

原子クラスターが切り開く

金属の未知の特性とその応用

1. はじめに

原子クラスターは原子数が数個から数十個からなる原子の 集合体である.原子クラスターの物性は原子の数及び構造に 依存し,そのためバルクともナノ粒子とも異なった物性を持 っている.例えば元来バルクの鉄は水素と結合することは特 殊な環境下を除いては起こりえないが,数個からなる鉄クラ スターは水素と結合することが起こりえる.このように原子 クラスターはバルクやナノ粒子とは異なる物性を持ってお り,特に触媒,磁性,エネルギー貯蔵などにおいて活躍が期 待される.しかしながら原子クラスターに対する研究は欧米 を中心に活発化しており,日本ではあまり知られていないの が現実である.

数個から数十個からなる原子の集合体である原子クラスタ ーを現存の実験手法だけで研究するのは困難なため,理論計 算と実験の両方からアプローチする必要がある分野である. 本稿では,密度汎関数理論を用い,様々な金属原子クラスタ ーの特性(磁性,反応性,エネルギー貯蔵,融点,光学特性) の紹介,更に理論計算を用いたクラスターの構造決定方法を 紹介する.また,実験によるクラスターの作成と解析方法お よび結果,計算結果との整合性などを紹介する.理論及び実 験の両方から原子クラスターを理解することにより,私たち の知っている金属とは全く異なった材料の開発を可能にする ことができ,それは金属の新しい未来の指針となることを期 待する.

2. 原子クラスターの定義

クラスターの定義を辞書で調べると、"集合体"と定義さ

髙橋啓介* 大貫惣明**

れている. つまり原子クラスターとは原子の集合体のことを 意味している. しかしながら,"原子の集合体"といっても かなりあいまいな定義になってしまう. 例えば酸素などの分 子やナノ粒子も原子の集合体と定義することができるため, 原子クラスターの定義をより厳密にしなければならない. で は最初に,原子クラスターと分子はどう異なるのかを**表**1に まとめてみた.表1に示すように原子クラスターは分子と 比べて多様な状態を持つことがわかる. また多数の原子クラ スターは非常に高い反応性を持っており,真空または不活性 環境で存在することが安定させる条件となる. 更に異性体の 数も多く,原子数が増えるにつれて異性体の数も急激に増え ていく. 構成する原子数も物質も多様なため,結合状態も多 様である. 例えば $C_{20}O_{10}$ のような想像もしないようなもの も原子クラスターでは起こり得る. 言い換えれば,分子は原 子クラスターに含まれると言える.

原子クラスターとナノ粒子の違いを定義するのは実は難し い.図1はバルクの物性がサイズが小さくなるにつれてどの ように変化していくかをグラフにしたものである.わかりや すい例として金を例に取る.バルクの金は図1に示したよ うに面心立方格子構造を持っている.このバルクの金のサイ

表1 原子クラスターと分子の違い.

	原子クラスター	分 子
存在条件	真空又は不活性環境	大気中
異性体	多数	少 数
原子数	多様	固定
結合状態	多様	イオン又は共有結合
構成原子	多様	固定

* JSPS 特別研究員·PD, 北海道大学工学院工学研究科(〒060-8628 札幌市北区北13条西8丁目)

** 北海道大学特任教授;工学院工学研究科

Atomic Clusters: Unveiling New Properties of Metal and Applying Them to Modern Engineering Applications; Keisuke Takahashi and Somei Ohnuki (Division of Engineering, Graduate School of Engineering, Hokkaido University, Sapporo) Keywords: *atomic cluster, density functional theory, global optimization, catalysis, magnetism, hydrogen storage, tailored materials* 2014年10月31日受理[doi:10.2320/materia.54.91]

図1 サイズによるバルクから原子クラスターまでの 物性変化.原子モデルは金.

ズを小さくしていくと図1に示したようにナノ粒子となる.この時,ナノ粒子の物性は原子数に関係なく一定を保つ 傾向にある.しかしながら,ある一定のサイズまで小さくなったとき,ナノ粒子の物性が原子数によって著しく変わる境 界線がある.この境界線以降の物質を原子クラスターと定義 する.この時原子クラスターの物性は原子数,構成物質及び 構造に非常に強く依存するため,原子レベルでの理解が必要 となってくる.例えばある原子数7個のクラスターは磁性 を持っているが,原子数8個の時は磁性を持たないなど, 原子数によって物性が変わる.しかしながら,現存の実験手 法だけでは,原子クラスターの物性や構造を特定することが 困難なため,第一原理計算などの理論計算を使っての研究が 非常に重要になる⁽¹⁾⁽²⁾.

このように原子クラスターはバルクやナノ粒子とは全く異 なる物性を持っているため、材料の根本的な概念が覆ること すらありえる.例えば、導電体の金属が絶縁体になったり、 磁性を持たないものが強磁性をもったり、不活性な材料が活 性になったり、不透明なものが透明になったりすることが可 能になってくる.そのため、原子クラスターの原子数、構成 原子、そして構造を制御する実験手法が確立されれば、思い のままの材料を設計し生成することが可能になる.そうする ことで原子クラスターは材料工学の分野において無限の可能 性を導き出してくれる.

3. 構造決定

原子クラスターの構造の決定手法は現在3つ知られてい る.(1)手動で存在しえる構造を予測し密度汎関数理論⁽³⁾⁽⁴⁾で 計算し安定したものを探す.(2)遺伝的アルゴリズム法⁽⁵⁾.(3) ベイシンホッピング法⁽⁶⁾⁽⁷⁾.(1)に関しては多大な労力を要 し,原子クラスターの構造は非対称の構造のものも多く,す べての構造を予測するには限界がある.(2)の遺伝的アルゴリ ズム法は生物学の"遺伝"を元に開発されたものである.(3) のベイシンホッピン法は3つの手法の中で現在最も基底状 態及び多数の準安定構造を予測するのに適した手法である. ベイシンホッピング法は,現在原子クラスターの構造決定に 最も多く用いられている方法であり,原子数が数百からなる 原子クラスターの構造も見つけ出すことが可能となってい る.ベイシンホッピング法の流れを下記に示した.

- 1. ランダムな構造を生成する.
- 2. 密度汎関数理論を用いてその構造を緩和させる. この時 のエネルギーを *E*₀ とする.
- 緩和した構造を下記の2つの方法を用いて壊す.
 (a)シェイク-全原子を同時にランダムに動かす.
 (b)交換-ランダムに選ばれた2つの原子を交換する(特に 元素が2個以上の時).
- 3. で壊した構造を2. と同様に緩和する. この時のエネ ルギーをE₁とする.
- 5. ここでモンテカルロ法とメトロポリス法を用い、 E_1 と E_0 の評価をする.

(a)もし $E_1 \leq E_0$ であれば E_1 を受け入れる.

(b)もし $E_1 \ge E_0$ であれば、メトロポリス法を用い $e^{-4E/kBT} \ge (ランダムに選ばれた0か1)の時<math>E_1$ を受 け入れる.

いずれの場合も E_1 を受け入れたとき、 E_1 を E_0 と再定 義する.

2から5のステップを繰り返す(ステップが多いほど安定した構造を見つけ出す確立が高くなる).
 こうすることによって、常に安定した構造を自動で確実に見つけ出すことが出来る.

よりわかりやすくするため、ベイシンホッピング法の手順 を図2に示した.それぞれの緩和後の極小の部分が"たらい (ベイシン)"の底のようで、それが次の極小へと跳ねている ように見えるため、ベイシンホッピング法という呼び名がつ けられた.

ベイシンホッピング法と密度汎関数理論を用いて得られた 代表的な原子クラスター(金(7),プラチナ(7),ルテニウム(7), 鉄⁽⁸⁾)の構造を図3に示した.金クラスターはその高い反応 性により触媒効果が期待されている原子クラスターである. 基底状態の金の構造は特殊なもので2次元状態で三角形の 形に向かって成長していくことがわかる. プラチナクラスタ ーも金クラスターと同様に2次元状態の構造を持っている が、原子数が4個と9個の時は正方形になり、原子数が6 個の時は三角形と不規則に成長することがわかる. さらに興 味深いのは原子数が10個の時,3次元の構造をとることであ る. ルテニウムクラスターは原子数が8個のとき立方体に なり、原子数が12個のときは立方体が2つ結合した構造に なることがわかる.鉄クラスターにいたっては、原子数が4 個のときから3次元の構造を持ち,対照的な構造を維持し ながら成長することがわかる.このように原子クラスターは 不規則に成長するため先に述べた大域的最適化手法を用いる ことが必須となる.また、合金クラスターもバルクやナノ粒 子では考えられないような事象が起こりえる. 例えばルテニ ウムと銅はバルクの状態では混ざり合うことはないが、ルテ ニウムと銅の合金クラスターは非常によく混ざり合う⁽⁷⁾.こ

解

図3 基底状態の原子クラスター;(a)金⁽⁷⁾,(b)プラ チナ⁽⁷⁾,(c)ルテニウム⁽⁷⁾,(d)鉄⁽⁸⁾.

のようにバルクで作り出すことが不可能とされていた合金も 原子クラスターを使うことによって作り出すことができる. そのため、特殊な物性を持つ合金クラスターの発見が期待される.

4. 実験との比較

実験による原子クラスターの研究はここ10年で飛躍的に 成長している.原子クラスターの生成には大きく分けて2 つの方法がある.1つはレーザーアブレーションを用いて金 属の一部を飛ばし,それを分子線の中に閉じ込めて分析する 方法である.2つ目はコロイドからの生成である.コロイド の利点は原子数の制御が比較的容易であることがあげられる が,生成された原子クラスターは気体状態ではないので,基 板上に担持した原子クラスターとなる.そのため,気体状態 の原子クラスターの分析には前者のレーザーアブレーション

図4 (A)赤外線分光法による Au₇ に対するスペクト ル,(B)密度汎関数理論計算による基底状態の Au₇ と Au₇の異性体(C-F)⁽⁹⁾.

が用いられることになる.

気体状態の原子クラスターの理論計算と実験の比較は下記 のような実験手法によって行われることが多い. 一番多い例 は赤外分光法を使った方法である⁽⁹⁾.密度汎関数理論を用い て計算した振動準位とレーザーアブレーションで生成した原 子クラスターを分子線内に閉じ込め赤外分光法を用いて測っ た振動準位を比べると、どのような形の原子クラスターが実 験によって生成されたかを理解することができる. もちろん 構造決定した原子クラスターの物性は密度汎関数理論によっ て明らかにすることができる.図4は金クラスターの原子数 が7の時(Au7)の密度汎関数理論計算と実験の比較である. 図3(a)に示したようにAu7は三角形に金原子が1個ついた 様な構造をしている.実験上クリプトンの単原子が不純物と してついているため、Au7Krの実験と理論計算の振動準位 を比べた.準安定な Au7 も生成されている可能性があるた め,異性体のAu7(図4(C-F))の理論計算の振動準位も求め る.図4(A)と(B)で比べると、振動準位が一致しているの がわかる.このように理論計算と実験を併用することで原子 クラスターの構造を明らかにすることができる.

赤外線分光法の他に光電子分光を用いることによって理論 計算と実験との電子親和力を比較することも可能であ る⁽⁷⁾⁽¹⁰⁾. 図5(a)はスズクラスターの実験⁽¹⁰⁾と密度汎関数 理論計算⁽⁷⁾の電子親和力をグラフ化したものである. 図5 (a)の示すように,実験と理論計算は似た傾向を示すことが わかる.それに対応する基底状態のスズクラスターの構造は 図5(b)に示している.このように電子親和力からもクラス ターの構造決定をすることができる.

図4と図5で示した金クラスターとスズクラスターは気 体状態における原子クラスターの構造分析であるが,近年の 収差補正透過型電子顕微鏡の急速な発展により基盤上に担持

図5 (a)スズクラスターの電子親和力の実験⁽¹⁰⁾と(b)密度氾関数理論計算⁽⁷⁾による比較,またそれに対応する(b)ス ズクラスター原子数1個から12個の基底状態の構造⁽⁷⁾.

 図6 (a) Au₃₀₉のモデル, (b) Au₃₀₉の走査型透過電子 顕微鏡による暗視野像(矢印はサイズを示してい る), (c)シミュレーションによる Au₃₀₉の走査型 透過電子顕微鏡による暗視野像⁽¹¹⁾.

した原子クラスターの解析が可能となってきている.例えば Au₃₀₉の構造は理論計算の結果と透過型電子顕微鏡の結果が 一致するのが図6に示されている⁽¹¹⁾.原子クラスターはス パッタリングによりアモルファス上の炭素上に吸着させるこ とができる⁽¹²⁾⁽¹³⁾.原子数の確認には飛行時間質量分析計を 用いることによって原子数の特定をする⁽¹⁴⁾.図6に示され た通り,理論計算と透過型電子顕微鏡の解析でAu₃₀₉の構造 一致が確認された.このように近年の実験の急速な追いつき により,原子クラスターは理論上の議論から現実世界での応 用につながりつつある.今後の実験の更なる発展に期待した い.

5. 原子クラスターの物性

原子クラスターはバルクやナノ粒子とは全く異なる物性を 持っているため、いままでに想像すらできなかった未知の物 性が眠っていると考えられる⁽¹⁵⁾.ここでは様々な原子クラ スターの物性について,特に磁性,反応性,エネルギー貯蔵 特性,融点,光学特性を最近の研究も含め紹介していく.

(1) 磁性

磁性は現代社会において最も重要な地位を占めている. 磁 性を応用したものには、ハードディスク、核磁気共鳴画像法 (通称MRI)や電気モーターなど分野を越えて扱われてい る.磁性の起源は対を持たない電子のスピンである.周期表 を見てみると半分の元素は少なくとも1つの不対電子を持 っていることがわかる.しかしながら,実際に強磁性を持つ ものは,鉄、コバルト、ニッケル、ガドリニウム、ジスプロ シウム等の限られた元素だけである.その他の磁性を持つも のは常磁性や反磁性を持っている. さらに, 上記の5つの 強磁性を持つ元素はバルクの状態になると周りの原子と結合 状態を作るため単体の原子よりかなり小さい強磁性になって しまう. 例えば単体の鉄原子はd軌道上に4つの不対電子 があるため磁気モーメントは4.0 µBと非常に強い強磁性を持 っている.しかし、体心立方格子内の鉄原子は1個あたり 約2.2 µBとほぼ半減してしまう.そのため、様々な金属と合 金を作ることで、より強い強磁性を持つ材料の研究が現在も なされている. 特にネオジム磁石(Nd₂Fe₁₄B)の発見は非常 に大きな影響をもたらした. 密度汎関数理論計算で計算する とネオジム磁石内のネオジム原子は3.1 µBを持ち,鉄原子は $2.1 \mu_B$ から $2.9 \mu_B$ の磁気モーメントを有している⁽¹⁶⁾.しか しながらネオジムはレア・アース金属であり、その希少性か らネオジム磁石に代わる磁石が必要となってくる.また、も しネオジム磁石より更に強い強磁性の磁石が発見されれば, 今より大容量の記憶が可能なハードディスクの開発が可能と なってくる. それゆえに, さらなる強磁性材料が今後必要と なってくる.

磁性の強さは周囲の元素との結合状態,原子間距離,更に 次元に依存する⁽¹⁷⁾.例えば原子間距離が短く,共有結合を 作っていれば,不対電子の数が減るため,結果として弱い磁 性になる.また,2次元の構造は3次元の構造より強い磁性 を持っている.その理由は1原子あたりの周囲の原子数が2 次元の状態のほうが少ないため,結果として結合に使われる

解

不対電子の数が少なく,強い磁性を持ちやすい傾向にある. それゆえに,原子クラスターはバルクやナノ粒子と比べて強 い磁性が起こりやすいといえる⁽¹⁸⁾⁽¹⁹⁾.また,バルクで常磁 性であるバナジウムやロジウムは,原子クラスターでは強磁 性になるなど磁性の性質までもがバルクとは異なることさえ ある⁽²⁰⁾⁻⁽²²⁾.さらにマンガンに関しては,バルクでは一般 的に反磁性だが,原子数が7個の時には強磁性と,原子数 が1個異なるだけで全く真逆な磁性を持つこともある⁽²³⁾.

異性体のなかでも異なる磁性を持つことがある.原子クラ スターは多数の異性体が存在することで知られているが、こ こで言う異性体とは原子数が同数であるが、構造が異なるこ とを表している. 代表的なのが Li4 クラスターである. 図7 (a)に示したように Li₄ クラスターは四面体の構造が基底状 態であるが、図7(b)のような準安定な正方形の異性体が存 在する、この時のそれぞれの磁気モーメントを見ると更に興 味深いことがわかる. Li₄ クラスターが四面体の時, 頂点の スピンは下に向いているが底の3原子のスピンは上を向い ている. そのため一組の電子が対を作り磁性がなくなり、結 果的に四面体のLi₄は2.00 μ_Bの磁気モーメントを持つ強磁 性であることがわかる.しかし Li4 クラスターが正方形の構 造を持つとき、2原子のスピンが上を向き、他の2原子のス ピンは下を向いている. それによって, それぞれ電子対を作 り,磁気モーメントが0となり,反強磁性であることがわ かる.このように異性体の中には真逆の磁性を持つものもあ るため、基底状態の磁性だけでなく準安定の原子クラスター の磁性に着目することが重要である.

先に述べたように現時点で最も強い磁性を持つ材料はネオ ジム磁石であるが、それと同等かそれ以上の磁性を持つ原子 クラスターがある.鉄クラスターの磁気モーメントを図8に 示した.図8(a)は鉄クラスターの原子数が25個から700個ま での120Kでの磁気モーメントの実験データを示してい る⁽¹⁸⁾.図8(a)が示すようにバルクの磁気モーメントと比べ て鉄原子数25個から300個の時、かなり高い磁気モーメント を示している.図8(b)は密度汎関数理論計算で鉄クラスタ ーの原子数が2個から9個の磁気モーメントである.実験 結果同様、原子数が2個から9個の時、極めて高い磁気モー メントを示していることがわかる.特に原子数が1つ変わ るだけで磁性も変化し、磁性の変化も一定ではないことがわ かる.もちろん応用するには様々な問題があるが、単純な気 体状態の鉄クラスターの磁性をみるかぎりネオジム磁性と同

様且つそれ以上の磁気モーメントを持っていることがわかる.

このように、バルクの状態で強磁性のもつ物質は鉄、コバ ルト、ニッケル、ガドリニウム、ジスプロシウム等の限られ た元素だけであるが、原子クラスターの磁性を原子数単位で 探ることによって強磁性材料が大量に発見されることが期待 される.

(2) 反応性

原子クラスターのもう1つの重要な物性に反応性があ る.一般に物質が活性化する因子の1つに表面積がある. 物質の表面積と体積の比で表面積が大きいほど物質は活性化 する. 原子クラスターはバルクやナノ粒子と比べて, この表 面積比が圧倒的に大きいため、より活性化する⁽²⁴⁾.代表的 な例として金クラスターがある. バルクの金は不活性である が、特定のサイズの金の原子クラスターは非常に活性であり 触媒としての効果が期待されている(25). このように、バル クの状態で不活性なものが、原子クラスターでは活性化にな ることがある.そのため,現在使用されているプラチナなど の高価な触媒も、安価な元素の原子クラスターに置き換える ことも可能となりえる.原子クラスターの反応性をさらに向 上させるために、合金クラスターにすることが効果的という ことが知られている(26). 例えばルテニウムクラスターは様 々な水素化反応で効果的な触媒効果を持つことで知られてい るが、スズとの合金クラスターを作ることで触媒効果が劇的

図8 (a)実験による120 K での原子数が25個から700 個の鉄クラスター磁気モーメント⁽¹⁸⁾.理論計算 による原子数が1個から9個の鉄クラスター磁 気モーメント.

に向上することが示されている⁽²⁷⁾.この他にもコア・シェ ルクラスターという研究も行われている.例えば Al₁₃ クラ スターを Pt₄₂ で覆うことによってプラチナの酸素還元反応 が飛躍的に向上するという実験結果が示されている⁽²⁸⁾.こ のように単純に合金クラスターにするだけではなく、コア・ シェル構造の合金クラスターの生成など構造に変化を加える ことによって反応性を更に向上させる可能性を秘めている.

(3) エネルギー貯蔵特性

原子クラスターは水素貯蔵材料としての大きな可能性を持 っているが、理論計算上で原子クラスターの水素貯蔵特性は 予測できるが、実験のほうが追いついていないというのが現 状である⁽²⁹⁾.例えば一般的にバルクの鉄は水素と反応しな いが、鉄クラスターは水素に対してとても活性することが実 験により知られている(30).更に最近の研究で、鉄の原子ク ラスターは大量の水素を吸着し、安定した鉄の水素化物が原 子クラスターとして存在するという予測が理論計算から図9 に示されている⁽⁸⁾.鉄が原子クラスターの時,水素を大量に 吸着するという,バルクとは正反対の現象が起こりえる.ま た,最近の研究でチタン鉄合金クラスターはバルクのチタン 鉄同様、常温で水素を吸蔵および放出ができ、さらにバルク と比べて6倍の水素を吸蔵することが明かになった⁽³¹⁾.鉄 やチタン鉄クラスターなどの遷移金属クラスター及び合金ク ラスターはバルクでは想像も出来ないほどの水素貯蔵量を誇 ることが予測される.

(4) 融点

原子クラスターはバルクと違う融点を持っていることが明 らかになってきた.一般的に材料の融点はナノ粒子や,バル クと比べて小さくなることが知られている⁽³²⁾.しかし,数 多くの原子クラスターの融点はバルクの状態より低いという 結果が示されている⁽³³⁾.もちろん原子クラスターの融点は 原子数によってかなりのばらつきがあることもわかってい る.ところがガリウムクラスターはバルクのガリウムと比べ て約250度ほど高い融点を示している⁽³⁴⁾.今後バルクの状態 より融点が高くなるクラスターがまだ他に見つかるのではな いかと期待される.

図9 原子数2個から9個の鉄クラスターの水素化 物⁽⁸⁾.原子コード:鉄-黒色,水素-白色.

(5) 光学特性

物質の光学特性はバンドギャップによって決定されるが, 原子クラスターは原子数や構造によって決々なバンドギャッ プを持っている.例えば金クラスターは更に合金クラスター にすることによってバンドギャップを制御することも明らか になっている.更にシリカクラスターに対し金原子を加える ことによってシリカクラスターのバンドギャップが縮まり, 赤外線を吸収できることが示された⁽³⁵⁾.また,金クラスタ ー自体は光の吸収を抑えることができるため,全光リミッタ としての応用が期待されている⁽³⁶⁾.このようにバルクとは 違った光学特性も原子クラスターではみることが可能である.

6. 原子クラスターの担持

原子クラスターの構造と特性を維持するために様々な基盤 が試されたが、炭素をベースにした材料が原子クラスターの 物性や構造を保持するということが近年わかってきた⁽³⁷⁾. 更に密度汎関数理論計算によるスクリーニングの結果,2次 元材料であるグラフェン⁽³⁸⁾が原子クラスターを保持するの に適した材料であることが示された⁽³⁷⁾.しかし、単層グラ フェンは炭素原子1層からなる材料のため、グラフェンを 担持しなければならない.近年の研究で、単層グラフェンは 銅基盤上で安定し、大量生産に適しているという観点から銅 はグラフェンの担持に用いられる⁽³⁹⁾.図10は銅基盤上に単 層グラフェンを担持し、鉄クラスターと水素化した鉄クラス

図10 銅基板上の単層グラフェン上の(a)FeH(横から) (b)FeH(上から)(c)Fe₄(d)Fe₇(e)Fe₄H₈(f)Fe₇ H₇. 原子コード:水素-白,鉄-灰色,炭素-黒, 銅-黒⁽³⁷⁾.

ターを担持したものである⁽³⁷⁾.図10(c)(d)に示したよう に,鉄クラスターはグラフェン上で構造を維持したまま安定 することがわかる.また、それらの鉄クラスターは水素化物 を作り,安定していることが図10(e)(f)に示されている.こ のようにグラフェンを用いることによって、原子クラスター の担持が可能になることが予測される.

7. 原子クラスターをバルクへ

ここまで原子クラスターはバルクやナノ粒子とは全く異な った物性を持つことが示されたが、近年原子クラスターに対 する新しい動きが始まっている.同じ構造の原子クラスター 同士を集合させ、原子クラスターの構造を維持しながら結晶 構造の持つバルクの新材料を組み立てるという試みであ る⁽⁴⁰⁾⁽⁴¹⁾. 代表的な試みに,炭素原子60個からなるフラーレ ンクラスターを集合させることによって薄膜を生成すること があげられる(42).フラーレンクラスターの特殊な電子状態 によって生成された薄膜は n 型半導体の物性を持ち,太陽 電池の分野に応用が期待される.また、ヒ素クラスターの原 子数が7個と11個のクラスターは1次元,2次元,3次元と 3つの異なる次元のバルクを作る可能性が示されてい る⁽⁴¹⁾.このように特定の物性をもつ原子クラスター同士を 集合させ、それを結晶にすることができれば、様々な機能を 持った材料が次々に生まれてくる可能性がある. しかしなが ら、実験手法などが確立されていないため、今後の研究が期 待される.

8. ま と め

原子クラスターは原子数が数個から数十個からなる集合体 であり、バルクやナノ粒子とは全く異なる物性をもつ材料で ある. 理論計算からそれらの原子クラスターは特有の物性を 持つことが示されており, 我々が一般的に理解している金属 とは正反対の物性を持っていることが示されている. さらに 近年の実験の急速な発展により原子クラスターは理論上のも のから現実の世界のものへとなりつつある.もし原子クラス ターの物性を最大限に生かすことが可能となれば、用途に応 じた材料を思いのままに合成することができる可能性を秘め ている. このように原子クラスターは次世代の材料として存 在すべく,日々躍進を遂げている.

文 献

- (1) J. Li, et al.: Science, 299 (2003), 864-867.
- (2) S. Bulusu, et al.: Proc. Natl. Acad. Sci. U.S.A, 103(2006), 8326-8330.
- (3) P. Hohenberg and K. Walter: Phys. Rev., 136(1964), B864.
- (4) W. Kohn and L. J. Sham: Phys. Rev., 140(1965), A1133.
- (5) D. M Deaven and K. M. Ho: Phys. Rev. Lett., 75(1995), 288.

- (6) D. J. Wales and H. A. Scheraga: Science, 285(1999), 1368-1372.
- (7) K. Takahashi: Master Thesis, Chalmers University of Technology, (2011), 155226.
- (8) K. Takahashi, et al.: Appl. Phys. Lett., 102(2013), 113108.
- (9) P. Gruene, et al.: Science, **321**(2008), 674–676.
- (10) V. D. Moravec, et al.: J. Chem. Phys., 110(1999), 5079-5088.
- (11) Z. Y. Li, et al.: Nature, 451 (2007), 46-48.
- (12) S. Pratontep, et al.: Rev. Sci. Instrum., 76(2005), 045103.
- (13) R. E. Palmer, *et al.*: Nat. Mater., **2**(2003), 443–448.
- (14) B. V. Issendorff and R. E. Palmer: Rev. Sci. Instrum., 70 (1999), 4497-4501.
- (15) P. Jena, and A. W. Castleman: Proc. Natl. Acad. Sci. U.S.A, **103**(2006), 10560–10569.
- (16) L. B. Nordström, et al.: J. Appl. Phys., 69 (1991), 5708-5710.
- (17) F. Liu, et al.: Phys. Rev. B, 39(1989), 6914.
- (18) M. L. B. Isabelle, et al.: Phys. Rev. Lett., 71(1993), 4067.
- (19) M. L. B. Isabelle, et al.: Science 265 (1994), 1682-1684.
- (20) F. Liu, et al.: Phys. Rev. B, 43(1991), 8179.
- (21) B. V. Reddy, et al.: Phys. Rev. Lett., 70(1993), 3323.
- (22) J. P. Bucher, et al.: Phys. Rev. Lett., 66(1991), 3052.
- (23) S. N. Khanna, et al.: Chem. Phys. Lett., 378(2003), 374-379.
- (24) K. Takahashi, et al.: Langmuir, 29(2013), 12059–12065.
- (25) M. Haruta: Catalysis Today, 36(1997), 153-166.
- (26) R. Ferrando, et al.: Chem. Rev., 108 (2008), 845-910.
- (27) L. O. Paz-Borbón, et al.: Phys. Chem. Chem. Phys., 15(2013), 9694-9700.
- (28) B. B. Xiao, et al.: Sci. Rep., 4(2014), 5205.
- (29) P. Jena: J. Phys. Chem. Lett., 2(2011), 206-211.
- (30) R. L. Whetten, *et al.*: Phys. Rev. Lett., **54**(1985), 1494.
- (31) K. Takahash, et al.: Phys. Chem. Chem. Phys., 16(2014), 16765 - 16770.
- (32) P. H. Buffat and J. P. Borel: Phys. Rev. A, 13(1976), 2287.
- (33) M, Schmidt, et al.: Nature, 393(1998), 238-240.
- (34) G. A. Breaux, et al.: Phys. Rev. Lett., 91 (2003), 215508.
- (35) Q. Sun, et al.: Phys. Rev. Lett., 93(2004), 186803.
- (36) R. Philip, et al.: Nano Lett., 12(2012), 4661-4667.
- (37) K. Takahasshi, et al.: Sci. Rep, 4(2014), 4598.
- (38) A. K. Geim and K. S. Novoselov: Nat. Mater., 6(2007), 183-191.
- (39) X. Li, et al.: Science, **324**(2009), 1312–1314.
- (40) S. N. Khanna and P. Jena: Phys. Rev. Lett., 69(1992), 1664.
- (41) S. A.Claridge, et al.: ACS Nano, 3(2009), 244–255.
- (42) B. C. Thompson and J. M. J. Fréchet: Angew. Chem. Int. Ed., 47(2008), 58-77.

***** 髙橋啓介

2008年12月 アリゾナ大学工学部材料科学工学科 学士課程修了 2011年6月 チャルマース工科大学工学部最先端工学材料 修士課程修了 2014年3月 北海道大学工学院 工学研究科 博士課程修了(工学) 2014年4月 現職 日本学術振興会 特別研究員 PD 専門分野:計算科学,原子クラスター,触媒,材料科学,情報材料学 ◎理論及び計算科学を通して、実験に頼らない材料の設計や生成ができる基 盤を構築している

髙橋啓介