講義ノート

材料の組織形成とその理論―第4回― ~相互拡散と組織形成過程~

6. 原子の拡散と組織形成

6·1 相互拡散と自己拡散

組織形成の観点から原子の拡散を考えよう. 個々の原子が 移動するからといって巨視的な物質移動が生じるとは限らな い.この点について以下に整理しておこう.いま,A金属 とB金属を接合した拡散対を作り高温に加熱した場合を考 えよう. A 原子は B 金属中へ, また B 原子は A 金属中へお 互いに拡散してゆくことは容易に想像されるであろう. この ような拡散形態を相互拡散(inter diffusion)あるいは化学拡 散(chemical diffusion)とよぶ.この拡散では、ある場所に おける A 原子あるいは B 原子の濃度は時間とともに変化す る. すなわち物質移動が生じている. さて長時間経過すると, A, B原子は互いに入り混じって、どの場所でもA, B原子の 濃度は等しくなるであろう. このようになると時間経過にと もなう濃度の変化はなくなる.したがって拡散という現象を 物質移動という巨視的な観点でとらえると、もはや拡散は生 じていないことになる.しかしこの段階でも,ある特定の原 子に着目するとその原子は物質中を動きまわっている. つま り A-B 固溶体中では A 原子も B 原子も動いているが、その 動きが不規則なため全体としては物質移動が生じないのであ る. この様な拡散を自己拡散(self diffusion)という. 自己拡 散の典型的な例は、純金属中の原子移動である.純金属中で も原子は空孔を媒介としてたえず移動しているが、同種類の ため巨視的な濃度変化は生じない.

次に,拡散を生じさせる駆動力の観点から,相互拡散と自 己拡散を考えてみよう.一般に相互(化学)拡散は,その系の 自由エネルギーを下げようとする熱力学的要請のもとに生じ ている.前述のA-Bの拡散対の場合でもA金属とB金属が

宮崎 亨*

それぞれ個別に存在するよりも、A,B原子が混じり合って 固溶体を作った方が、自由エネルギーが低下するから、その ような原子移動が生じたのである.したがって、固溶体より も、A原子とB原子が別々に集合した方が、自由エネルギ ーが低下するような場合には、均一固溶体から濃度の不均一 化が発生する.相互拡散の本性は、このような自由エネルギ ーの要請に基づく拡散であるということである.これによっ て、物質移動が生じ、合金中に組織が形成されるのである. 一方、自己拡散は、自由エネルギーによる要請がなく、熱エ ネルギーの助けをかりて、不規則に移動しているもので、組 織が形成されることはない.この章では、組織形成に関連す る拡散現象を取り上げ解説する.

6·1·1 フィック(Fick)の法則

拡散による物質流量を定量的に取り扱うことは組織形成を 理解する上に極めて重要である.フィック(Fick)は,濃度勾 配が拡散の原動力であると仮定して,物質移動を熱伝導と同 様に取り扱う拡散方程式を提案した.

(1) フィックの第一法則

単位時間に単位面積を通過して, x 方向に移動する物質の 量 J は,その部分の濃度勾配に比例する.すなわち

$$J = -D\frac{\partial c}{\partial x} \tag{6.1}$$

ここでDは拡散係数で、単位時間に単位面積を通過して流 れる物質量を表わす.式($6\cdot1$)はFickの第一法則と呼ば れ、この法則は試料中のどの位置においても、濃度の時間変 化が不変すなわち($\partial c/\partial t = 0$)という定常状態の場合にのみ適 用できるものである.

* 名古屋工業大学名誉教授(〒470-8555 名古屋市昭和区御器所町)

The Formation of Microstructure in Materials and Its Theoretical Basis $(\mathbb{N}) \sim$ The Formation Process of Microstructure Based on Interdiffusion \sim ; Toru Miyazaki (Emeritus Professor, Nagoya Institute of Technology, Nagoya)

Keywords: elastic interchange energy, phase field method, interdiffusion of atoms, formation process of microstructure, computer calculation of microstructure, non-linear diffusion equation

²⁰¹⁴年3月27日受理[doi:10.2320/materia.53.550]

(2) フィックの第二法則

この法則は、ある場所の濃度の時間変化を示すものである. ある場所における濃度の時間変化(*ac/at*)は、単位時間 当たりその場所へ流れ込む物質量と流れ出る物質量の差で与 えられるから

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(\tilde{D} \, \frac{\partial c}{\partial x} \right) \tag{6.2}$$

 $ilde{D}$ が溶質濃度に依存しない場合には式 $(6\cdot 3)$ となる.

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$
 (6.3)

これらはフィックの第二法則と呼ばれる.3次元拡散に対しては式(6·4)となる.

$$\frac{\partial c}{\partial t} = D_x \frac{\partial^2 c}{\partial x^2} + D_y \frac{\partial^2 c}{\partial y^2} + D_z \frac{\partial^2 c}{\partial z^2}$$
(6.4)

6.2 相互拡散係数とカーケンドールの解法

フィックの第二法則は非線型微分方程式であるため,解析 的に解くことは困難である.そのため, \hat{D} の導出には通 常,マタノ(俣野)⁽¹⁾によって提案された図式解法が用いら れ,相互拡散係数 \hat{D} は次のように示される.

$$\tilde{D}(c) = -\frac{1}{2t} \left(\frac{dx}{dc}\right)_c \int_c^{co} x dc \qquad (6.5)$$

今, A, B 2種の金属を接合して,高温で時間 t だけ拡散焼 鈍させた後の A 原子の濃度分布を図6・1とする.濃度曲線の 上下の斜線部の面積が等しくなるように,すなわち, $\int_{0}^{o}xdc$ = 0 となる x を求め,それを横軸の原点とする.この面をマ タノ界面(Matano Interface)とよび,通常,元の接合面とは 異なる.このようにすると,式(6・5)の $\int_{c}^{o}xdc$ は二重斜線部 の面積として図形的に求められる.また $(dx/dc)_{c}$ は濃度 c に おける接線で与えられる.したがって,式(6・5)を用いて \tilde{D} (c)を求めることができる.この手法を各濃度 c について行 なえば,全濃度範囲についての $\tilde{D}(c)$ を求めることができ る.図6・2は 1173 K での Au-Ni 合金の $\tilde{D}(c)$ (実線)である. 70 at%Au 以上では $\tilde{D}(c)$ が変化していることが理解できよう.

侯野の求めた $\tilde{D}(c)$ の意味は次のようである.本来 A 原子

図6·1 相互拡散による溶質濃度分布とマタノ(俣野)の 解法図形. および B 原子のそれぞれの固有の拡散係数 $D_A \ge D_B$ は異なっており,最初の接合面を通して右左に拡散した A, B 原子 数は異なっていた(図6·1の場合は A < B). そのため,最初 の接合面を横軸 x の原点とすれば,図6·1における斜線部の 面積は濃度曲線の上下で等しくならない.そこで,通過した A, B 両原子数が等しくなるような仮想的な面を考え, x の 原点としたのである.この取り扱いによって,本来2個で 表現されるべき拡散係数が,1個の $\tilde{D}(c)$ で表現されること になる.このように $\tilde{D}(c)$ は A, B 原子が相互に拡散しあっ た結果を,1つの拡散係数として表わすものであるから,こ れを相互拡散係数 (interdiffusion coefficient) と言う. $\tilde{D}(c)$ と A および B 原子のそれぞれの固有の拡散係数 $D_A \ge D_B$ の 間には,両原子の原子分率を N_A , $N_B \ge$ して,式(6·6)の関 係がある.

$$\tilde{D}(c) = N_{\rm B} D_{\rm A} + N_{\rm A} D_{\rm B} \tag{6.6}$$

この $D_A \ge D_B$ は固有拡散係数または真正拡散係数(Intrinsic diffusion coefficient) とよばれ, $\tilde{D}(c)$ と同様に通常,濃度 cによって変化する.

以上のことは実験的にはカーケンドール効果によって示さ れる.接合面にA,B金属と反応しないMoやWなどの高 融点金属の細線をマーカーとして挟んだA,B金属の拡散対 を高温で拡散させる.今,A原子の移動量がBよりも少な いとすると原子流量は差し引きB側からA側に向けて生 じ,それと等量の原子空孔がB側に移動する.そのため, 接合面より右側では原子総数が減少して試料端を基準にする とマーカーは右に移動する.この現象をカーケンドル効果と いう.この効果はA,B原子の拡散流量が異なっていたこ と,および原子が空孔を媒介として置換型原子が拡散してい る直接の証拠である.マーカーの移動距離Iは,拡散時間を

図6・2 Au-Niの相互拡散係数 \tilde{D}_{Ni-Au} とNi, Auの固有 拡散係数 D_{Ni} , $D_{Au}(1173 \text{ K})$.

tとすれば次式で与えられる.

$$I = (D_{\rm A} - D_{\rm B}) \left(\frac{\partial N_{\rm A}}{\partial x}\right) t \tag{6.7}$$

 $N_{\rm A}$ はマーカーの位置における A 原子の原子分率である.マ ーカーを入れた拡散対を用いて *I*を測定し、さらにその試片 の $\tilde{D}(c)$ をマタノ法で求めるとマーカー位置の固有拡散係数 $D_{\rm A}$, $D_{\rm B}$ を式(6·6)および(6·7)の連立によって算出すること ができる.

6.3 自由エネルギーの要請下における相互拡散

6.3.1 相互拡散に対する熱力学的因子の影響

今まで述べてきたことは、フィックの法則およびその拡張 されたものであった. その考えの基本は濃度勾配が拡散の原 動力であるとするもので、この中には熱力学的因子は考慮さ れていない.しかしながら,我々は拡散によって引起こされ る現象が、熱力学的要因によって左右されることを、しばし ば経験する.たとえば、均一固溶体中の溶質原子が集合して 濃度のより高いゾーンを形成する現象などは、拡散を単に濃 度の高い場所から低い場所へ原子が移動するという単純なも のとしてとらえることが出来ないことを示している. この点 を明らかにした有名なダーケン(Darken)⁽²⁾の実験がある が、図は省略する.この実験の意味するところは明らかで、 原子の拡散は濃度勾配により生じるのではなく、その合金系 が熱力学的に平衡になるように生じるということである. 合 金が平衡であるということは、すべての成分の部分モル自由 エネルギー(partial molar free energy, 化学ポテンシャルと も言う)µ がすべての位置で等しいということである.もし 成分*i*のµ_iが場所によって等しくない場合には,それが等 しくなるように拡散が生じる. その結果として濃度が不均一 になるような拡散も生じる.力学系において物体に作用する 力は、ポテンシャルエネルギーの勾配に負の符号をつけたも のに比例する. それ故に A 原子の流量 J_A は、 フィックの第 一法則のかわりに,

$$J_{\rm A} = -M_{\rm A} N_{\rm A} \frac{\partial \mu_{\rm A}}{\partial x} \tag{6.8}$$

と表わされる.ここで M_A は単位のポテンシャル勾配のもと でのA原子の流れの速さであり、易動度(mobility)とよばれ る.化学ポテンシャル μ_A は、A原子の活量(activity)を a_A 、標準状態の化学ポテンシャルを μ_A^A とすれば、

$$\mu_{A} = \mu_{A}^{0} + kT \ln a_{A}$$
 (6・9)
と定義される. k はボルツマン定数である. 活量 a_{A} は A 原
子の原子分率 N_{A} と活量係数(activity coefficient) γ_{A} との積
で与えられる.

$$a_{\rm A} = \gamma_{\rm A} N_{\rm A} \tag{6.10}$$

式 $(6\cdot 9)$ をxについて微分し整理すると、式 $(6\cdot 11)$ が得られる.

$$J_{\rm A} = -M_{\rm A}N_{\rm A}kT\frac{\partial\left(\ln N_{\rm A} + \ln\gamma_{\rm A}\right)}{\partial x} \tag{6.11}$$

ところで濃度 *c*_Aにおける, A 原子の拡散に対するフィックの第一法則は

 $J_{\rm A} = -D_{\rm A} \left(\frac{\partial c}{\partial x}\right)_{c_{\rm A}} \tag{6.12}$

である. 式(6・11)と(6・12)の比較から

$$D_{\rm A} = -M_{\rm A}kT \frac{\partial \left(\ln N_{\rm A} + \ln \gamma_{\rm A}\right)}{\partial x \ln c_{\rm A}} \tag{6.13}$$

となる. この D_A は濃度 c_A におけるA原子の固有拡散係数 である. $c_A = N_A$ であるから、 $d(\ln c_A) = d(\ln N_A)$ となり、式 (6・13)は次式となる.

$$D_{\rm A} = M_{\rm A} k T \left(1 + \frac{\partial \ln \gamma_{\rm A}}{\partial \ln N_{\rm A}} \right) \tag{6.14a}$$

$$D_{\rm B} = M_{\rm B} k T \left(1 + \frac{\partial \ln \gamma_{\rm B}}{\partial \ln N_{\rm B}} \right) \tag{6.14b}$$

となる.式(6·14)の $\{1 + (\partial \ln y_A / \partial \ln N_A)\}$ は,熱力学的因子と呼ばれる.これらの式の意味するところは次のようである.活量係数 y が 1 である理想固体中においては括弧内の 第 2 項は 0 となり,この場合には原子は熱力学的な命令が なく,不規則なジャンプをくり返しているのみである.この 場合でも特定の原子に着目すれば,不規則なジャンプの結果,ある距離を移動するが,全体としては濃度は不変である. y \neq 1 の場合には括弧内の第 2 項は 0 ではなく,その分だけ 拡散に対して熱力学的命令が働く.y=1 の場合はまさに自己拡散であるから,この時の拡散係数を D*とすれば,式 (6·14)より,

$$D_{\rm A}^* = M_{\rm A} k T \tag{6.15a}$$

(6·15b)

となる. したがって,固有拡散係数Dと自己拡散係数 D^* との間には,式(6·14)とギブス-デューエムの関係(Gibbs-Duhem relationship;平衡状態では, $\sum n_i d\mu_i = 0$ である. したがって2元系では μ_1 が既知なら μ_2 が一義的に定まる.)を考慮して,

 $D_{\rm B}^* = M_{\rm B}kT$

$$D_{\rm A} = D_{\rm A}^* \left(1 + \frac{\partial \ln \gamma_{\rm A}}{\delta \ln N_{\rm A}} \right) \tag{6.16a}$$

$$D_{\rm B} = D_{\rm B}^* \left(1 + \frac{\partial \ln \gamma_{\rm B}}{\delta \ln N_{\rm B}} \right) = D_{\rm B}^* \left(1 + \frac{\partial \ln \gamma_{\rm A}}{\partial \ln N_{\rm A}} \right) \tag{6.16b}$$

の関係が導かれる.これらから, 侯野の相互拡散係数 \tilde{D} は, 式($6\cdot 2$)より,

$$\tilde{D} = N_{\rm A} D_{\rm B} + N_{\rm B} D_{\rm A} = (N_{\rm A} D_{\rm B}^* + N_{\rm B} D_{\rm A}^*) \left(1 + \frac{\partial \ln \gamma_{\rm A}}{\partial \ln N_{\rm A}}\right) \quad (6 \cdot 17)$$

となる. この式をダーケンの式⁽²⁾とよび,自由エネルギー *G*を含む次式のように書き換えられる.

$$D_{\rm A} = M_{\rm A} N_{\rm A} N_{\rm B} \left(\frac{\partial^2 G}{\partial N_{\rm A}^2} \right) \tag{6.18}$$

この式から明らかなように、 D_A の正負は($\partial^2 G/\partial N_A^2$)の正負 によって決まる. 過飽和固溶体の多くは2相分離線の中央 部で($\partial^2 G/\partial N_A^2$) <0 の領域をもっている. このような領域で は $D_A < 0$ で、逆拡散すなわち均一な溶質濃度分布から溶質 原子の集合した高濃度の領域が自発的に形成される.

6.3.2 濃度変動場における相互拡散と組織の時間発展

今までの取り扱いは、合金内の溶質濃度が均一またはゆる

やかに変動している場合であった.したがって,合金の平均 組成が決まれば,その相互拡散係数は定まるとするものであ る(例えば,図6・2を参照).しかしながら,通常,合金中で 生じている濃度変動は複雑であるから,そのような変動場に おける局所的な拡散がどのようになっているかを知ること は,物質の内部組織の時間変化を知る上に非常に大切であ る.ここでは,この問題を取り上げて議論しよう.

式(6・17)および式(6・18)より、式(6・19)が得られる.

$$\tilde{D} = N_{\rm A} D_{\rm B} + N_{\rm B} D_{\rm A} = (M_{\rm A} N_{\rm B} + M_{\rm B} N_{\rm A}) N_{\rm A} N_{\rm B} \frac{\partial^2 G}{\partial N_{\rm A}^2} \qquad (6\cdot 19)$$

今, $N_{\rm A}=X_{\rm A}, N_{\rm B}=x_{\rm B}$ とおき,最初の()内をM(x)とおけば,

$$M(x) = (M_{\rm A}x_{\rm B} + M_{\rm B}x_{\rm A})x_{\rm A}x_{\rm B}$$
$$= M_{\rm A}x_{\rm A}x_{\rm B}, (M_{\rm A} = M_{\rm B})$$

となる.よって $M_{\rm A}$ = $M_{\rm B}$ の時,式(6·19)は次のように書かれる.

$$\tilde{D} = M_{\rm A} x_{\rm A} x_{\rm B} \frac{\partial^2 G}{\partial x_{\rm A}^2} \tag{6.21}$$

 $(6 \cdot 20)$

固溶体の自由エネルギーGが正則溶体近似で与えられると すると,

 $G(x) = \Omega x_A x_B + RT(x_A \ln x_A + x_A \ln x_B)$ (6・22) ここで Ω は AB 原子間の相互作用パラメータである.式(6・ 22) を式(6・21)に代入し,各場所の濃度 x_A を,固溶体の平 均濃度 x_0 からの変動量 q, すなわち $q = x_A - x_0$ で書きなおす と,式(6・21)は,

$$\tilde{D}(q) = D_0 + D_1 q + D_2 q^2
D_0 = M_A R T - 2M_A \Omega x_0 (1 - x_0)
D_1 = 2M_A \Omega (2x_0 - 1)
D_2 = 2M_A \Omega, (M_A = M_B)$$
(6.23)

となる. 原子間相互作用パラメータ $\Omega = 25 \text{ kJ/mol} の場合の$ $状態図と, <math>D_0$, D_1 および D_2 の各拡散係数の組成に対する変 化を, 図 $6\cdot 3(a)$, (b)に示す. この図および式($6\cdot 23$)より明 らかなように, D_0 は濃度変動量 q = 0 の時の相互拡散係数で ある. D_0 が負になっている領域が, 図 $6\cdot 3(a)$ の T = 1173 Kにおけるスピノーダル領域に対応しており,逆拡散,いわゆ る up-hill diffusion が生じる領域である. しかし $q \neq 0$ の場 合には, D_1 あるいは D_2 項によって拡散が生じ,全体の相互 拡散係数 $\tilde{D}(q)$ がどのような値になるかは q に依存する. し たがって, 図 $6\cdot 4$ のような濃度変動がある場合,場所によっ て拡散係数 $\tilde{D}(q)$ は異なり,矢印で示した方向へ溶質原子は 移動することになる. その為,図の中央付近の濃度ピークで は高濃度部分が正拡散になり,ピークの頭打ちと粗大化が生 じる. 具体的な計算例としては,前々号第2回目の3章図 $3\cdot 4$ を参照されたい.

このように相互拡散係数は、その場所における局所的な濃度に本来依存するものである.つまり、その合金の平均組成によって与えられる D_0 を中心に $(D_{1q}+D_2q^2)$ 項が加わって、 $\tilde{D}(q)$ は変動する.そのため、図 $6\cdot3$ および図 $6\cdot4$ に見るように、合金の平均組成としては、逆拡散(up-hill diffusion)が生じ溶質原子が集合するはずであっても、場所によっては正

図6·3 A-B2元系状態図と拡散係数の組成依存性.

図6・4 濃度変動場における相互拡散.

拡散(down-hill diffusion)が生じることになる.また逆に平 均組成的には,正拡散によって溶質の平均化が生じるはずで あっても, $(D_1q + D_2q^2)$ 項による変動のため逆拡散が生じ, 溶質の濃化が生じることもある.なお,ここでは固溶体の自 由エネルギーとして正則溶体モデルを用いたので, \hat{D} は D_2 項までで表現されているが,実際の合金固溶体の自由エネル ギーは複雑でそのような単純な数式では表現できない.この 場合には,過去の研究で求められた実際に則した自由エネル ギー式や第2回3章のスピノーダル分解で示した高次多項 式が一般に用いられる.

以上のことが、場所によって濃度が変動する物質内の拡散 挙動、例えば相分解過程や組織形成を理解する基本となる.

7. フェーズフィールド法による組織シミュレーション

近年,計算機の処理能力拡大とアリゴリズムの発展に伴

い、材料の相変態現象に対する動力学シミュレーションが非 常に容易になってきた. 材料の組織形成過程を計算しようと する場合,重要な点は基本的に非線形現象が相手であるとい う認識である. 電磁気学や量子力学の世界は, 揺らぎの小さ な世界であるので, 波動方程式等を厳密に解析することによ って、高精度の予測が可能である、しかしながら、材料、合 金など物質の相変態現象の世界は、非線形性が強く境界条件 や初期条件の少しの差によって結果が大きく変化するよう な,非線形性が現象の大半を支配する揺らぎの大きな世界で ある.したがって、前者の計算機シミュレーションは、計算 の厳密性・正確性が重要であるのに対して、後者では厳密 性・正確性を出来得る限り維持しつつ、かつ計算機実験にお ける試行錯誤の容易さが要求される. つまり, 相変態・組織 形成の計算では、厳密な相変態予測は困難で、計算機シミュ レーションと対話しながら、目的とする組織・構造を探索し ていくことが大切である.

フェーズフィールド法は,最初に凝固・結晶成長の研究分 野で提案された組織形成過程のシミュレーション法である が,その手法がデンドライト成長などの極めて複雑なパター ンを忠実に再現する⁽³⁾ことが示されたことから,材料組織学 に現れる各種のパターン形成に応用する動きが高まり,現在 急速に応用範囲が広がり,材料組織のみならず,材料強度な どにも適用され,材料全般の将来の学問・研究形態を変えて しまうほどの進展を見せている.

7.1 フェーズフィールド法の基本概念

フェーズフィールド法の基本概念について説明する. ま ず、この計算法は相変態組織の全エネルギー(組織自由エネ ルギー)を連続な秩序変数で書き出す⁽⁴⁾. 図7·1(a)は拡散相 分解と結晶変態が存在する合金系の化学的自由エネルギー曲 面で,濃度軸c,結晶度軸sおよび自由エネルギー軸Gの3 軸より構成される. 図7·1(b)はエネルギー曲面の(G-c)面 への投影で、平衡状態図でおなじみの自由エネルギー濃度図 に相当する. 平衡する共役2相の濃度は共通接点の c_a と c_b で与えられるが、結晶構造は異なっている.ここでは、 G_{α} をhcp構造(s=1)の,また G_b をbcc構造(s=0)の固溶体の 化学的自由エネルギーとする.通常,β相の過飽和固溶体の 相分解を考える場合には、β相が組成の異なる2相に分解し た後、一方の相が hcp 構造に変わり、最終的に平衡相であ る(α+β)2相組織になると考える.フェーズフィールド法 の大胆な点は、図7·1(a)に見るように、結晶方向も連続変 数sで繋いだ点にある.つまり、この曲面を利用し、濃度場 cと結晶度場sの時間変化を発展方程式に基づき同時に解析 する計算法がフェーズフィールド法である.濃度cは,保存 変数(相変態が進行しても系全体のcは不変)であるので非線 形拡散方程式に基づき計算し、一方結晶度sは、非保存変数 (変態の進行につれて変化する規則度や再結晶度など)である ので非保存場の発展方程式(形式的には Allen-Cahn 方程式 に等しい.)に基づき計算を行う. さらに秩序変数はいくら多 くてもかまわないので、濃度場の秩序変数を c_1, c_2, c_3 のよう

図7・1 2種類の秩序変数(濃度と結晶度)による化学自 由エネルギー局面.

に増やせば多元系の計算となり,結晶場の秩序変数を増やせ ば多数の結晶系が関与した相変態を扱うことになる.この計 算法の問題点は,s=0.5のような中間状態の物理的イメージ が明確でないことである.s=0.5は bcc と hcp の中間構造を 意味するが,その具体的なイメージは存在しない.しかし, 自由エネルギー曲面から明らかなように,s=0.5の状態は不 安定で,この状態が広く組織内に存在することはなく,ある とすれば,bcc相と hcp 相の境界部にわずかに存在し得るの みである.一般に結晶系の異なる2相が連結している場 合,ある結晶面を境に完全にそれぞれの結晶構造に分れてい ることは,界面エネルギーが極めて高くなり考えにくい.通 常は界面に遷移構造が存在して,界面エネルギーを低くおさ えると考えられている.鋼のマルテンサイトとオーステナイ トの界面が連続的な遷移構造によって連結されていることも 見出されている⁽⁵⁾.

フェーズフィールド法は,材料組織学において現れる全て の組織形態を計算対象に含むことができるので,この手法に は広範囲な現象への適用の可能性がある.さらに粒界や転位 などの欠陥も,秩序変数で表せば,格子欠陥のダイナミク ス,さらには格子欠陥と相分解の相互作用まで解析できるよ うになっており、極めて発展性が高く、興味深い.

7.2 フェーズフィールド法の理論と計算法

以下にフェーズフィールド法の理論と計算法についてその 概略を述べよう. 組織全体の自由エネルギー(組織自由エネ ルギー)は、ここでは化学的自由エネルギー G_c ,界面エネル ギー F_{surf} および弾性歪エネルギー E_{str} の総和として記述す る. これらのエネルギーは複数の保存秩序変数 $c_i(\mathbf{r})$ および 非保存秩序変数 $s_i(\mathbf{r})$ を用いて、次式のように与えられる.

$$G_{\text{sys}} = \int_{r} [G_{\text{c}}\{c_{i}(\mathbf{r}), s_{j}(\mathbf{r}), T\} + E_{\text{surf}}\{c_{i}(\mathbf{r}), s_{j}(\mathbf{r}), T\}$$

+ $E_{str}\{c_i(\mathbf{r}), s_j(\mathbf{r}), T\}$] $d\mathbf{r}$ (7·1) *T* は温度, **r** は 3 次元座標を示す.フェーズフィールド法で は,これらの各秩序変数の時間依存は次の 2 つの非線形発 展方程式によって与えられる.式(7·2a)は保存場の発展方 程式で,Cahn-Hilliard 方程式⁽⁶⁾と呼ばれているものと同義 である.また式(7·2b)は非保存場の発展方程式で,Allen-Cahn 方程式⁽⁷⁾と呼ばれている.

$$\frac{\partial c_{i}(\mathbf{r}, t)}{\partial t} = \nabla \cdot \left\{ M_{c_{i}} \{ c_{i}(\mathbf{r}, t), T \} \left[\nabla \frac{\delta G_{\text{sys}}}{\delta c_{i}(\mathbf{r}, t)} + \xi_{c_{i}}(\mathbf{r}, T, t) \right] \right\}$$

$$(7 \cdot 2a)$$

$$\frac{\partial s_{j}(\mathbf{r}, t)}{\partial t} = -L_{s_{i}} \{ s_{j}(\mathbf{r}, t), T \} \left[\frac{\delta G_{\text{sys}}}{\delta s_{j}(\mathbf{r}, T)} + \xi_{s_{j}}(\mathbf{r}, T, t) \right]$$

$$(7 \cdot 2b)$$

 $M_{c_i}\{c_i(\mathbf{r}, t), T\} \geq L_{s_i}\{s_j(\mathbf{r}, t), T\}$ は,各秩序変数の時間変化 に対する易動度で,共に秩序変数と温度の関数である. ξ 項 は秩序変数の揺動項であるが,一般には無視される場合が多 い.組織自由エネルギーは $G_{sys} = G_c + E_{surf} + E_{str}$ であるか ら,保存変数と非保存変数の拡散ポテンシャル $x_{c_p}(\mathbf{r}, t) \geq x_{s_q}$ (\mathbf{r}, t)は,次式で与えられる.

$$x_{c_p}(\mathbf{r},t) \equiv \frac{\delta G_{\text{sys}}}{\delta c_i(\mathbf{r},T)} = \mu_c^{c_p}(\mathbf{r},t) + \mu_{\text{surf}}^{c_p}(\mathbf{r},t) + \mu_{\text{str}}^{c_p}(\mathbf{r},t) \quad (7\cdot3a)$$

$$x_{s_q}(\mathbf{r},t) \equiv \frac{\delta G_{\text{sys}}}{\delta s_q(\mathbf{r},T)} = \mu_c^{s_q}(\mathbf{r},t) + \mu_{\text{surf}}^{s_q}(\mathbf{r},t) + \mu_{\text{str}}^{s_q}(\mathbf{r},t) \quad (7\cdot3b)$$

各秩序変数の時間発展は,式(7·3a)および(7·3b)の右辺を 数値計算し,それぞれ式(7·4(a),(b))に代入することによ って, *Δt*時間後の各秩序変数値を求める.

$$c_p(\mathbf{r}, t + \Delta t) = c_p(\mathbf{r}, t) + \left\{\frac{\partial c_p(\mathbf{r}, t)}{\partial t}\right\} \Delta t$$
 (7.4a)

$$s_q(\mathbf{r}, t + \Delta t) = s_q(\mathbf{r}, t) + \left\{ \frac{\partial s_q(\mathbf{r}, t)}{\partial t} \right\} \Delta t$$
 (7.4b)

この様にフェーズフィールド法は、保存場および非保存場 を含む組織の自由エネルギー式についての非線形発展方程式 を同時に数値解析し、 G_{sys} が最も早く減少する組織発展過程 を計算機でシミュレーションする手法である.なお、 $c_i(\mathbf{r}, t)$ と $s_j(\mathbf{r}, t)$ は位置 \mathbf{r} と時間tにおける保存系および非保存系 の秩序変数であるから、これが"時間空間における相の場す なわちフェーズフィールド(Phase Field)"となっている.

この一連のフェーズフィールド法の計算において,最も大 切なことは拡散ポテンシャルン $x_{c_i}(\mathbf{r}, t) = (\delta G_{sys} / \delta c_i)$ および $x_{s_j}(\mathbf{r}, t) = (\delta G_{sys} / \delta s_j)$ を正確に求めることである. つまり, 相変態に伴って生じる組織の自由エネルギーの評価が最も大 切である. 拡散ポテンシャルは過去の膨大な実験結果を利用 することができる. そのため過去のデータをどのように利用 するかは,各自のやり方によって異なる. 具体的な計算法は 文献(3), (8)を見ていただきたい.

以下に、幾つかのシミュレーションの結果を示す.

7.3 種々の合金におけるシミュレーション結果

7·3·1 Fe-Mo 合金

図7・2はFe-Mo合金の状態図⁽⁸⁾で、図中の点線と鎖線 は、準安定バイノーダル線とスピノーダル線である.左右非 対称なのは Mo量に応じて弾性率が高くなるからである. Fe-Mo系の濃度による格子の濃度膨張係数ηは0.083でかな り大きい、弾性異方性パラメターはFe側でA>1, Mo側で A<1で、その間は連続的に変化し、等方弾性体はFe-60 at Mo付近で得られる.フェーズフィールド法で計算した、 Fe-40 at%Mo合金(773 K 時効)の2次元組織の時間変化を 図7・3⁽⁸⁾に示す.時効の進行につれて Mo-rich ゾーン(黒色

図7・3 Fe-40 at%Mo 合金の 773 K における組織形成 シミュレーション.

図7・4 粒子分裂に対する周囲粒子の影響についてのシ ミュレーション.

部)が〈100〉方向に形成され(〈100〉変調構造), 更にそれらが 粒子間の競合成長をしながら全体として粗大化している.図 7.3写真中の個所(b)や(c)に見るように、2粒子が結合して 大きな粒子になる場所や, 逆に1個の粒子が2個に分裂す る場所(a)も見られる.これは組織の成長挙動が個々の粒子 の安定性のみで決まるのではなく、周囲の粒子の影響を受け ることを示している.このことを端的に示したのが図7・4で ある.この図は柱状粒子を単独で置いた場合(a)と柱状粒子 の近くに2個の粒子を置いた場合(b)の柱状粒子の時間経過 による形状変化をシミュレーションで見たものである.(a) の単独の場合には若干の形状変化があるものの大きくは変わ らないのに対し,後者の(b)の場合は2個の粒子の影響を受 けて柱状粒子が2個に分列している.このことは粒子の形 状も周囲の弾性場の影響を受けることを示しており、組織内 の粒子が多数ある場合の粒子安定形状を単独粒子のみの安定 性で判断することは危険な事を示している.

7·3·2 Al-Zn 合金

次に濃度(保存変数)と結晶構造(非保存変数)の両方を秩序 変数とする場合を Al-Zn 合金⁽⁹⁾で示す. 図7·5は, Al-59 at%Znを298Kで時効した時のフェーズフィールド法によ る計算図である. 横方向に時効の進行を示しているが, C と 表示されている欄は溶質濃度分布を示し白色部が Al 高濃度 域である.一方,Sは結晶度の進行を示し,黒色域は fccの Al 高濃度域(S=0)で, 灰色部は hcp 結晶構造(S=1)で明る さの違いは結晶方位の違いを表わしている. これらの結果か ら Al-59 at%Zn 合金の相分解の進行は次のように考えられ る. まず最初に相分解は, fcc α-相中から微細な球形ゾーン がランダム位置に形成される.この球形粒子がゾーンである こと、すなわち地相と同じ fcc 構造であることは時効初期の 8 sec 時効で濃度表示 C において Al 原子の濃淡があるにも 関わらず,結晶度Sでは識別できないことから明らかであ る. 地相と同じ結晶構造で濃度のみ異なるゾーンが形成され ている事を明らかに示している.時効が進行すれば,結晶度 変数の14 secの写真に見るように、地相からhcp相が析出

図7・5 濃度変動 C と結晶度変動 S で表わした Al-Zn 合金のフェーズフィールド相分解シミュレーシ ョン・

する. その後,それが進行して,ゾーンの高 Al 部分を除い て,fcc 地相が種々の結晶方位を持った hcp 構造に変化す る.灰色部が全て hcp 構造で,明暗の違いは結晶方位の違 いを示している.

7·3·3 Fe-Al 合金

次に Fe-20 at% Al-20 at% Co 規則合金のシミュレーショ ン結果⁽⁷⁾を示す.この合金の973Kの3元状態図のFe側に α固溶体があり、Al、Co高濃度側にB2規則相が広範囲に 広がっており、その中にA2+B2の2相共存域がある.こ の2相域内にある合金を高温のB2単相域で均一化したのち, A2+B2領域の923Kで40 sec保持した時の計算組織を図 7.6に示す. この計算では,保存変数として濃度 c,非保存 変数として結晶規測度xおよび磁気規則度sが取り上げられ ている.まず,濃度図 CFe からは Fe 原子分布に濃淡ができ ているが(白色部が高濃度部,黒い線状は逆位相境界),Al, Coについてはほとんど濃淡がない、すなわち規則格子B2 の相分解(濃度変動)は主として Fe 原子の濃淡によって生じ ている事が判る.次に結晶規則度 X は,Al と Co に濃淡が でき, Fe に関してはほとんど濃淡がない. このことは B2 規則化に関しては Al と Co 原子の貢献を示している.次に 磁気に関しては、CoとFe原子は寄与しているのに対し、 Alは濃淡がなく、磁気に関しては全く寄与がないことが分 かる.

この手法は現在,多くの合金系の様々な現象に適用されている.ここでは取り上げなかったが,材料中の転位を組織と

図7・6 Fe-Al-Co 合金相分解に伴う計算組織. C_j;濃 度に対する j 原子の寄与, X_j:規則度への j 原 子の寄与, S_j:磁気規則度への j 原子の寄与.

して捉えこれらの運動すなわち塑性変形にも適用されている.更に機械的性質の説明,強度開発,更には組織と強度を 結びつけて材料の開発にまでこの手法が適用されつつあり, 応用範囲はとどまるところを知らない感がある.

(次号へつづく)

文 献

- $(\ 1\)\ \ C.$ Matano: Japan J. Phys., $8(1933),\ 109.$
- (2) L. S. Darken: Trans. AIME, 175(1948), 184.
- (3) J. A. Warren and W. Boettinger: Acta Metall., 43(1995), 689
- (4) 小山敏幸:日本金属学会誌, 73(2009), 891.
- (5) S. Kajiwara, K. Ogawa and T. Kikuchi: Philos. Mag. Lett., 74 (1996), 405.
- (6) W. Cahn and J. E. Hilliard: J. Chem. Phys., **31**(1959), 688.
- (7) S. M. Allen and J. W. Cahn: Acta Metall. Mater., 27 (1979), 1085–1093.
- (8) T. Koyama and Miyazaki: Mater. Trans. JIM, **39**(1998), 169–178.
- (9)小山敏幸,小坂井孝生,宮崎 亨:まてりあ,38(1999), 624-628.

参考書

(1)小山敏幸:材料設計計算工学計算組織学編,内田老鶴圃, (2011).

 ★★★★★★★★★★★★★★★★★★★★
 1960年名古屋工業大学卒業
 1965年東北大学大学院工学研究科博士課程修了
 東北大学金属材料研究所助手,名古屋工業大学助教授, 教授,副学長を経て名誉教授
 専門分野:相変態論,材料強度学
 ◎スピノーダル分解,組織自由エネルギー論,組織分 岐理論,組織シミュレーション,組成傾斜時効法な どの開発.
 ★★★★★★★★★★★★★★★★★★★★★★★

宮崎 享