最近の研究

ペロブスカイト型酸化物を利用した 白金族金属回収技術

野村勝裕*蔭山博之*

1. はじめに

白金族金属(Platinum group metals:以下 PGM と略す) は、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウ ム(Ir)、ルテニウム(Ru)、及びオスミウム(Os)の6金属の 総称である.PGM は宝飾用のみならず、自動車排ガス用触 媒、工業用触媒、医療用など幅広い分野で使用されている. しかし、産出量が少なく、産地も限定されているため、 PGM の有効利用には、使用量の削減、及び回収による再利 用が重要である.PGM のリサイクル方法として、王水など の強酸を回収媒体とした湿式法、銅などの溶融金属を媒体と した乾式法が知られているが、前者は回収効率が高くなく、 後者は設備が大掛かりになる等の難点がある⁽¹⁾.

本稿では、PGM の新規回収方法として、ペロブスカイト 型酸化物を回収媒体(吸蔵材)に用いる、気相(空気)を介し た、非接触の PGM の回収について報告する. さらに、 PGM を吸蔵したペロブスカイト型酸化物の酸に対する溶解 性についても報告する⁽²⁾⁻⁽⁶⁾.

2. 群青色ペロブスカイト発見の経緯

ペロブスカイト型酸化物を用いた PGM の新規回収方法の 詳細を述べる前に, PGM 吸蔵材であるペロブスカイト型酸 化物の特徴,及びこの回収方法の原点である群青色ペロブス カイト発見の経緯を簡単に紹介する.

(1) PGM 吸蔵材-ペロブスカイト型酸化物の特徴

ペロブスカイトの名称は、化学組成 CaTiO3 の鉱物ペロブ

スキー石(Perovskite)(和名:灰チタン石)に由来する.この 鉱物と同様な結晶構造を持つ酸化物を、ペロブスカイト型酸 化物と呼ぶ.ペロブスカイト型酸化物は一般式 ABO3で表 され、Aサイト及び Bサイトを占有する陽イオンの組合 せ、あるいは A、B両サイトの陽イオンと酸化物イオンの不 定比性により、誘電性、超伝導性、イオン導電性、強磁性、 反強磁性など、様々な電気的、磁気的性質が現れる⁽⁷⁾.

1981年に、岩原らによって、ペロブスカイト型酸化物の プロトン導電現象が発見された⁽⁸⁾.ここで、プロトン導電現 象とは、外部から電場を印加した際、物質中を水素陽イオン (H+、プロトン)が移動し、電荷を運ぶ現象を意味する.以 来、ペロブスカイト型酸化物はプロトン導電体として注目さ れ、燃料電池、水素センサー、水素分離装置などの電解質材 料への適用が検討されている⁽⁹⁾⁻⁽¹¹⁾.

我々は、ペロブスカイト型酸化物の内、A サイトに3価 陽イオン、B サイトに3価陽イオンを含む $A^{3+}B^{3+}O_3$ 型を ベースとする化合物、(La, Sr) M^{III}O_{3-δ}(M^{III} = Sc, In, Lu な ど、δ は酸素空孔量)に着目し、導電特性⁽¹²⁾⁽¹³⁾及び結晶構 造⁽¹⁴⁾⁽¹⁵⁾について研究を進めてきた.これらの化合物は、A サイトの La³⁺ イオンの一部を Sr²⁺ イオンで固溶置換する ことにより、電荷補償の形で結晶内に酸素空孔が導入され る.高温で酸素分圧が高く水素分圧が高い(=高水蒸気分圧) 条件では、試料周りの雰囲気ガス中の H₂O が酸素と水素に 解離して結晶中に溶解し、プロトンによる導電が支配的とな る⁽¹⁶⁾.これら $A^{3+}B^{3+}O_3$ 型をベースとするペロブスカイト 型化合物は、従来報告されてきた A サイトに 2 価陽イオン、 B サイトに 4 価陽イオンを含む $A^{2+}B^{4+}O_3$ 型をベースとす るペロブスカイト型プロトン導電体、Sr (Ce_{0.95}Y_{0.05}) O_{3-δ} (SCY)⁽¹⁷⁾, Ba(Ce_{0.9}Y_{0.1})O_{3-δ}(BCY)⁽¹⁷⁾などと同程度のプロ

* 独立行政法人産業技術総合研究所 ユビキタスエネルギー研究部門,イオニクス材料研究グループ 主任研究員(〒563-8577 池田市緑 丘 1-8-31)

Recycling Technology for Platinum Group Metals by Using Perovskite-type Oxides; Katsuhiro Nomura, Hiroyuki Kageyama (Ionics Research Group, Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda)

Keywords: *perovskite-type oxides, platinum group metals, recycling technology, ion exchange, gas phase* 2012年11月 6 日受理

図1 ペロブスカイト型プロトン導電体の水素雰囲気中 における全導電率のアレニウスプロット. $A^{3+}B^{3+}O_3$ 型ペロブスカイト化合物-(La_{0.9}Sr_{0.1}) ScO_{3-\delta}⁽¹²⁾, (La_{0.9}Sr_{0.1}) InO_{3-\delta}⁽¹²⁾, (La_{0.9}Sr_{0.1}) LuO_{3-\delta}⁽¹²⁾, (La_{0.8}Sr_{0.2}) ScO_{3-\delta}⁽¹³⁾及び A²⁺B⁴⁺O₃ 型ペロブスカイト化合物-Sr (Ce_{0.95}Yb_{0.05}) O_{3-\delta} (SCY)⁽¹⁷⁾, Ba(Ce_{0.95}Y_{0.05})O_{3-\delta}(BCY)⁽¹⁷⁾.

トン導電率を示す(図1). 一連のA³⁺B³⁺O₃型化合物の中 で、ランタンスカンデート(LaScO₃)系化合物は比較的高い プロトン導電率(873 K で 10⁻³ S/cm のオーダー)を持ち、 化学的にも安定なため、水素センサーの電解質材料への適用 が検討されている⁽¹⁸⁾.

(2) 群青色ペロブスカイトの発見

セラミックス材料を燃料電池,ガスセンサーなどの電解質 として用いる際には、ガス透過による性能低下を防ぐため、 相対密度(=嵩密度/理論密度)95%以上の緻密焼結体が必要 である.2003年当時,LaScO₃系化合物は、比較的高いプロ トン導電率を持ち,化学的にも安定という長所を持つ一方 で,通常の固相反応法で焼結体を作製した場合,1873 K と いう高温焼成によっても、相対密度が80%程度にしか達し ないという難焼結性の材料であった.我々は、LaScO₃系化 合物の緻密焼結体を作製するため、1873 K より高い温度で の焼成を試みていた.

LaScO₃のAサイト(La)の20mol%をSrで,10mol%を Baで置換した(La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3-δ}(以下LSBSと略す)組

図2 空気中,1898 K,36 ks 焼成後の(La_{0.7}Sr_{0.2}Ba_{0.1}) ScO_{3-δ}(LSBS)成形体.

成の化合物を白金(Pt)箔に載せ,空気中,1898 K で 36 ks 焼成した後の様子を図2に示す.

この実験では、LSBS とアルミナとの化学反応を避けるた め、アルミナ容器(ニッカトー、材質:SSA-S,容積:約15 cm³)内に Pt 箔(厚さ 30 µm)を置いた. Pt 箔の上に直方体 状のLSBS 成形体を置き、同一寸法のアルミナ容器で蓋を した. 焼成後, 電気炉からアルミナ容器を取り出して蓋を開 けて見ると、焼結体は崩壊していた. 各断片の焼結は進んで いたが、驚いたことに、成形体の表面であったと推察される 所から0.5mm程度の深さまで淡赤色から群青色(ウルトラ マリンブルー)に変色していた. 初めてこの群青色のペロブ スカイト化合物に遭遇した際には、何らかの原因によるコバ ルト元素の混入を疑った.その後,アルミナ容器, Pt 箔を 別のものに替え、新たに合成した LSBS 粉末を用いて焼成 を行った場合にも、同様な現象が再現された.群青色の原因 を探るために蛍光X線分析による元素分析を行ったとこ ろ, 試料中にはコバルトではなく Pt が含まれていることが 分かった.大変な驚きであった.この現象の発見をきっかけ に、LaScO₃系化合物の緻密結体作製の研究と並行して、ペ ロブスカイト型酸化物とPGM との反応性についての研究が 始まった.その後、LaScO3系化合物の緻密焼結体作製に関 しては、粒度分布の異なる2種類の粉末(サブミクロンオー ダー及びミクロンオーダー)を混合して焼成するという手法 で、相対密度95%以上の緻密なものが得られている(19)(20).

ペロブスカイト型酸化物を用いた PGM の吸蔵実 験

(1) 実験方法

ペロブスカイト型酸化物として、LaScO₃系化合物の1つ である(La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3- δ}(LSBS)を用いた場合の例を示 す.LSBSは、La₂O₃(4N)、SrCO₃(5N),BaCO₃(5N)及び Sc₂O₃(3N)を出発物質とし、固相反応法により合成した⁽²⁾. 吸蔵実験には、4種類のPGM(Pt,Pd,Rh,及びIr)を使 用した.PGMの形状としては、箔状のもの、メッシュ状の もの、又はアルミナ(触媒学会参照触媒JRC-ALO-7)担体に 金属ナノ粒子として高分散担持したものを模擬廃材として用 いた.LSBS 粉末を PGM の箔に載せた状態,又はLSBS 粉 末と PGM を非接触の状態でアルミナ容器(ニッカトー,材 質:SSA-S,容積:約15 cm³)に入れ,同アルミナ容器で蓋 をし,空気中,1273~1898 K で 36 ks 焼成した.焼成前後 のLSBS 粉末試料について,色の変化を目視で確認すると ともに,誘導結合プラズマ発光分光(ICP-AES)による元素 分析を実施した.また,同試料について,粉末X線回折 (XRD)法,X線吸収微細構造(XAFS)分光法などによる結 晶構造解析を行った.

(2) LSBS と Pt との接触・非接触状態での反応

(a) LSBS の結晶構造

粉末 XRD データのリートベルト解析により,合成した LSBS は図3に示すような斜方晶 GdFeO₃型(空間群 No.62, *Pnma*)のペロブスカイト型構造を持つことが分かった⁽²⁾. この結晶構造の特徴は以下の通りである.① B サイト陽イ オン(Sc³⁺)の周りに酸素が6配位し,ScO₆八面体を形成し ている.ScO₆八面体のSc³⁺と酸素6個との結合距離は0.20 ~0.21 nm である.② ScO₆八面体は交互に傾きながら酸素 を頂点共有して繋がっている.③ ScO₆八面体の隙間にA サ イト陽イオン(La³⁺, Sr²⁺, Ba²⁺)が分布している.A サイト 陽イオンと再近接酸素12個との結合距離は,0.24~0.35 nm である.

(b) LSBS と Pt との接触反応

LSBS 粉末(2.0g)を Pt 箔に載せ,空気中,1898 K で 36 ks 焼成すると,LSBS 粉末は淡赤色から群青色へと変色し た(図4).ICP-AES 分析により,焼成後のLSBS には 0.5 mass%の Pt の含有が確認された.XRD データのリートベ ルト解析により,LSBS のペロブスカイト型構造は焼成前後

図3 (La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3-δ}(LSBS)ペロブスカイト型 酸化物の結晶構造.La³⁺, Sr²⁺, Ba²⁺がAサイト (赤丸)を,Sc³⁺がBサイト(紫丸)を,OがO1 及びO2サイト(白丸)を占有.点線は単位胞を表 す.

で保持されることが分かった. 焼成後の ScO₆八面体の Sc³⁺と酸素 6 個との結合距離は 0.20~0.22 nm であった. 図 5(a), (b) 及び(c)に, 焼成後の LSBS 粉末(Pt/LSBS), PtO₂·nH₂O 及び Pt 箔の Pt 周りの動径構造関数を示す. Pt/ LSBS の Pt-O 結合に対応するピークは約 0.17 nm にあり, PtO₂·nH₂O の Pt-O 結合に対応するピークよりもやや長い 位置にある. また, Pt/LSBS のピーク強度は PtO₂·nH₂O の それよりも大きい. これらより, Pt はイオン化して Pt³⁺ の 状態で LSBS の B サイト(Sc サイト)を主に占有すると推定 された(図 5)⁽²⁾⁽⁶⁾.

(c) LSBS と Pt との非接触反応

LSBS 粉末と Pt メッシュ(#80)との反応を図6に示す.

図4 (a)焼成前,及び(b)Pt 箔上,空気中,1898K, 36 ks 焼成後の(La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3-ð}(LSBS)粉 末.

図5 (a) Pt/LSBS, (b) PtO₂ · nH₂O 及び(c) Pt 箔の Pt 周りの動径構造関数⁽²⁾⁽⁶⁾.

アルミナ容器の中央に LSBS 粉末を置き,その両側に LSBS 粉末と非接触状態で Pt メッシュを置き,同サイズのアルミ ナ容器で蓋をし,空気中,1798 K で 36 ks 焼成すると, LSBS 粉末は淡赤色から群青色に変化した.ICP-AES 分析 の結果,焼成後の LSBS 粉末には 0.2 mass%の Pt が含まれ ていることが分かった.また,XRD データのリートベルト 解析により,LSBS のペロブスカイト型構造は,焼成前後で 保持されていることが分かった.この実験結果より,LSBS 粉末と Pt 箔が離れていても吸蔵現象が起きることが分か り,ペロブスカイト型酸化物を用いた PGM の回収方法の検 討を進めることとなった.

(3) LSBS と種々の PGM との反応

(a) LSBS と Pd, Rh 又は Ir との接触反応

LSBS 粉末とPd 箔との反応例を図7に示す.LSBS 粉末 (2.0g)をPd 箔に載せ,空気中,1813 K で 36 ks 焼成する と,LSBS 粉末は淡褐色となった.ICP-AES 分析により, 焼成後のLSBS には 0.9 mass%のPd の含有が確認された. XRD データのリートベルト解析により,LSBS のペロブス カイト型構造は焼成前後で保持されることが分かった.さら に,XAFS 分析により,Pd はイオン化して Pd³⁺の状態で LSBS の B サイト(Sc サイト)を主に占有すると推定され た⁽⁶⁾.

LSBS 粉末と Rh 箔との反応例を図8に示す.LSBS 粉末 (2.0g)を Rh 箔に載せ,空気中,1798 K で 36 ks 焼成する と,LSBS 粉末は黒色となった.ICP-AES 分析により,焼 成後の LSBS には 2.9 mass%の Rh の含有が確認された. XRD データのリートベルト解析により,LSBS のペロブス カイト型構造は焼成前後で保持されることが分かった.焼成 後の XRD パターンには、ペロブスカイト相以外に Sc₂O₃ 相 の回折ピークが見出された.さらに,XAFS 分析により, Rh はイオン化して Rh³⁺の状態で LSBS の B サイト(Sc サ イト)を主に占有すると推定された⁽⁶⁾.

LSBS 粉末と Ir 箔との反応例を図9に示す. LSBS 粉末 (2.0g)を Ir 箔に載せ,空気中,1798 K で36 ks 焼成すると, LSBS 粉末は濃褐色となった. ICP-AES 分析により,焼成

図6 (a)焼成前,及び(b)空気中,1798K,36ks焼成 後の(La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3-δ}(LSBS)粉末(中央)と Pt メッシュ(#80)(右,左).

図9 (a)焼成前,及び(b)Ir 箔上,空気中,1898 K, 36 ks 焼成後の(La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3-δ}(LSBS)粉 末.

図7 (a)焼成前,及び(b)Pd 箔上,空気中,1813 K, 36 ks 焼成後の(La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3-δ}(LSBS)粉 末.

図10 (a)焼成前,及び(b)空気中,1798 K,36 ks 焼成 後の1 mass% Rh/Al₂O₃(左)と(La_{0.7}Sr_{0.2}Ba_{0.1}) ScO_{3-δ}(LSBS)粉末(右).

図8 (a)焼成前,及び(b)Rh 箔上,空気中,1898K, 36 ks 焼成後の(La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3-δ}(LSBS)粉 末.

図11 (a)焼成前,及び(b)Pt 箔上,空気中,1898 K, 36 ks 焼成後の Sr(Zr_{0.9}Y_{0.1})O_{3-δ}(SZY)粉末.

後の LSBS には 11.4 mass %の Ir の含有が確認された. XRD データのリートベルト解析により, LSBS のペロブス カイト型構造は焼成前後で保持されることが分かった. 焼成 後の XRD パターンには,ペロブスカイト相以外に Sc_2O_3 相 の回折ピークが見出された. さらに, XAFS 分析により, Ir はイオン化して Ir^{3+} の状態で LSBS の B サイト(Sc サイト) を主に占有すると推定された⁽⁶⁾.

(b) LSBS と Rh との非接触反応

1 mass% Rh/Al₂O₃ と LSBS 粉末との反応例を図10に示 す. 淡緑褐色の Rh/Al₂O₃(0.5 g) と淡赤色の LSBS 粉末(2.0 g)を非接触状態で,空気中,1798 K で 36 ks 焼成すると Rh/Al₂O₃ は無色となり,LSBS は濃青色となった.ICP-AES 分析により,焼成後の LSBS には 0.2 mass%の Rh の 含有が確認された.これは,Rh/Al₂O₃ に含まれる Rh の約 80%に相当する.XRD データのリートベルト解析により, LSBS のペロブスカイト型構造は焼成前後で保持されること が分かった.

(4) 他のペロブスカイト型酸化物と Pt との反応

 $A^{2+}B^{4+}O_3$ 型ペロブスカイトの1つである SrZrO₃のB サ イト(Zr)にYを10mol%置換固溶したSr(Zr_{0.9}Y_{0.1})O_{3- δ}(以 下SZYと略す)組成の化合物と白金箔との反応を図11に示す. SZY はプロトン導電体の1つである.

SZY 粉末(2.0 g)を Pt 箔に載せ,空気中,1898 K で 36 ks 焼成すると,SZY 粉末は淡青色となった.ICP-AES 分析に より,焼成後の SZY には 0.2 mass%の Pt の含有が確認さ れた.XRD データのリートベルト解析により,SZY は GdFeO₃型ペロブスカイト型構造を持ち,焼成前後で結晶構 造が保持されることが分かった.さらに,XAFS 分析によ り,Pt はイオン化してPt³⁺の状態で SZY の B サイト(Zr サ イト)を主に占有すると推定された⁽⁴⁾.

4. 推定される反応機構

表1に、3種類のPGM 箔(Pt, Rh 又はIr 箔)にLSBS 粉 末を載せ、空気中、1898 K で36 ks 焼成した際のLSBS の PGM 吸蔵量、及びこれら3種類のPGM に対応するPGM 酸化物の酸素中、1898 K における蒸気圧⁽²¹⁾を示す.LSBS のPGM 吸蔵量の大小は、PGM 酸化物の蒸気圧の大小、す なわち $P(IrO_3) \gg P(RhO_2) > P(PtO_2)$ にほぼ対応しているこ とが分かる.

3節及び4節に記した実験結果より,LSBSのPGM吸蔵 現象は、図12に示すように、空気中、高温での加熱により、

i) PGM が PGM 酸化物(又は PGM)の蒸気として蒸発し,
ii) 気相(空気)中を移動した後,iii) LSBS ペロブスカイト
型酸化物中の安定サイト(主に Sc サイト)に PGM イオンと
して置換固溶する,というプロセスで進行すると推定された.
PGM の吸蔵量が多くなると, Sc₂O₃が析出することが XRD
測定により確認されており, PGM と Sc のイオン交換反応

表1 PGM 箔上に(La_{0.7}Sr_{0.2}Ba_{0.1})ScO_{3-δ}(LSBS)粉末 を載せ,空気中,1898 K で36 ks 焼成した際の LSBS の PGM 吸蔵量,及び PGM 酸化物の酸素 中,1898 K における蒸気圧⁽²¹⁾.

PGM 箔の種類	LSBS 粉末の PGM 吸蔵量/wt%	PGM 酸化物の 蒸気圧/Pa
Pt	0.5	5.1
Rh	2.9	7.3
Ir	11.4	130

PGM 担体侧 ペロブスカイト型酸化物側 PGM ℃酸素 0 8 酸素 酸化物 P 8 00 PGM ♀ 酸化物 Bサイト 陽イオン酸化物 00 8 担体(セラミックスなど) イオン 陽イオ ペロブスカイト型酸化物

図12 ペロブスカイト型酸化物による PGM 吸蔵機構.

図13 濃塩酸中, 333 K, 21.6 ks 保持前(a),及び保持 後(b)の Pt, Pd, Rh 又は Ir を吸蔵した(La_{0.7}Sr_{0.2} Ba_{0.1})ScO_{3-δ}(LSBS)粉末.

が起きていると考えられる. ペロブスカイト型酸化物に吸蔵 される PGM の量は, PGM 酸化物(又は PGM)の蒸気圧, 及びペロブスカイト型酸化物の持つ PGM 吸蔵能力によって 変化する.

5. PGM を吸蔵した LSBS 粉末の酸に対する溶解性

PGM 含有 LSBS 粉末を塩酸,硝酸又は王水に加えた後, 333 K に加熱・保持し,それぞれの酸に対する溶解性を調べ た.Rhを吸蔵した LSBS 粉末(20 mg)を4 mL の酸に加え, 333 K に加熱した結果,21.6 ks 保持することで濃塩酸に, 32.4 ks 保持することで王水に,43.2 ks 保持することで濃硝 酸に,完全に溶解することが分かった.他の PGM(Pt,Pd, Ir)を吸蔵した LSBS についても,333 K で21.6 ks 以上保持 することで,濃塩酸に完全に溶解した(図13). このことは, 王水にさえ難溶の Ir を含む廃材からでも,溶解度向上のた めの前処理無しで,本回収方法によりこれら PGM を回収で きる可能性があることを示唆する. LSBS に吸蔵された PGM が王水以外の酸に可溶な理由としては, LSBS の結晶 構造中に PGM がイオン化して存在していることが考えられ る.

6. おわりに

LSBS などのペロブスカイト型酸化物を用いた PGM の回 収法は、空気中、非接触状態での加熱により PGM を不可逆 的にペロブスカイト型酸化物中に吸蔵可能であり、ペロブス カイト型酸化物に吸蔵された PGM は王水以外の酸にも可溶 である.また、ペロブスカイト型酸化物の PGM 吸蔵量は、 PGM 酸化物(又は PGM)の蒸気圧に依存するため、加熱温 度を変化させることにより、複数の PGM を含む廃材から、 特定の PGM を優先的に吸蔵可能なことが期待される. さら に、LSBS などのペロブスカイト型酸化物は、最大で数 mass%~十数 mass%の PGM を不可逆的に吸蔵する性質を 持つため、繰り返して吸蔵操作を行うことにより、PGM を 微少量しか含まない廃材からの PGM の濃縮が可能である. その結果、吸蔵に用いる吸蔵材量を大幅に減らすことがで き、回収効率を上げることが期待される.今後は、PGM 吸 蔵の最適条件(反応温度,反応時間など)の検討を行うととも に、より安価で PGM 吸蔵性能の高い吸蔵材の探索を進める 予定である.

本稿で紹介した研究成果の一部は,文部科学省科学研究費 補助金特定領域研究 配位空間の化学—分子凝集,ストレ ス,変換場の創成—の援助によるものである.本研究を進め るに当たり,産業技術総合研究所・関西産学官連携センター の坪田 年イノベーションコディネータから多くのご助言を 頂いた.また,産業技術総合研究所・イノベーション推進本 部の伊達正和連携主幹,並びに産業技術総合研究所・環境化 学技術研究部門の藤谷忠博主幹研究員には,PGM 微粒子を 担持したアルミナ試料の提供,及び PGM を吸蔵した LSBS 粉末試料の酸溶解試験にご協力頂いた.この場をお借りして 御礼申し上げる.

文 献

- (1) 岡部 徹:白金族金属の精錬法とリサイクル技術,貴金属・ レアメタルのリサイクル技術集成,エヌ・ティー・エス (2007),85-101.
- (2) K. Nomura, M. Daté, H. Kageyama and S. Tsubota: J. Mater. Res., **22**(2007), 2647–2650.

- (3)野村勝裕,伊達正和,蔭山博之,坪田 年:特開2008-100902.
- (4)伊達正和,藤谷忠博,野村勝裕,蔭山博之:PCT/JP2009/ 053388.
- (5) M. Daté, K. Nomura, H. Kageyama and T. Fujitani: Chem. Phys. Chem., **12**(2011), 109–112.
- (6) H. Kageyama, K. Nomura, K. Ohmi, M. Fujita and T. Ueda: Proceedings of the 13th Asian Conference on Solid State Ionics–Ionics for Sustainable World, ed. by B.V.R. Chowdari, J. Kawamura, J. Mizusaki and K. Amezawa, World Scientific, (2012), 621–628.
- (7)高野幹夫,武田保雄:ペロブスカイト型および関連化合物, 第4版実験化学講座,第16巻無機化合物,丸善,(2003), 391-445.
- (8) H. Iwahara, T. Esaka, H. Uchida and N. Maeda: Solid State Ionics, 3-4(1981), 359–363.
- (9) H. Iwahara: Solid State Ionics, 77 (1995), 289–298.
- (10) K.D. Kreuer: Chem. Mater., 8(1996), 610–641.
- (11) T. Norby: Solid State Ionics, **125**(1999), 1–11.
- (12) K. Nomura, T. Takeuchi, S. Tanase, H. Kageyama, K. Tanimoto and Y. Miyazaki: Solid State Ionics, 154–155 (2002), 647–652.
- (13) K. Nomura, T. Takeuchi, S. Kamo, H. Kageyama and Y. Miyazaki: Solid State Ionics, **175** (2004), 553–555.
- (14) K. Nomura, T. Takeuchi, H. Kageyama and Y. Miyazaki: Solid State Ionics, 162–163 (2003), 99–104.
- (15)野村勝裕,蔭山博之:日本結晶学会年会講演要旨集(PA-II-12),(2005),100.
- (16) K. Nomura, T. Takeuchi, H. Kageyama and Y. Miyazaki: Proceedings of the 9th Asian Conference on Solid State Ionics-The Science and Technology of Ions in Motion, ed. by B.V.R. Chowdari et al., World Scientific, (2004), 151–161.
- (17) T. Hibino, K. Mizutani, T. Yajima and H. Iwahara: Solid State Ionics, 57 (1992), 303–306.
- (18) C. Minagoshi, H. Imabayashi, S. Nakamura, T. Maekawa, K. Suzuki, K. Nomura and H. Kageyama: Chemical Sensors, 23 (2007), Supplement A, 151–154.
- (19) 野村勝裕, 蔭山博之:特開2007-55877.
- (20)野村勝裕,竹内友成,蔭山博之,宮崎義憲:第12回燃料電池 シンポジウム講演予稿集(B12),(2005),188-191.
- (21) J. C. Chaston: Platinum Metals Rev., 19(1975), 135-140.

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★ 野村勝裕

1993年 名古屋工業大学大学院工学研究科博士後期課程 修了 1993年 通商産業省工業技術院 大阪工業技術試験所(現 独立行政法人 産

業技術総合研究所)研究官 1997年~1999年 新エネルギー・産業技術総合開発機構 副主任研究員 2004年4月- 現職

専門分野:固体イオニクス(電気化学,結晶化学)

◎ペロブスカイト型酸化物などの機能性セラミックス材料(イオン導電性材料,貴金属吸蔵材料など)の創製および構造-物件研究に従事.

野村勝裕

蔭山博之