ナトリウムを用いたシリコンの精製と 結晶形態制御

1. はじめに

地球環境問題や天然資源の枯渇化,脱原子力発電の対応策 として,太陽光発電システムへの期待が高まっている.現在 の太陽電池市場の約90%はシリコン(Si)結晶太陽電池で占め られており,今後もSi太陽電池が主力となることは間違い ない.太陽電池を普及させるためには製造コストの削減が必 要不可欠であり,原料であるSi結晶の精製にも低コスト化 が求められている.

著者らはこれまでに,Si 結晶が溶解した Na 溶液から,溶 媒である Na を蒸発させることで Si 結晶が晶出することを 見出し、この現象を利用した新しい Si 結晶の作製プロセス を提案している⁽¹⁾.この結晶育成手法が見出された経緯は, Na フラックス法による炭化ケイ素(SiC)の低温合成に関す る研究に端を発する⁽²⁾⁽³⁾. Si と C の直接反応による SiC の 合成では,通常1200℃以上の高温が必要となるが,Naを反 応系に加えることで化学的に活性な反応場が提供され、約 700℃で SiC が合成される. この反応過程を調べたところ, Na と Si の二元系状態図が存在しないことが分かり,著者ら は Na-Si の二元系状態図の作成を手掛けた⁽¹⁾. この状態図 から Na-Si の液相が800℃で存在することが明らかになり, Na を溶媒とした Si 結晶の作製を着想するに至った. Si 中 の金属不純物元素の多くは Si 融液が凝固する際,液相中へ 著しい濃縮挙動を示すため, Na 溶媒蒸発に伴い, 不純物元 素が Si 結晶の表面に凝固偏析することが期待される. そこ で、この技術を応用し、Na 溶媒蒸発による Si 結晶の高純度 化を試みた.

また,Si結晶を利用した製品におけるさらなる高機能化

や新たな製品開発において,従来にない Si 結晶の形態制御 プロセスは新たな機能や用途を引き出す可能性がある.本研 究では, Na 溶媒蒸発法を用いることで,単結晶や結晶膜, マイクロチューブなどの様々な形態の Si 結晶を作製するこ とに成功した⁽¹⁾⁽⁴⁾.

森

戸

春

彦*

本稿では、これら一連の研究を始めるきっかけとなった Na-Siの二元系状態図の作成から、Na を溶媒に用いた Si 結 晶の精製,さらにはこれらの研究の過程で発見したらせん形 状の Si マイクロチューブについて紹介する.詳細について は参考文献を参照していただきたい⁽¹⁾⁻⁽⁷⁾.

2. Na と Si の二元系状態図の作成

Na-Siの二元系では、NaSi⁽⁸⁾⁽⁹⁾やSiクラスター化合物 Na_xSi₁₃₆($x = 0 \sim 24$)⁽¹⁰⁾⁽¹¹⁾などが報告されていたが、これら 化合物の融点や二元系状態図に関する情報はこれまで報告さ れていなかった.状態図は材料開発には欠かせない重要な基 礎資料であることから、熱分析や結晶構造解析、組織観察を 用いて実験的に Na と Si の二元系状態図を作成した. Na は 活性な金属で蒸気圧も高く、大気中では取り扱うことができ ないため、市販の装置を用いた熱分析は困難であった. そこ で、著者らは密閉アルゴン雰囲気で示差熱分析(DTA)が可 能な装置を自作して実験を行った.熱分析前後に各組成の試 料の組織観察を行うとともに、それぞれの結晶相をX線回 折法で確認した.実験結果をもとに作成した状態図を図1に 示す.本実験の組成範囲では、Na-Si 二元系における結晶相 として, NaSi(格子定数 a=1.219, b=0.655, c=1.118 nm, β=119.0°, 空間群 C2/c)のみが確認された.また,熱分析 や高温 X 線回折測定より、612℃近傍でこの化合物の構造相

* 東北大学助教;多元物質科学研究所(〒980-8577 仙台市青葉区片平 2-1-1) Purification and Morphology Control of Silicon Crystal by Using Sodium; Haruhiko Morito (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai) Keywords: *sodium, silicon, purification, crystal growth, single crystal, microtube* 2012年7月18日受理

変態も示唆された. 680 C以上の温度で, Na に富む融液 (L₁) と NaSi 組成に近い融液(L₂)の2相領域を推定した. Si が 50 mol%以上の組成では, NaSi と Si の共晶温度が750 C にあることが明らかになった. Na を用いた SiC の合成にお いては, Na-Si の液相が反応の低温化に関与していると考え られた.

3. Na 溶媒蒸発法を用いた Si 結晶の形態制御

Na と Si の二元系状態図から800℃では Na 融液に Si が 50 mol%近くまで溶解することが明らかになった⁽¹⁾. また, Na は高温において高い蒸気圧を有するため, Na-Si 溶液から溶 媒である Na を蒸発させることで Si 結晶が晶出することが 予想された. そこで, Na-40 mol%Si の試料を900℃で 64 h 加熱し, 溶媒の Na を蒸発させたところ, 図 2(a)に示すよ うなファセット面に覆われた粒状の Si 単結晶を作製することに成功した⁽⁷⁾. X線解析より, ファセット面はすべて {112}で指数付けすることができた. 同じ組成の試料を 800℃で 24 h 加熱したところ, 図 2(b)に示すような組織を 有した厚さ約 20 µm の Si 結晶薄膜が生成した⁽¹⁾.

また、NaSi とSi の粉末を混合し成型したものを800℃で 24 h 加熱した後、Na を蒸発させることでSi 結晶の多孔体 を作製した⁽¹⁾. このSi 多孔体のかさ密度は 1.1 g/cm³で、Si の理論密度の約48 %であった. 多孔体の表面では、数 μ m の結晶粒が凝集した組織が観察された. NaSi とSi の混合比 や加熱温度を制御することでSi 多孔体の気孔率や組織を制 御することが可能である.

以上のように, Na 溶媒蒸発法では,加熱温度や原料の仕 込み組成などを制御することで様々な形態の Si 結晶を作製 することができる.

4. らせん形状 Si マイクロチューブ

NaSi 融液から Si 結晶を作製する過程において,非常にユ

(a) <u>1 mm</u>

図 2 Na-Si 溶液から作製した(a) Si 単結晶と(b) Si 結 晶膜.

図3 らせん形状 Siマイクロチューブの SEM 写真. (a) 外観,(b) 試料表面および(c) 試料断面.

ニークな形状の Si マイクロチューブが生成したので、ここ で紹介する⁽⁴⁾.

円盤状の NaSi 圧粉成型体(直径 ¢25 mm×厚さ 2 mm)を

800℃で12h加熱したところ, NaSiからNaが蒸発し, Si 多孔体が得られた.得られた Si 多孔体の表面に多数のワイ ヤ状の結晶が生成し、そのほとんどが図3(a)に示すような らせん形状をしていた. ワイヤそのものをイメージングプレ ートが装備された単結晶X線回折装置で測定したところ, デバイシェラーリングのパターンが観察された. 各リングは いずれも格子定数 a = 0.543 nm 空間群 $Fd\overline{3}m$ の Si で説明 することができた.X線回折パターンがスポットではなく リングであることから、ワイヤは多結晶Siであることが示 された. ワイヤの長さは数百 µm 程度のものが多く, 最長で 約2.5 mm であった.図3(b)のようにワイヤ表面にはナノ メートルオーダーの多数の凹凸がある部分や平滑な部分な ど、様々な形状が観察された.また、図3(c)はワイヤの破 断面の SEM 写真である. 観察したすべての試料において, 図のように中に扁平の穴が空いており、ワイヤ状の試料はマ イクロチューブであることが明らかになった. また透過型電 子顕微鏡を用いて試料内部の組織観察をしたところ、粒状な どのある特定の大きさと形状を持った結晶粒の集まった組織 ではなく、一定の結晶方位をもった Si が試料の広範囲にま だらに広がった組織が観察された(4).

マイクロまたはナノワイヤの作製法には様々な手法がある が,Siワイヤの代表的な生成機構としてVapor-Liquid-Solid (VLS) Growth が挙げられる⁽¹²⁾.この結晶成長では, 低融点金属等の液滴中に蒸気として供給された目的元素が溶 解し,過飽和状態から目的元素が結晶として析出する.した がって,VLS法で作製したワイヤの先端には低融点金属等 が残存する.本実験で作製されたワイヤの先端は鋭角に尖っ ており,組成分析からもSi以外の元素が確認されなかった ことから,SiのマイクロチューブはVLS法とは異なる生成 機構で成長したと考えられる.

本研究ではマイクロチューブの生成過程を図4のように考 察した.まず昇温過程において NaSi 圧粉体から Na の蒸発 が起こり,成型体の最表面で Si 結晶(または NaSi クラスレ ート化合物)の核発生が生じ,750℃以上の温度に到達した 時点で,Si 結晶と NaSi 融液の混相状態になる(図4(a)). Na の蒸発が激しい成型体表面において,選択的に Si 結晶粒

これまでの研究において,加熱温度や昇温速度,原料組成 などの合成条件がらせん形状 Siマイクロチューブの形成に 及ぼす影響を調べたところ,NaSi 融液の存在や,成型体表 面での Si 結晶の粒成長による緻密層の形成などが重要であ ることが明らかになった⁽⁴⁾. 今後は、メカニズムのさらなる 検証や,形状,組織の制御,電気的特性の評価などが研究課 題となっている.

5. Na 溶媒蒸発法を用いた Si 結晶の精製

不純物元素のSi結晶中への固溶度は1000℃以下で温度の 低下とともに減少する挙動を示すため⁽¹³⁾,低温でのSi結晶 作製では効果的に不純物を除去できる可能性がある.本節で は,Na溶媒蒸発法の精製効果に関する研究成果を紹介する.

低純度 Si 粉末と金属 Na をモル比で Na:Si=3:2となる ように窒化ホウ素(BN)製のルツボ内に入れ,これを900℃ で1h加熱して Na-Si 溶液を作製する.その後,電気炉内 に50℃の温度勾配を設けて 64 h 加熱することで Na-Si 溶液 から Na を蒸発させ Si 結晶を作製した.得られた Si 結晶の 光学顕微鏡写真を図5(a)に示す.ルツボ底部に5 mm 程度 の大きさの粒状 Si 結晶が二つ生成していた.これらの Si 結 晶には金属光沢があり,結晶表面にはファセットや成長ステ ップが見られた.また,表面では部分的に茶褐色の晶出物も 付着していた.図5(a)に示すようにルツボ底面で Si 結晶粒

図4 らせん形状 Si マイクロチューブの生成過程概略 図.

不純物化合物(FeSi₂,CrSi₂等)

図5 (a) Na-Si 溶液から作製した高純度 Si 結晶および(b) Si 結晶の精製過程概略図.

元素	不純物濃度(mass ppm)		
	原料粉末	精製後の Si 結晶粒	
		表 面	内 部
Li	0.22	0.036	0.012
В	9.1	490	120
С	330	8700	70
0	2300	9800	150
Na	2.6	480	85
Mg	12	12	0.13
Al	510	2400	6.0
Р	73	34	3.4
Ca	96	82	1.7
Sc	0.35	1.1	0.001
Ti	170	2.3	0.016
V	7.9	0.24	0.005
Cr	520	31	1.6
Mn	260	44	0.49
Fe	3200	170	1.5
Co	1.7	0.11	0.002
Ni	61	7.6	0.18

表1 原料粉末および精製後のSi結晶中の不純物濃度.

以外の場所には茶褐色の生成物がみられた.組成分析で,こ の生成物中に Si, Na, Al, Fe, Ca, Ti および Cr が検出さ れ,X線回折測定で FeSi₂ や CrSi₂ などのケイ化物が含まれ ていることが示された.

原料の低純度 Si 粉末および精製後の Si 結晶の塊につい て、グロー放電質量分析装置(GD-MS)を用いて不純物濃度 を測定した結果を表1に示す.精製後の Si 結晶について は、結晶の最表面と機械切削で約2~3 mm 削った面につい て分析を行った.原料中には Fe: 3200 mass ppm(以下 ppm は mass ppm を表す)をはじめ、Al や Cr など多くの金 属不純物が含まれていた.精製後の Si 結晶の塊の内部で は、ほとんどの不純物元素の含有量が減少した.原料 Si 中 に不純物元素として最も多く含まれていた Fe は、原料中に は 3200 ppm 含まれていたのに対し、精製後の結晶の最表面 では 170 ppm まで減少していた.さらに、最表面から 2~3 mm の結晶内部での Fe の濃度は 1.5 ppm であった.通常の 一方向凝固では除去しにくい C や P も、原料中にはそれぞ れ 330 ppm および 73 ppm 含まれていたが、精製後の結晶 内部ではそれぞれ 70 ppm および 3.4 ppm まで減少していた.

著者らが推定する本研究の Si 精製過程の概略を図 5(b)に 示す. Na-Si 二元系状態図で900℃での液相線の組成は約 Na-60 mol%Si にあり, Na-40 mol%Si の原料組成では, Si はすべて Na 溶媒中に溶解する. 先に述べたように, Na 溶 媒蒸発で晶出した Si 結晶の塊とルツボの底の間に Fe や Cr, Ti などの遷移金属元素がケイ化物として沈積していた. こ のことより, これらの元素は Na および Na-Si 融液中への溶 解度が小さく, これらの元素は Si が Na 溶媒に溶解する際 にケイ化物として融液から掃き出されたと考えられる. FeSi₂ や CrSi₂ の密度はそれぞれ4.94と4.98 Mg/m³で, Na-Si 融液の密度(NaSi 結晶の密度 1.74 Mg/m³)よりもかな り大きいことから、ケイ化物はルツボの底に沈積する.また、 Na 溶媒の蒸発で融液の組成が約 Na-60 mol%Si までは Si は飽和状態で,融液中に存在する不純物元素のシリサイド晶 出のみが継続する可能性がある.Na の蒸発が進みおよそ Na-60 mol%Si よりも Na の割合が少なくなると不純物の晶 出に加え Si の晶出が始まる.晶出した Si 結晶表面の一部に も茶褐色の析出物が付着していたことから、不純物元素のう ち Na-Si 融液側により多く分配されていたものが、Na が完 全に蒸発する際に結晶表面およびルツボ底面に晶出したと考 えられる.

Si 結晶の電気的特性に大きく影響を及ぼす B に関して は,原料中に含まれていた濃度(9.1 ppm)よりも試料中に含 まれていた濃度(120 ppm)の方が高くなった.これは,試料 作製時に使用した BN ルツボから B が混入したためと考え られる. B の混入は BN 以外のルツボを使用することで回避 できる可能性がある.

本手法では,精製した Si 結晶中への Na の混入が最も懸 念される. Si 結晶の塊を原料にして太陽電池セルを作製す る場合,融点以上で Si を一旦融解した後,インゴットや板 状の形状に加工させることが想定される. Na は高温におけ る蒸気圧が高いため,結晶中に取り込まれた Na は, Si を融 解させてインゴットを板材にする工程で取り除かれる可能性 が考えられた.

そこで、不純物を分析した後の結晶を減圧下(~10⁻¹ Pa) でSiの融点以上である1450℃で8h加熱した.得られた結 晶の内部について不純物濃度を測定した結果,Naの濃度 は、融解前の85 ppmから、融解後は0.055 ppmまで減少し た.Na溶媒からの再結晶の過程で結晶中に取り込まれた Naは、真空中での再溶融により原料中の濃度2.6 ppmより も低減させることができた.さらに減圧下での再溶融後では Mgの濃度が0.023 ppm,P:0.40 ppm,Ca:0.12 ppmと なり、高温で蒸気圧が高い元素の濃度も減少した.Yugeら によって報告されているように、蒸気圧の高いPの濃度は 減圧下での電子ビーム溶解によって低減されることが報告さ れている⁽¹⁴⁾.本研究でも、減圧下での融解は、蒸気圧が高 い元素の除去に有効であることが認められた.

Na-Si 溶液から Si 結晶を作製する際,同じ反応容器内の 低温部に低純度の Si を配置しておくと,蒸発した Na と低 純度 Si が反応して NaSi が生成する.この NaSi は次回の精 製の原料とすることが可能であり,Na の再利用プロセスも 確立されている.本手法は Na 溶媒中への溶解度差を利用し た Si の選択的溶解と,溶解度が低い不純物元素の沈積,な らびに Na 溶媒蒸発による高純度 Si の晶出を利用した精製 法であり,Si 結晶の新しい生産プロセスとして期待される.

6. おわりに

本研究では Na と Si の二元系状態図を基に, Na 溶媒蒸発 法を用いることで Si 結晶の精製を行った.精製効率の向上 やルツボ材からの不純物の混入など,解決すべき課題が残さ れているが、新しい精製手法の端緒が見出された.また、本 手法では様々な形状のSi結晶を作製できることから、結晶 の形状制御プロセスとしての応用も期待される.本研究では Si結晶にのみ着目しているが、今後は他の元素の精製や形 態制御についても本手法を展開していく予定である.さら に、これまでの研究で、Naを溶媒として用いることで、 Ba-Si-C⁽¹⁵⁾や Na-Si-B⁽¹⁶⁾などの三元系において新規化合物 も合成されている.NaとSiの二元系状態図がなかったこと からもわかるように、本系を含む物質系は未開拓の領域であ り、今後さらなる展開が期待される.

Na は水に対して活性な金属であるため取り扱いには注意 が必要であるが、すでに工業的に大量に用いられている実績 があり、Na を取り扱う技術が蓄積されている. Na と Si は 資源的にも豊富に存在するため、資源に乏しい日本において 今後さらなる利用を検討する価値があると思われる. その際 には、Na と Si の二元系状態図や Na を用いた Si 結晶の作 製プロセスを思い出していただければ幸いである.

本研究を遂行するにあたり,山根久典教授,山田高広准教 授をはじめ,多くの方々に暖かいご指導ご鞭撻を賜りまし た.この場を借りて厚く御礼申し上げます.またこの度,ま てりあ「新進気鋭」に寄稿する機会をいただき,関係者各位 に深く感謝いたします.本研究の一部は,科学研究費補助金 (若手研究スタートアップ,挑戦的萌芽研究),科学技術振興 事業研究シーズ探索プログラム(低炭素社会づくり関連分 野)の助成を受けて遂行された.

文 献

 H. Morito, T. Yamada, T. Ikeda and H. Yamane: J. Alloy. Compd., 480(2009), 723–726.

- (2) H. Morito, H. Yamane, T. Yamada, S. Yin and T. Sato: Mater. Trans., 49 (2008), 1929–1933.
- (3) 森戸春彦,山田高広,山根久典:セラミックデータブック 2008/09,工業製品技術協会,36(2008),136-139.
- (4) H. Morito and H. Yamane: Angew. Chem. Int. Ed., **49**(2010), 3638–3641.
- (5) 山根久典, 森戸春彦, 山田高広:日本金属学会誌, **75**(2011), 5-9.
- (6) H. Morito, T. Karahashi, M. Uchikoshi, M. Isshiki and H. Yamane: Silicon, 4(2012), 121–125.
- (7) H. Morito, T. Karahashi and H. Yamane: J. Crystal Growth, **355**(2012) 109–112.
- (8) E. Hohmann: Z. Anorg. Allg. Chem., 257(1948), 113–126.
- (9) J. Witte and H. G. Schenering: Z. Anorg. Allg. Chem., 327 (1964), 260–273.
- (10) C. Cros, M. Pouchard and P. Hagenmuller: J. Solid State Chem., 2(1970), 570–581.
- (11) G. K. Ramachandran, J. Dong, J. Diefenbacher, J. Gryko, R. F. Marzke, O. F. Sankey and P. F. McMillan: J. Solid State Chem., 145 (1999), 716–730.
- (12) R. S. Wagner and W. C. Ellis: Appl. Phys. Lett., 4(1964), 89– 90.
- (13) F. A. Trumbore: Bell System Technical Journal, **39**(1960), 205–233.
- (14) N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa and F. Aratani: Prog. Photovolt: Res. Appl., 9(2001), 203–209.
- (15) Y. Suzuki, H. Morito and H. Yamane: J. Alloy. Compd., 486 (2009), 70–73.
- (16) H. Morito, B. Eck, R. Dronskowski and H. Yamane: Dalton Trans., **39** (2010), 10197–10202.

★★★★★★★★★★★★★★★★★★★★★★ 2007年3月 東北大学大学院工学研究科博士課程修了 2007年4月-2007年7月 日本学術振興会特別研究員 2007年8月-現職 専門分野:材料工学

◎ナトリウムを用いた非酸化物系化合物の合成や新規 材料合成プロセスの開発に従事.

森戸春彦