最近の研究

金属組織制御を利用した触媒調製

亀岡 聡*

1. はじめに

工業的に一般に使われている金属触媒は,高表面積の担体 上(数+m²/g以上;SiO₂,Al₂O₃ etc.)に触媒活性を担う金属 ナノ粒子を高分散させることにより金属の表面積を最大にし て有効利用を図っている⁽¹⁾.そのため,金属ナノ粒子の調製 法ならびにその担持法に関する研究が盛んになされてきた.

一方,筆者らは優れた触媒機能を持つバルク(非担持型)金 属・合金触媒を調製するために金属学に基づく新たな触媒材 料開発を行ってきた.研究対象としているものが金属ナノ粒 子や担持型金属触媒ではなくバルク金属・合金であるため冶 金学や金属組織学がそのまま適用でき、合金の組成や構造を 含めた制御パラメーターが明確である.そのため、合金ナノ 粒子や担持型合金触媒でしばしば問題となる粒子径・分散度 や組成の不均一性、担体効果など合金化効果を検討する上で 不確定要因となるものがある程度排除できる.しかし,バル ク合金自身を触媒材料として用いるので、微粉末化して高表 面積を得るには限界があり性能評価において十分な活性が得 られない、たとえ高表面積が得られたとしても安定性が不十 分であるなどの問題が生じる.これまで、有望なバルク合金 触媒の調製法が確立していないためこの分野の材料研究はあ まり進展してこなかった. そこで,筆者らはバルク合金自身 だけでなくこれを触媒前駆物質として扱い、金属学に基づい た合金組織制御と選択的溶出処理(リーチング処理)あるいは 酸化・還元処理を組み合わせることにより、高表面積化だけ でなく従来の触媒調製法では得られないユニークな複相合金 組織・形態と触媒機能(活性,選択性,熱安定性)を有する合 金触媒の調製を試みた.本稿では、紙面の都合上、合金触媒 の電子的制御については触れずに幾何学的制御である金属ナ ノ組織制御とリーチング処理(ポーラス化・高表面積化)また は酸化・還元処理を組み合わせた新たな概念による触媒調製 法を幾つか紹介するに留まるがご容赦頂きたい.

2. 金属組織と触媒材料設計

触媒化学分野において金属の触媒機能を制御するための常 套手段は粒子径制御,担体効果,合金化効果などであ る⁽¹⁾⁽²⁾.中でも金属の触媒特性を制御するために"合金化効 果"は最も良く用いられる方法である⁽³⁾. 合金化効果とは, 合金化することにより単一金属の場合とは異なる幾何学的効 果(アンサンブル効果)や電子的効果(リガンド効果)を触媒機 能(活性,選択性,安定性など)に与えるものと認識されてい る⁽³⁾.現実にはどの金属元素同士をどのように組み合わせる か、またそこからどのような触媒機能が発現するのかなどの 合金化効果に関する明確な原理・原則が確立されている訳で はない.一方,金属学分野では,金属原子間の相互作用が親 和力の違い(分離・混合効果)により分類・区別されている (概ね,金属間化合物,固溶体,非固溶)⁽⁴⁾.また,Hume-Rothery 則(5)に代表されるような合金安定化に関する優れた 経験則も良く知られており、これに関する固体電子論からの 理論的な説明もなされている⁽⁶⁾. このように金属学分野では 合金に関する原理・原則が比較的確立されており、これらを もとに金属組織制御を行うことで優れた金属材料がこれまで も開発されてきた.しかし,驚くことに金属学と触媒機能と は密接に関連しているにもかかわらず金属学的視点から系統 的にこれらを研究・議論することはこれまであまりなかっ た. 実際, 触媒分野では "バイメタル (bimetal) やトリメタ ル(trimetal)"という言葉がよく使われているように、金属 間の相互作用の形態や構造を意識・区別せず曖昧に"合金" が認識されている場合も多い.現実に2元系金属触媒の場 合,ナノサイズの金属・合金粒子を対象にしているため,合 金形成の有無、合金粒子の状態、構造、組成など均一である 保証も無く不明瞭な部分が多く大まとめにこれらを表現する のに"バイメタル"は便利な表現なのかもしれない. 触媒反 応は表面で起こるため触媒材料開発の視点や認識はバルクを

^{*} 東北大学准教授; 多元物質科学研究所(〒980-8577 仙台市青葉区片平 2-1-1)

Preparation of Catalytic Materials Based on Metallurgy; Satoshi Kameoka (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai)

Keywords: catalytic materials, metallurgy, nanoporous metal catalyst, nanocomposite catalyst, amorphous catalyst 2011年5月23日受理

扱う金属材料のそれらとは当然異なるが,新しい金属・合金 触媒を開発するうえで金属材料分野で培われてきた金属や合 金の特性を巧みに利用した組織制御法を触媒材料調製に適用 することは重要である.

3. 組織制御による触媒材料の調製とその特性

(1) ナノポーラス触媒

触媒材料分野においてバルク型合金の活性化処理法として ラネー法が古くから知られている⁽⁷⁾.これは,触媒活性金属 を含む Al 基合金(Al-TM: TM = Ni, Cu, Co など)からアルカ リ水溶液中で Al を選択的に溶出(リーチング処理)させて活 性かつ高表面積(~100 m²/g)を有するポーラス金属触媒を 得る方法である(7)(8). 一般的に原料となる合金は単相合金で はなく複相のものが用いられている(9). その理由は、当初、 高活性な触媒を得るための合金組成は、合金のつくりやす さ,粉砕性,Alの溶出性などの観点から経験的に決められ ていたが、実はこれらの合金組成は金属組織学的に見ればラ ネー合金として理に適っていることがわかってきた⁽⁹⁾⁽¹⁰⁾. 一方、金属材料分野では合金中の卑な金属だけを選択的にエ ッチングしてナノポーラス金属を作製する脱合金化法が知ら れており、最近、中でもAu-Ag 合金の脱合金化によるナノ ポーラスAu形成に関するメカニズムや特性などを含めた研 究が盛んに行われている(11)-(13).しかし、ポーラス構造の 形成メカニズムや母合金組織の影響などについて未だ不明な 点も多く、今後のさらなる解明が待たれる.

筆者らは、広い組成範囲を持つ固溶体とは異なり、化学量 論組成で各金属原子が骨格構造中の特定サイトに規則正しく 配置している規則合金あるいは金属間化合物は金属原子の存 在環境が均質であるため、金属・合金触媒の前駆物質として 適していると考えた.規則合金AuCu3を前駆物質として硝 酸でリーチング処理を行うと(式(1): Cu 溶出率95.4%), 均一なポーラス構造を持ったAu組織が形成した(図 1(a))⁽¹⁴⁾. また,この試料の表面積はリーチング処理後著し く向上した(処理前:0.013 m²/g→処理後:1.3 m²/g). これ まで触媒的に不活性と信じられてきた Au はナノ粒子化する ことで極めてユニークな触媒特性を発現することが知られて いる⁽¹⁵⁾. そこで, このポーラスAuの触媒特性を調べる目 的で CO 酸化活性を測定したところ, Au ナノ粒子が担持さ れた Au/TiO_2 触媒に匹敵する高い CO 酸化能を有すること がわかった(図2(b)). 高いCO酸化能に関する同様な結果 は、固溶体 Au-Ag 合金を脱合金化して作製したナノポーラ スAu でも既に報告されており⁽¹⁶⁾⁽¹⁷⁾,この高い触媒能はポ ーラス化による表面積の増大だけでなく残留 Ag が酸素解離 を促進させているためと解釈されている⁽¹⁶⁾⁽¹⁸⁾.しかし,筆 者らは、①Au 表面積あたりの見かけの反応速度を比べると ポーラスAuとAu/TiO2とでは著しい差は見られないこと (ポーラス Au: 9.4, Au/TiO₂: 14.2 ($10^{-4} \text{ mol}_{CO} \text{ min}^{-1} \text{ m}_{Au}^{-2}$ at 333 K)), ②このポーラス Au(~100 nm)はサイズ的にはほ ぼバルク状態と見なせるにもかかわらず XRD において Au

図1 規則合金 AuCu₃ のリーチング処理後の走査電子 顕微鏡写真. (a)リーチング処理後⁽¹⁴⁾, (b)熱処 理後.

回折ピークのブロード化が観測されていることから(図2 (a)),残留物(Cu)が反応に直接関わっているというよりAu の特異なバルク(微結晶子化と不均一歪み)ならびに表面(ス テップ,エッジなどの配位不飽和な活性Au原子サイト)構 造の形成・安定化に寄与していると考えている.特に,この 結果で興味深いことは,Au触媒の活性発現にはAuのナノ 粒子化(~3 nm)あるいはAuナノ粒子と酸化物担体間の接 合界面が必要十分条件であるという従来の認識では説明でき ない点である.今後さらに詳細な検討が必要であるが,この 知見は,従来の担持型触媒の概念と調製法では到達できない ユニークな構造体の形成と高い性能・機能を有するポーラス 金属触媒が比較的簡便な方法で調製できることを示している. AuCu₃ + 12HNO₃

 $\longrightarrow Au^* + 3Cu(NO_3)_2 + 6H_2O + 6NO_2 \uparrow (1)$ AuAl₂ + 2NaOH + 2H₂O \longrightarrow Au* + 2NaAlO₂ + 3H₂ \uparrow (2) FeAl₂ + 2NaOH + 10/3H₂O

→ 1/3Fe₃O₄ + 2NaAlO₂ + 13/3H₂ ↑ (3) 一方,このポーラスAuは図1(b)に示すように熱処理(例 えば,He中773K)を行うと容易にシンタリングが進行し著 しい活性低下(図2:AuCu₃AL(HT))を引き起こした.そ こで,筆者らは,高い活性と熱的安定性を向上させるために 活性を担う合金相と熱安定性を担う合金相からなる複相合金 組織の利用を考え,最近これらを実現しうる均質な共晶組織

図3 共晶 Al-Au-Fe 合金の走査電子顕微鏡写真.(a) リーチング処理前,(b)リーチング処理後.

図4 リーチング処理した Al-Au-Fe 合金の熱処理効 果における Al-Au との比較. (a) XRD パターン (@SPring-8), (b) CO 酸化活性.

を持つ複相合金を見出した⁽¹⁹⁾.しかもこの合金は通常の溶 解法で容易に作製でき幅広いオーダー(nm~µm)で均一な組 織サイズの制御が可能である.この共晶複相合金をリーチン グ処理(ポーラス化と高表面積化)することにより,高活性の 維持と弱点であった表面積や熱安定性の問題が克服できた例 を次に紹介する.

図3(a)に示すのは、Al-Au-Fe 合金系で見出した均質な ラメラ構造をもつ共晶合金の SEM 像である⁽¹⁹⁾. これは通 常の溶解法で容易に作製でき従来の共晶組織に比べ一桁程度 小さいサブミクロンオーダーの極めて均質な共晶組織であ る⁽²⁰⁾. この Al-Au-Fe 合金の XRD 測定において, Al-Au-Feの3元系金属間化合物起因の回折ピークは観測されず, Al₂Au と Al₂Fe 由来の回折ピークのみが観測されたことか ら擬2元系共晶合金であることがわかった(図4(a): Al-Au-Fe BL). この共晶組織は、組成分析の結果、Al₂Au(図3) (a):淡色部)とAl₂Fe(図3(a):濃色部)から構成されてい ることを確認した(Al₂Au/Al₂Fe/Al₂Au 層状組織). Al-Au-Fe 合金を NaOH 水溶液でリーチング処理すると、Al のみ が選択的に溶出し(式(2),(3):Al溶出率:98%),母相 (Al₂Au, Al₂Fe)は完全に消失した(図4(a): Al-Au-Fe AL). 興味深いことに、リーチング後でもラメラ組織は維持 されてポーラスな Au/Fe₃O₄/Au(図 3(b), Au: 淡色部; Fe₃O₄: 濃色部; 図 4(a) Al-Au-Fe AL)に変化しているこ とがわかった.リーチング後の Al-Au-Fe 合金の表面積は

図5 (a)各種ポーラス金属触媒の細孔分布曲線(BJH プロット)⁽¹⁹⁾, (b)共晶 Al-Au-Fe 合金のリーチ ング処理後の高分解能 TEM 像⁽¹⁹⁾.

処理前に比べ著しく増大し($0.03 \text{ m}^2/g($)ーチング前)→20.2 m²/g),細孔分布を調べてみるとメソ細孔(細孔径:3 nm, 10 nm 程度;図5(a))が存在しており,高分解能 TEM 写真 からもメソ細孔の存在が確認できた(図5(b)).また,この リーチング後の試料を触媒として CO 酸化反応を行ったところ(図4(b)),Al₂Au,Al₂Fe 各単相から調製した触媒よりも はるかに高い活性を示すことがわかった.また,高温処理 (He 中 773 K)を施すと Al-Au 合金から調製した触媒は著し く活性低下したのに対し,Al-Au-Fe 合金から調製した触媒 では活性低下がほとんど観測されず熱的安定性が著しく向上 していることがわかった(図4(b):Al-Au-Fe (HT),Al-Au (HT)).

ここで、示したように2種類の合金相を有する複相合金の組織・形態制御を行い、触媒活性相(ex.ポーラスAu)と 熱安定相(ex.ナノ粒子 Fe₃O₄)を組み合わせれば従来のバル ク型金属触媒の弱点である表面積と熱安定性の問題が克服で きる.異なる触媒能を有する合金A相,B相を組み合わせ た場合には二元機能化も可能となる.この複相組織をナノオ ーダーでデザインすればさらに効率良く反応物質と反応熱の 移動ができ、"酸化反応+還元反応"や"発熱反応+吸熱反 応"などの相反する複雑な反応系にも十分対応できる可能性 がある.このような合金の組織制御を利用した新たなバルク 触媒材料の設計・調製は今後大いに期待できる.

(2) ナノコンポジット触媒

金属ならびに合金の酸化と酸化物の還元は触媒調製におい て重要である.触媒活性を担うのは、かならずしも金属だけ ではなく酸化物あるいは金属一酸化物の相互作用が大きく関 わる場合が珍しくない.それは、合金を酸化あるいは金属酸 化物を還元すると部分酸化物、金属一酸化物などのコンポジ ットが生成し、表面の電子構造、活性金属の分散性、形態な どが著しく変化するためである.金属の酸化・還元性につい ては、エリンガムダイヤグラム⁽²¹⁾などに代表される酸化物

製の概念図.

の各種酸化雰囲気下における温度と生成自由エネルギーに関 する熱力学的データが揃っているため,合金あるいは(複合) 酸化物に対しても構成している各金属種の貴卑性をある程度 予測することができる.合金の酸化や複合酸化物の還元を利 用した触媒材料の調製に関してはこれまでにも多くの研究例 がある⁽²²⁾⁻⁽²⁶⁾.しかし,金属学的視点での金属の貴卑性や 金属原子間の親和力の違い(分離・混合効果)に着目し組織と 形態を制御した触媒材料調製に関する研究はほとんどない. 筆者らは金属間相互作用を利用して均質なナノコンポジット 相を形成させるため(図6),化学量論組成物質である金属間 化合物(過程(A))とスピネル酸化物(過程(B))を前駆物質と した選択酸化・還元処理による触媒調製を行った⁽²⁷⁾⁻⁽³¹⁾. ここでは,従来の触媒調製法では金属ナノ粒子の均一安定分 散が困難な系である金触媒と銅触媒に適用させた例を紹介す る⁽²⁷⁾⁻⁽²⁹⁾.

現在,様々な手法でAuナノ粒子触媒が調製されているが, Au ナノ粒子の安定性の問題からいずれの場合も煩雑な調製 プロセスが避けられない⁽¹⁵⁾⁽³²⁾. ところが,近年,金属間化 合物 AuZr を常温常圧下で自発酸化させるだけで容易に Au ナノ粒子とZrO2のナノコンポジットを調製できることが報 告された(33)(34).しかも、この方法で作製したナノコンポジ ットAu-ZrO₂は、水素中のCO選択酸化反応に高い触媒性 能を示すことがわかった⁽³⁵⁾.これは、一段でAuナノ粒子 を含むナノコンポジット触媒を調製できる点で興味深いが, 自発酸化のため酸化プロセスの制御が難しく、均質なナノコ ンポジット相を形成させることが難しい. そこで, 筆者らは より均質で安定なナノコンポジット相を形成させるために, 合金中のZr組成がより高い金属間化合物AuZr3を前駆物質 とすることで自発酸化を抑制し、酸化プロセスを温度で制御 しやすいようにした⁽²⁷⁾.ちなみに,Auナノ粒子は容易にシ ンタリングしてしまうため,酸化においてはより低温での処 理が求められる. 金属間化合物 AuZr の自発酸化は水分の存 在により著しく促進されることが知られている⁽³⁴⁾.そこ で、酸化の低温化を図るために AuZr₃に水素吸蔵処理を施 し AuZr₃H_x(X=4.8)を形成させ⁽³⁶⁾,これに酸素を作用させ

図7 金属間化合物 AuZr₃,水素吸蔵処理 AuZr₃ (AuZr₃H_x),Zr の昇温酸化曲線⁽²⁷⁾.

図8 酸化処理後の走査電子顕微鏡写真⁽²⁷⁾. (a)AuZr₃ 金属間化合物, (b)水素吸蔵処理 AuZr₃(AuZr₃H_x (X=4.8)).

ることで吸蔵水素の酸化で生成した水による酸化分解の促進 を期待した.その結果,酸化温度がAuZr₃に比べ水素吸蔵 AuZr₃H_xは100K以上低温化した(図7). この組織をSEM 観察すると水素吸蔵処理したものの方がより均質で Au 粒子 $(\sim 5 \text{ nm})$ が細かい Au-ZrO₂ コンポジット触媒が調製でき (図8), これらコンポジット触媒は CO 酸化反応に対して高 い活性を示した⁽²⁷⁾.また,規則合金AuCuリボン試料を酸 化させると、骨格構造中のCuのみが選択的に酸化され、 873 K で処理した場合, AuCu 構造 (*L*1₀) は消失し Au と CuO に酸化分解し、表面積は処理前後で著しく変化した (0.05→8.3 m²/g)⁽²⁸⁾. SEM による試料リボンの表面観察で は処理後にポーラスな組織が観測され、さらに、試料の断面 観察を行うと選択酸化された CuO が表面層近傍に濃縮し CuO/Auのバイレイヤー型構造を形成していることがわか った(図9). これを水素還元処理(673K)するとCuOがCu に還元されその後、アニール処理(水素中873K)を施すこと により AuCu の固溶体が再び形成した.なお,酸化処理に よる同様な構造・組織変化は組成の異なる AuCu₃, Au₃Cu で も観察された.以上のように、前駆物質となる合金系(構成 金属の酸化・環元性)と酸化プロセスを選ぶことで組織制御 でき,バルク金属から容易に均一微細組織をもつ触媒材料が 調製できる.

一方、銅触媒は極めて有用な触媒の一つであるが、銅微粒

図9 酸化処理した AuCu 合金リボン断面の EDS マップ(Au, Cu, O).

 図10 CuFe₂O₄ スピネル酸化物の還元挙動.(a)還元処 理前後の XRD パターン比較,(b)昇温還元プロ ファイル.

子の安定な均一分散が難しいことや高温下ではシンタリング しやすいなど耐久性・耐熱性などが問題となっている.そこ で,筆者らは,銅と固溶体や金属間化合物を形成しない金属 元素(Fe, Cr etc.)の組み合わせによる非固溶作用(金属間の 原子反発作用)に着目し,高い分散性(銅ナノ粒子)かつ優れ た耐久性(シンタリング抑制)を有する新規な銅触媒の調製を 行った⁽²⁹⁾⁻⁽³¹⁾.非固溶系金属の場合,従来法であるアーク 溶解法を用いて触媒試料を調製しようとしても金属同士が互 いに混ざらないために均一な試料が得られず Cu 粒子の分散 化が困難である(図 6(B)-(I)).そこで,我々は,酸化物を 経由して一旦均一な複合酸化物を形成させ,その後,還元さ せることで Cu 粒子の高分散化を図るという手法を用いた (図 6(B)-(II),(III)). CuFe₂O₄の還元プロセスを昇温還元 測定と XRD パターンの変化から調べた結果,CuFe₂O₄の還 元は 2 段階で進行し(図 10: CuFe₂O₄→Cu*+Fe₃O₄→Cu*+

図11 CuFe₂O₄ スピネル酸化物の走査電子顕微鏡写 真. (a)還元前,(b)還元後,(c)FIB 加工した還 元後試料(b)の反射電子像.

(a) Curre₂O₄ 融媒との各種融媒のメタノール水蒸
 気改質特性比較⁽²⁹⁾, (b) CuFe₂O₄ スピネル酸化
 物の水素還元処理前後における細孔分布曲線の
 変化(BJH プロット).

Fe),還元分解で形成したCu粒子のシンタリングが抑えられているだけでなく(図10(a)-(2)),表面積が一桁以上増加

図13 (a)結晶触媒(CeNi₂),アモルファス触媒(*a*-CeNi₂H_x),不均化触媒(*c*-CeNi₂H_x)の各 XRD パターン,(b)各種 処理 CeNi₂ 触媒の CO 水素化活性比較,(c)各種処理 CeNi₂ 触媒の CO 水素化反応選択率比較(@553 K).

することがわかった $(0.2 \rightarrow 3.6 \rightarrow 3.3 \text{ m}^2/\text{g})$. ちなみに, CuO の場合は、還元前後でこのような変化は見られず、還元後に 著しい Cu 粒子のシンタリングおよび表面積の減少が観測さ れるだけだった(図10(a)-(3)). 還元後における表面積増加 の理由は、SEM 観察の結果から、CuFe₂O₄ が還元分解され てポーラス構造を形成したためである(図11(b), 図12(b)). 一方, CuFe₂O₄の還元によって得た高い触媒能は(図12 (a)), 還元されることで骨格中から析出した Cu ナノ粒子が ポーラス化した Fe₃O₄ 表面に均一高分散な状態で存在して 活性点を形成しているためと考えられる(CuFe₂O₄→Cu*+ Fe₃O₄)(図11(c)). なお、これらは一旦還元されても再焼成 することで完全にもとの状態に戻ることが確認されている $(Cu^* + Fe \rightarrow CuFe_2O_4)^{(29)}$.本来,バルクでは互いに混ざり 合うことのない Cu と Fe が一旦複合酸化物を形成すること により原子レベルで均一に混ざり合うことができ、これらを 還元することで Cu-Fe 間で非固溶効果が発現し通常法では 得られない安定なナノ銅粒子を容易につくれることが明らか

(3) アモルファス触媒

となり新たな触媒調製法として期待している.

アモルファス合金は乱れた構造でありながら化学的には理 想状態に近い均一性を持ち,配位不飽和性の高い原子あるい は原子集団が存在する.そのため,アモルファス合金の表面 は,結晶表面に存在するテラス,ステップ,キンクのような 表面部分が結晶表面とは異なる分布状態で存在すると考えら れ,アモルファス合金表面ではステップやキンクといった活 性点になりうるサイトが結晶表面よりも多い.それ故,反応 性に富み,各種化学反応に対して優れた触媒作用を示すこと から触媒材料として興味が持たれてきた⁽²²⁾⁽³⁷⁾.しかし,そ の作製には液体急冷法や気体堆積法などのきわめて特殊な装 置・操作・処理が必要となる⁽³⁸⁾.

間化合物 CeNi₂ を用いて CO 水素化反応特性を調べた⁽³⁹⁾. 金属間化合物 CeNi₂ を水素雰囲気中で条件を変えて処理を 行うとアモルファス触媒(a CeNi₂H_x: 0.34 MPa H₂ at 298 K) ならびに不均化触媒(c CeNi₂H_x: 4 MPa H₂ at 673 K)が調製 できる. XRD により各試料の構造を確認し、これらを用い て触媒特性を調査した(図13(a)). 各触媒試料の表面積 (CeNi₂: 0.13 m²/g)は,水素吸蔵処理後に *a*-CeNi₂H_x (0.17 m^2/g), c-CeNi₂H_x (0.34 m²/g)に変化した. a-CeNi₂H_xは CeNi₂ならびに *c*-CeNi₂H_x(CeNi₅+Ce hydride)に比べ活性が 高いばかりでなく生成する炭化水素でユニークな選択率 (C1-C4 化合物)を示した(図13(b), (c)). 特に, a-CeNi₂H_x は CeNi₂ と *c*-CeNi₂H_x に比べ生成物として著しく C₄ 炭化水 素(C₄H₁₀)が多いことがわかった⁽³⁹⁾. 一般に Ni 触媒では, C-O間の解離ならびに水素化が容易に進行するため CH4 生 成(メタネーション)が起こるが、CeNi2系ではそれが抑制さ れることが報告されている⁽⁴⁰⁾. 筆者らの CeNi₂ 触媒の結果 はこれとよく一致しているが, a-CeNi₂H_x 触媒の場合, アモ ルファス化が CO の解離ならびに水素化過程での反応中間体 CH_x(a)の安定化に大きく寄与して活性ならびにC₄のブタン 生成を向上させていると解釈できる.ちなみに、この反応系 においては含酸素化合物ならびに H₂O の生成はほとんど観 測されず CO の酸素は触媒表面層の酸化に使われていること が明らかとなった⁽³⁹⁾. したがって, a-CeNi₂H_x触媒のこの 結果はアモルファス状態本来の触媒特性を反映しているとは 言い難いが、アモルファス合金の表面酸化・活性化によるユ ニークな触媒機能の発現と見なすことができる.別に、アモ ルファス触媒(a-CeNi₂H_r)を用いてエチレンの水素化反応 (C₂H₄+H₂→C₂H₆)を行ったところ,反応前後でアモルファ ス構造に変化はなく、高い触媒能を示すことが確認でき

筆者らは水素吸蔵により構造を結晶相からアモルファス相

に大きく変態させる水素誘起アモルファス化合金である金属

た⁽⁴¹⁾. これまで,水素吸蔵合金触媒において水素分子の高 い活性化能(活性解離水素の生成)が注目されてきたが,最近 筆者らは,吸蔵水素が直接反応に関与するのではなく表面の アモルファス化(表面構造変化)による C₂H₄ の吸着サイト形 成に主に関与しており,吸蔵水素と吸着水素の役割の違いを 示す興味深い結果を得た⁽⁴¹⁾. このような,水素を用いたバ ルク合金のアモルファス化という従来の触媒調製で用いられ てこなかった組織制御法は,金属の活性化と新たな触媒機能 創出という点で興味深い.

4. おわりに

金属材料分野における触媒研究はまだまだマイナーである が、触媒化学分野では金属や合金の触媒作用について古くか ら興味が持たれ多くの研究ならびに議論がなされてきた.し かし、これまで金属学の視点から系統的に触媒材料の研究・ 開発が行われることはあまりなかった.今後、触媒材料分野 において金属学の知識を使いこなせば、新規触媒機能の開拓 ばかりでなく新たな触媒調製分野が構築できると大いに期待 している.

本研究に関してご議論ならびに貴重なご意見を頂きました 蔡安邦教授(東北大学多元研)に感謝致します.また,本稿で 紹介した研究の一部は田邉豊和博士((現)NIMS)ならびに遠 藤成輝博士((現)JAEA SPring-8),平田俊也博士(NIMS), 西村 睦博士(NIMS)との共同研究,AuCu₃触媒の粉末 X 線 回 折 測 定 は SPring - 8 BL15XU に て 松 下 能 孝 博 士 (NIMS),田中雅彦博士(NIMS)によって行われたものでこ こに謝意を表します.

文 献

- (1) Handbook of Heterogeneous Catalysis eds G. Ertl, H. Knozinger, J. Weitkamp, Wiley-VCH, Weinheim, (1997).
- (2) B. R. Cuenya: Thin Solid Films, **518**(2010), 3127–3150.
- (3) V. Ponec and G. C. Bond: Catalysis by Metals and Alloys, Elsevier, Amsterdam, (1995).
- (4) 蔡安邦:触媒, 53 (2011), 2-8.
- $(\ 5\)\$ W. Hume–Rothery: J. Inst. Metals, $\mathbf{35}(1926),\ 295–361.$
- (6) N. F. Mott and H. Jones: The Theory of the Properties of Metals and Alloys, Clarendon Press, Oxford, England, (1936), 168–174.
- (7) M. Raney: US Patent 1628190, (1927).
- (8) M. Raney: Ind. Eng. Chem., 32(1940), 1199–1203.
- (9) M.S. Wainright: in Handbook of Heterogeneous Catalysis, eds G. Ertl, H. Knozinger, J. Weitkamp, Wiley–VCH, Weinheim, (1997), 64–72.
- (10) 久保松照夫,小松信一郎:ラネー触媒,共立出版,(1971), 30-52.
- (11) J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki: Nature, 410(2001), 450–453.
- (12) Y. Ding and M. W. Chen: MRS Bull., 34(2009), 569-576.

- (13) D. V. Pugh, A. Dursun and S. G. Corcoran: J. Mater. Res., 18 (2003), 216–221.
- (14) S. Kameoka and A. P. Tsai: Catal. Lett., 121 (2008), 337-341.
- (15) M. Haruta, N. Yamada, T. Kobayashi and S. Iijima: J. Catal., 115(1989), 301–309.
- (16) V. Zielasek, B. Jurgens, C. Schulz, J. Biener, A.V. Hamza and M. Baumer: Angew. Chem. Int. Ed., 45 (2006), 8241–8244.
- (17) C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian and Y. Ding: J. Am. Chem. Soc., **129** (2007), 42–43.
- (18) A. Wittstock, B. Neumann, A. Schaefer, K. Dumbuya, C. Kubel, M. M. Biener, V. Zielasek, H. P. Steinruck, J. M. Gottfried, J. Biener, A. Hamza and M. Baumer: J. Phys. Chem. C, **113**(2009), 5593–5600.
- (19) S. Kameoka and A. P. Tsai: J. Mater. Chem., 20 (2010), 7348– 7351.
- (20) R. Elliott: Eutectic Solidification Processing, Butterworths, London, (1983), 20–24.
- (21) H. J. T. Ellingham: J. Soc. Chem. Ind., 63(1944), 125-133.
- (22) A. Baiker: in Handbook of Heterogeneous Catalysis, eds G. Ertl, H. Knozinger, J. Weitkamp, Wiley–VCH, Weinheim, (1997), 803–814.
- (23) F. Dawood, B. M. Leonard and R. E. Schaak: Chem. Mater., 19 (2007), 4545–4550.
- (24) K. Takehira: Catal. Surv. Jpn., 6(2002), 19-32.
- (25) H. Tanaka, I. Tan, M. Uenishi, M. Kimura and K. Dohmae: Top. Catal., 16(2001), 63–70.
- (26) S. A. Corr, D. P. Shoemaker, E. S. Toberer and R. Seshadri: J. Mater. Chem., 20(2010), 1413–1422.
- (27) N. Endo, S. Kameoka, A. P. Tsai, Z. Lingling, T. Hirata and C. Nishimura: Catal. Lett., 139 (2010), 67–71.
- (28) S. Kameoka and A. P. Tsai: Catal. Today, 132(2008), 88-92.
- (29) S. Kameoka, T. Tanabe and A. P. Tsai: Appl. Catal. A, 375 (2010), 163–171.
- (30) S. Kameoka, T. Tanabe and A. P. Tsai: Catal. Lett., 100 (2005), 89–93.
- (31) S. Kameoka, M. Okada and A. P. Tsai: Catal. Lett., 120 (2008), 252–256.
- (32) Z. Ma and S. Dai: Nano Res., 4(2011), 3–32.
- (33) J. C. Valmalette, M. Isa, M. Passard and M. Lomello-Tafin: Chem. Mater., 14(2002), 2048–2054.
- (34) M. Isa, J. C. Valmalette, C. Muller, M. Lomello–Tafin, P. Gas and E. Elkaim: J. Alloy Compd., 373 (2004), 96–103.
- (35) M. Lomello-Tafin, A. A. Chaou, F, Morfin, V. Caps and J. L. Rousset: Chem. Commun., (2005), 388–390.
- (36) N. Endo, S. Kameoka, A. P. Tsai, Z. Lingling, T. Hirata and C. Nishimura: J. Alloy Compd., 485 (2009), 588–592.
- (37) 吉田郷弘,山下弘巳,船引卓三:表面,24(1986),349-362.
- (38) 増本健(編著):アモルファス金属の基礎,オーム社,(1982).
 (39) N. Endo, S. Ito, K. Tomishige, S. Kameoka, A. P. Tsai, T.
- Hirata and C. Nishimura: Catal. Today, 164(2011), 273–276.
 C. A. Luengo, A. L. Carbrera, H. B. MacKay and M. B. Maple:
- (40) C. A. Edengo, A. E. Carbiera, H. B. MacKay and M. B. Maple. J. Catal., 47 (1977), 1–10.
- (41) N. Endo, S. Kameoka, A. P. Tsai, T. Hirata and C. Nishimura: Mater. Trans., 52(2011), 1794–1798.

亀岡 聡