Fe-Ni 合金のマルテンサイトでは、変態せん断量 γ_0 は約 0.20、膨張量 ε_0 は0.04程度である⁽¹⁰⁾.

図2·13(b)に示すように σ_1 方向に外力 σ_1 が作用したとき, τ および σ は

$$\tau = \frac{1}{2} \sigma_1 \sin 2\theta \cos \alpha \qquad (2)$$

$$\sigma = \pm \frac{1}{2} \sigma_1 (1 + \cos 2\theta) \tag{3}$$

で与えられる.式(3)で σ_1 が引張応力のとき+,圧縮のと き-である. θ は晶癖面(図2·13(b)のP)法線(N)と応力軸の なす角, α は晶癖面上の最大せん断応力の方向(S_m)と変態せ

図2·13 (a)マルテンサイト変態に伴う変態歪, (b)応 力と変態せん断変形の関係.

(b)

ん断の方向(S)のなす角である.式(2),(3)を式(1)に代 入して,外力 σ_1 による力学的駆動力は,

$$U = \frac{1}{2} \sigma_1 \{ \gamma_0 \sin 2\theta \cos \alpha \pm \varepsilon_0 (1 + \cos 2\theta) \}$$
(4)

となる. 多結晶試片はランダムな方位の結晶粒から成るの で、変態開始時には Uが最大になる方位のマルテンサイト 晶が生成すると考えられる. Uが最大になるのは、 $\alpha = 0, \theta$ = $\theta'(\theta' t dU/d\theta = 0$ を満たす θ の値)の時であるから、

$$U' = \frac{1}{2} \sigma_1 \{ \gamma_0 \sin 2\theta' \pm \varepsilon_0 (1 + \cos 2\theta') \}$$
 (5)

が、多結晶の場合の力学的駆動力とみなせる. $y_0 = 0.2, \varepsilon_0 = 0.04$ の場合には、引張変形のとき $\theta' = 39.5^\circ$ 、圧縮変形のとき $\theta' = 50.5^\circ$ となる⁽¹⁰⁾.

3.1.3 変態開始応力と温度の関係

図2・12に示したように、マルテンサイト変態の駆動力 $\Delta G_{M_s}^{\mu \to \alpha'}$ は T_0 より温度が低下するにつれて、ほぼ直線的に増 加するので、 M_s 点以上で加工誘起変態を起こさせるに必要 な力学的駆動力U'は、 M_s 点より温度が上昇するにつれて 直線的に大きくなる、式(5)に示したようにU'は外部応力 $\sigma_1 の 1$ 次の関数であるので、変態開始に必要な応力は加工 温度上昇に伴い直線的に大きくなる.

図2・14に、マルテンサイト変態開始応力および母相オース テナイトの降伏応力と加工温度の関係を示す.マルテンサイ ト生成に必要な応力は M_s 点から温度上昇と共に直線的に上 昇していくのに対して、オーステナイトの降伏応力は低温に なるほど大きくなるので、両者はある温度で交差する.両者 の応力が等しくなる温度を Mg と呼ぶ. M_S-Mg 間の温度で は、オーステナイトが降伏する前に、つまり母相が弾性変形 状態でマルテンサイトが生成するのに対し、Mg-M_d 間で変 形すれば、最初にオーステナイトの降伏がおこり、塑性変形 により加工硬化して変態開始応力に達すると、マルテンサイ トが生成することになる.前者を応力誘起変態、後者をひず み誘起変態、と呼んで区別している.後述するように、鉄合 金の形状記憶効果は M_S-Mg 間の応力誘起変態により、マル テンサイト変態誘起塑性(TRIP)現象は Mg-M_d 間のひずみ 誘起変態により発現する.

 $Mg-M_d$ 間のマルテンサイト変態開始応力は図2·14に示し

図2・14 マルテンサイト変態開始応力の温度による変化.

(a)

たように直線関係からずれて少し小さくなることが実験的に 確かめられている.これは、オーステナイトが塑性変形する ことにより、マルテンサイトの核が形成されたり、局部的に 応力集中がおこるためと考えられている.

加工誘起変態がおこる上限の温度 M_a 点は,原理的には図 2・12の T_0 温度に一致すべきであるが,実際には T_0 よりも 低い温度にある.それは, T_0 近傍で変形すると変態開始に 必要な応力が非常に大きくなるので,マルテンサイトが生成 する前に材料が破断してしまうからである.このように M_d 点は与えるひずみ量や加える応力によって変化し, M_s 点の ように一義的に決まるものではない.

3·2 TRIP 現象と形状記憶効果

3·2·1 TRIP 現象

加工誘起変態を利用すると材料の延性(均一伸び)や靱性が 大きくなる.これをTRIP (Transformation-induced Plasticity:マルテンサイト変態誘起塑性)現象という⁽¹¹⁾.準安 定オーステナイトに引張変形を施すと,加工誘起マルテンサ イトによって加工硬化が大きくなるため,くびれ(ネッキン グ)の進展が抑制され大きな均一伸びが得られる.また,ク ラック先端の応力集中部に適当なバリアントのマルテンサイ トが生成すると,変態時の外形変化によって応力集中が緩和 されるため,靱性が向上する.

室温でTRIP現象をおこさせるには、室温での変形中に 適当な量のマルテンサイト変態がおこることが必要で、加工 誘起変態に対するオーステナイトの安定度を最適に調整する ことが大切である.準安定オーステナイトの加工誘起変態に 対する安定度を評価する指標として、M³⁰がよく用いられ る.これは、オーステナイト単相の試料に0.30の引張真ひず み(慣用ひずみで0.35)を与えた時に、組織の50%がマルテン サイトに変態する温度で、この温度が高温であるほど準安定 オーステナイトが不安定であることを示す.一例として、オ ーステナイト系ステンレス鋼を対象にした下記のような式が 提唱されている⁽¹²⁾.

 $M_d^{30}(^{\circ}\!C) = 551 - 462\,(^{\otimes}\!C + ^{\otimes}\!N) - 9.2\,(^{\otimes}\!Si) - 8.1\,(^{\otimes}\!Mn)$

-13.7(%Cr) - 29.0(%Ni+%Cu) - 18.5(%Mo)

```
-68.0(\% \text{Nb}) - 1.42(2.68 - 6.64 \times \log D)
```

ここに, Dはオーステナイト結晶粒径(µm)である.

3·2·2 形状記憶効果

様々な形態の鉄合金の a' マルテンサイトの中で,薄板状 マルテンサイトのみが,図2·9に示した様に冷却・加熱時の 界面の可逆的移動により成長,収縮がおこる.この様な変態 挙動は,Ti-NiやCu-Al-Ni合金などの非鉄形状記憶での熱 弾性マルテンサイトと同じであり,薄板状マルテンサイトが 生成するFe-Pt,Fe-Ni-C,Fe-Ni-Co-Ti,Fe-Ni-Si合金は形 状記憶効果を示す.同様に,形態が薄板状の ε マルテンサイ トも,図2·9のような正変態・逆変態挙動を示し,Fe-Mn-Si合金が形状記憶効果を示すことが見いだされている.非 鉄形状記憶合金の熱弾性マルテンサイトは冷却・加熱時の熱 ヒステレシス(M_s 点と A_s 点の温度差)が数 \mathbb{C} ~数10 \mathbb{C} と小 さいが,鉄系形状記憶合金では150 \mathbb{C} 程度とかなり大きいも のから数10 \mathbb{C} という小さいものまで様々である.

非鉄形状記憶合金では,通常,室温でマルテンサイトを変 形しその後加熱して逆変態をおこさせるが,鉄系形状記憶合 金では準安定オーステナイトでの加工誘起マルテンサイト変 態(図2・14の応力誘起変態)によって変形させることが必要 である.この時,加工誘起変態と同時に母相のすべり変形が おこると完全な形状記憶効果は得られない.それゆえ完全な 形状記憶効果出現のためには,母相の変形がおこらないこ と,つまり母相オーステナイトの降伏強度ができるだけ大き いことが重要になる.今までに報告されている鉄系形状記憶 合金は,いずれも母相の強度が大きいという共通点がある. 形状記憶合金全般に関しては文献(13)を,鉄系形状記憶合 金に関しては文献(14)を参照されたい. (完)

文 献

- (1)牧 正志,田村今男:鉄と鋼,67(1981),852-866.
- (2)牧正志,田村今男:日本金属学会会報,23(1984),229-237.
- (3)牧 正志:まてりあ, 48(2009), 206-211.
- (4) 宮本吾郎: まてりあ, **49**(2010), 332-336.
- (5) 森戸茂一:ふぇらむ, 14(2009), 90-96.
- (6) S. Morito, J. Nishikawa and T. Maki: ISIJ Int., 43(2003), 1475–1477.
- (7) A. Shibata, S. Morito, T. Furuhara and T. Maki: Acta Mater., 57 (2009), 483–492.
- (8) A. Shibata, S. Morito, T. Furuhara and T. Maki: Scr. Mater., **53**(2005), 597–602.
- (9) 柴田暁伸:まてりあ, 50(2011), 254-258.
- $(10)\,$ J. R. Patel and M. Cohen: Acta Met., $1(1953),\,531\text{--}538.$
- (11) 田村今男:鉄と鋼, 56(1970), 429-445.
- (12) 野原清彦,小野 寛,大橋延夫:鉄と鋼,63(1977),772-782.
- (13) 大塚和弘:合金のマルテンサイト変態と形状記憶効果,内田 老鶴圃,(2012).
- (14) 貝沼亮介:ふぇらむ, 4(1999), 230-237.