最近の研究

レーザーアトムプローブによる

絶縁体材料のナノ解析

大久保 忠 勝* Yimeng Chen** 小 塚 雅 也** 宝 野 和 博***

1. はじめに

3次元アトムプローブは合金を構成する元素の位置を原子 分解能で表示することのできる唯一の3次元トモグラフィ ー法である.トモグラフィー中の個々の原子の質量と位置情 報が測定されているので、任意の選択領域から局所濃度を定 量できるナノ解析法でもある.従来の3次元アトムプロー ブ法では、針状試料に印加した定常電圧に ns の電圧パルス を重畳することによって原子を電界蒸発させていたので,そ の応用範囲は導電性材料に限定されていた(1).高電気抵抗材 料をアトムプローブ分析するために,1次元アトムプローブ をレーザーパルスで駆動する実験が1980年代に行われた が⁽²⁾,当時数10Hz程度のパルスレーザーでは実用的なデ ータ収集速度が得られなかったために、その後、ほとんど普 及しなかった. 2004年に Deconihout らは3次元アトムプロ ーブ分析に超短パルスレーザーを用いた結果を初めて発表 し、金属や表面酸化物層から電圧パルス駆動による3次元 アトムプローブとほぼ同等の原子トモグラフィーの取得が可 能であることを実証した(3). その数年後にパルスレーザーは 商用装置にも装備されるようになり、最近では半導体などの 高電気抵抗材料の解析手法として急速に普及し始めてい る(4). 我々もほぼ同時期に3次元アトムプローブを超短パ ルスレーザーで駆動する実験を開始し、最近レーザーの波長 を紫外域まで短波長化することで、絶縁体物質の3次元ア トムプローブ分析が可能であることを示し(5),現在では広範 な酸化物材料の3次元アトムプローブ解析を行ってい る⁽⁶⁾. 商用アトムプローブで一般的に使われている可視光の ピコ秒レーザーに比べて,紫外光のフェムト秒レーザーを用 いると,試料破壊頻度が著しく軽減されること,エネルギー 補償器なしで高い質量分解能が実現できること,さらにレー ザー脱離を用いて絶縁体の解析も可能であることを示してき た.また,これらのレーザー補助電界蒸発のメカニズムを理 解するために,種々の半導体・酸化物材料のレーザー補助電 界蒸発の実験的な検討も行ってきた.ここでは,いくつかの 絶縁体材料について著者らが行ったレーザーアトムプローブ 解析結果を示しながら,紫外光超短レーザーを用いることに より広がった3次元アトムプローブの応用例を紹介する.

2. レーザーアシスト3次元アトムプローブ

3次元アトムプローブ分析を行うには、先端直径 100 nm 程度の針状試料を超高真空容器に導入し、5 kV~15 kV 程 度の高電圧を印加することで、試料先端に 30~60 V/nm 程 度の高電界を形成する⁽⁷⁾.~100 µm に収束されたフェムト 秒パルスを針の先端に側面から照射すると、レーザーによる 熱励起で電界蒸発が促進される.図1に示されるように、我 々の装置では基本波 1030 nm(赤外光)のフェムト秒(400 fs) レーザーパルスから非線形光学結晶によって変換された 515 nm(可視光)、343 nm(紫外光)を針の側面から試料先端に照 射し電界蒸発を誘起する.最短波長として、4 倍波の 258 nm(紫外光)の波長も使うことができる⁽⁶⁾.金属試料の場 合、電界蒸発はこれらのレーザーの熱励起により促進される ことが明らかとなっている.そのため、イオン化のタイミン

*物質・材料研究機構磁性材料ユニット;ナノ組織解析グループリーダー(〒305-0047 つくば市千現 1-2-1)

** 筑波大学大学院数理物質科学研究科物質・材料工学専攻; NIMS ジュニア研究員

*** 物質・材料研究機構;フェロー Nanoscale Characterization of Ceramics by Laser Assisted Atom Probe Tomography; Tadakatsu Ohkubo, Yimeng Chen, Masaya Kodzuka, Kazuhiro Hono (National Institute for Materials Science, Tsukuba) Keywords: *laser assisted atom probe tomography, ceramics, insulator, oxide, ultraviolet laser, nanostructure analysis* 2011年4月11日受理

図1 短波長レーザーアトムプローブの原理図と装置外観.

グには試料の熱伝導性が影響し,一般に熱伝導性の高い金属 で実用的に最低限の質量分解能 m/Δm FWHM~500が得ら れるが、ステンレス鋼や金属ガラスなどの熱伝導性の低い材 料ではその質量分解能は m/Δm~49(試料: ZrCuAg 金属ガ ラス, 波長:1030 nm)程度にまで落ちてしまう⁽⁶⁾. レーザ 一照射に同期して蒸発したイオンは、遅延線型位置敏感型検 出器によって検出され,飛行時間測定から質量/電荷比(m/ n)を測定し,原子座標と飛行時間,印加電圧をコンピュー ターに保存し、それらのデータセットから全元素の3次元 トモグラフィーを再構成する.ただし、検出効率はマルチチ ャネルプレートの開口面積が上限で、現在のところ 50%程 度である.本機ではデッドタイム1.5 ns,時間分解能70 ps,位置分解能1mm,有効直径80mmのディレイライン 検出器を採用し⁽⁸⁾,試料検出器間距離を120mmとして 30°の開口角(0.32 sr)を達成しており(従来は 10°程度),面 内方向 100 nm 程度(従来は 20 nm 以下)の広領域からの測定 が可能となっている.紫外光を用いた場合, W³⁺ で m/Δm ~680程度,飛行距離を280 mm とした場合,m/Am~3000 の実用的に十分な質量分解能が達成される.

3. 酸化物のレーザーアシスト電界蒸発

金属試料の場合、フェムト秒レーザー照射による瞬間的な 温度上昇が電界蒸発を誘起すると考えられているが、半導 体・酸化物試料の場合、レーザーアシストによるイオン化に は電子励起によるレーザー脱離によることを示唆するデータ が得られている.フォトンのエネルギーは波長に反比例する ので、バンドギャップを有する半導体や絶縁体の場合、その レーザーアシスト電界蒸発が波長に大きく依存するのではな いかと考え, Ga ドープした ZnO のレーザーアシスト電界蒸 発によるマススペクトラムのレーザー波長とパルスパワーの 依存性を調べた⁽⁹⁾. Ga-ZnO のバンドギャップは 3.3 eV(λ = 375 nm)で, 電気抵抗率はおよそ 10⁴ Ωcm である. Green $(\lambda = 515 \text{ nm}) \ge UV(\lambda = 343 \text{ nm}) 二種類のレーザーを用いて$ 得られたマススペクトラムが図2に示されている. UV レー ザーで解析した場合 Zn⁺, O⁺ の単体イオンと ZnO⁺ などの 分子イオンが検出されるが、レーザーの強度を強くすると高 質量側のバックグランドノイズが低減され全体の SN 比が向

図 2 Ga ドープ ZnO のマススペクトラム. Adopted from ref. 9, ©2011, with permission from Elsevier.

上する.一方, Green レーザーの場合, 1.7 μJ/pulse のパル ス強度でも,質量スペクトラムが観察されずノイズしか検出 できなかった.この大きな違いは ZnO 試料の光学特性に関 連していると思われる.すなわち,ZnO はバンドギャップ (375 nm)より短い光に対して 2.0×10⁵ cm⁻¹の高い光吸収 率を示しているが,375 nm より長い光を殆ど吸収しない. ZnO のバンドギャップは Green と UV のフォトンエネルギ ーの中間にあり,UV レーザーの場合電子励起によりイオン 化効率が高く,一方で Green レーザーのフォトンエネルギ ーはバンドギャップよりも小さく電子励起によるイオン化が 十分に起こらなかったと解釈できる.このことから,半導 体,絶縁体などバンドギャップにより光学特性が大きく左右 される試料を解析する場合,短波長レーザーによる照射が有 効であることが明らかになった.

この実験から紫外光などの短波長レーザーを用いることに より,絶縁性セラミクスでもレーザーアシスト電界蒸発が可 能になると期待された.図3は,紫外光レーザーを用いるこ とにより得られた ZrO₂-MgAl₂O₄ ナノコンポジットセラミ ックスから得られた Al, Mg, Zr, O原子の 3DAP マップと, 原子マップ中で選択した領域から得られた組成プロファイル である⁽⁵⁾.絶縁体であっても,試料の針の形状とナノ結晶組 織を反映した元素分布が詳細に再現されている.Aの選択

図3 $ZrO_2-MgAl_2O_4$ ナノコンポジットセラミックス試料から UV レーザーアトムプローブによって得られた 3D 原子マップと組成プロファイル. Adopted from ref. 5, C2009, with permission from Elsevier.

図4 Gd ドープ CeO₂ のマススペクトラム. Adopted from ref. 10, ©2011, with permission from Elsevier.

領域から得られた濃度プロファイルから各酸化物相の組成は 約 Zr_{40.6}O_{58.4}Y_{1.0}, Mg_{10.2}Al_{29.8}O₆₀ であり, ZrO₂(Zr_{33.3}O_{66.7})と MgAl₂O₄(Mg_{14.3}Al_{28.6}O_{57.1})の組成と定性的な一致を示して いる. Bの領域から得られた濃度プロファイルでは結晶粒界 における Al, Y の粒界偏析が検出されている. このデータ は, 複相を含む絶縁体材料の3次元アトムプローブによる 原子トモグラフィーが可能なことを実証した初めての例であ る. また, 同時にレーザーを短波長化することで, 試料破壊 頻度が低減されるとともに, 質量分解能も向上し, 広開口角 の直線型でもエネルギー補償型並の質量分解能が達成され, アトムプローブ解析手法に大きな進展がもたらされた.

図 4 に 515 nm と 343 nm の異なる波長で得られた Gd ド ープ CeO₂ から得られたマススペクトラムを示す⁽¹⁰⁾. CeO₂ のバンドギャップは約 3.4 eV (λ = 364 nm)⁽¹¹⁾であり, 515 nm はバンドギャップ以下, 343 nm はバンドギャップ以上

図5 MgOのFIM像. (a)はレーザー照射なし, (b) はレーザー照射あり. Adopted from ref. 9, © 2011, with permission from Elsevier.

のフォトンエネルギーを有している.いずれの波長でも測定 は可能であったものの、343 nm ではバックグランドノイズ が約1桁少なく、質量分解能も向上した(CeO²⁺ピーク: m/ Δ m = 390 FWHM(λ = 515 nm), m/ Δ m = 487 FWHM(λ = 343 nm)).すなわち、酸化物のレーザーアシスト電界蒸 発にバンドギャップを超えるフォトンエネルギーは必須では ないが、短波長レーザーの方がイオン化効率も質量分解能も 改善されることが明らかになった.フォトンエネルギーがバ ンドギャップよりも低くてもレーザーアシストイオン化が起 こる原因としては、熱励起による電界蒸発、表面準位がバル ク準位と大きくことなること⁽¹²⁾⁽¹³⁾、さらにレーザー照射に よって正孔が試料先端部に集積し、励起ポテンシャル面上の 脱離運動の障壁が比較的低下すること⁽¹⁴⁾などが起因してい ると考えられる.

レーザー照射された絶縁体試料の電界イオン顕微鏡 (FIM)観察において,正孔蓄積に起因すると考えられる興 味深い現象を見出した⁽¹⁰⁾.図5(a)はMgO 試料のFIM 像 で、中心の(001)を軸として4回対象の{011}極が観察され ている. そこにレーザーを照射すると, (b)のように FIM 像が拡大し,照射前後の像の比較(c)から,FIM 像の倍率が 2.0×10⁵倍から2.05×10⁵倍まで拡大したことが分かった. これは、レーザー照射による電子励起により正孔が形成され 試料の電導率が変化し、試料先端部での電界が変化したこと に起因すると考えられる. さらに、 試料のレーザー照射によ る電気抵抗変化はマススペクトラムのピーク位置の移動とし ても観察された.図6は強度0.01から0.44 µJ/pulseのUV レーザーで得られたマススペクトラムの拡大図である. レー ザー強度を強くするのに従い, Mg²⁺のピーク位置は質量の 低い側シフトした. これは、レーザー強度によりイオンの飛 行時間が短くなったことに相当し、 $0.01\,\mu J/pulse$ に比べ 0.44 µJ/pulse の場合 Mg イオンは 0.5 ns ほど早く検出器に 到着している. 針試料先端に掛かっている電圧を飛行時間か ら試料先端の電圧上昇量を見積もると、図7に示されるよう にレーザー強度がある程度高くなると電圧変化は飽和し, 0.44 µJ/pulse のレーザー照射で先端電圧は約9V上昇する ことが確認された.これらは,理論計算によって示唆された 強電界とレーザー照射による正孔の試料先端部への集積に起 因していると考えられる(14).

図 6 レーザー強度の増加に伴う MgO のマスピークの シフト. Adopted from ref. 9, ©2011, with permission from Elsevier.

図7 レーザー照射による試料先端の電圧増加量. Adopted from ref. 9, ©2011, with permission from Elsevier.

4. 酸化物セラミクス解析の応用例

以上のように、紫外光の短波長レーザーを用いることで、 絶縁体であっても、試料のナノ組織を反映した元素分布が詳 細に再現することができ、さらに、粒内の組成の同定や、粒 界偏析の定量解析が可能になってきた⁽¹⁵⁾.前述の絶縁体材 料以外にも、 Al_2O_3 やMgOなどの絶縁体やさまざまな酸化 物セラミクスの 3DAP 解析に成功している⁽⁶⁾.

イットリア安定化ジルコニア(YSZ)は酸素空孔を含むため に,高温で高いイオン導電性を有し,固体燃料電池の固体電 解質として期待されているが、1000℃程度の長時間使用で イオン伝導率が低下することが知られている.ZrO₂-Y₂O₃ 擬二元平衡状態図によると、Y2O3を4mol%以上含むジル コニアは965℃以上で、Y2O3 固溶度の低い正方晶とY2O3 固 溶度の高い立方晶 ZrO2の2相が平衡状態にある.よって, この共析温度以上で長時間使用されると準安定相である立方 晶ジルコニアから正方晶ジルコニアが相分離により析出する と予測される.図8は焼結材と1000℃2000h熱処理された 8 mol%Y₂O₃-ZrO₂ 試料のレーザー3次元アトムプローブ解 析結果である. 焼結後では均一に分散していた Y は, 高温 長時間熱処理によって分布に揺らぎが生じている.これは, 立法晶ジルコニアと正方晶ジルコニアの相分離により各相の Y₂O₃の固溶度が異なるためであると考えられる. 平衡状態 図によると t-ZrO₂ 中の Y 濃度は約 1.7 at%, c-ZrO₂の Y 濃 度は 6.9 at% であり、本実験結果で得られた Y 濃度揺らぎ は,長時間熱処理(1000℃ 2000 h)によって 3~7 at%と,平 衡組成に向かって拡大傾向を示した. これは, 正方晶ジルコ ニアが相分離して立方晶ジルコニアが析出する過程に対応す ると考えられる.

リチウムイオン電池の陽極材料の基本化合物はLiCoO2 で あるが、実際の陽極材料は低コスト化を図るために、Coの 一部をNiで置換されている.また、充放電寿命の向上のた

図8 焼結後と熱処理後のジルコニア中のYアトムマップと各元素の組成プロファイル(アトムマップ中央部4nm×4nm×25 nm から計算). Adopted from ref. 6, ©2011, with permission from Elsevier.

図9 Li(Ni_{0.75}Co_{0.15}Al_{0.05}Mg_{0.05})O₂の粉体試料から得られたO, Ni, Li, Alアトムマップと組成プロファイル. Adopted from ref. 6, ©2011, with permission from Elsevier.

め、MgやAlなどの元素も一部置換されていることが多 い.しかしながら、MgやAlなどの添加元素の分布状態と その役割については十分な解析結果がなく良く理解されてい ない.図9はLi(Ni_{0.75}Co_{0.15}Al_{0.05}Mg_{0.05})O₂の粉体試料から 得られたレーザー3次元アトムプローブによる解析結果で ある. 解析結果として得られた組成は Li_{0.24}Ni_{0.17}Co_{0.04}Al_{0.01} Mg0.02O0.52 であり、試料の公称組成(Li0.26Ni0.19C00.04Al0.01) Mg_{0.01}O_{0.49})に近い値が得られた.得られた 3D 原子マップ でAlの組成揺らぎが観察されており、組成プロファイルか ら,Alが濃化した領域ではLi組成も増加,NiとO組成が 減少していることが確認された.また、O組成がLiMO2相 から期待される組成から大きく変動している領域の存在は, 異なる第2相の存在を示唆している.このように、紫外光 レーザーを用いることにより、バルク絶縁体中の組成変動等 の定量的な原子レベルの 3DAP 解析が可能になり、3DAP による絶縁性酸化物解析はフィージビリティー研究から実用 的なレベルに到達したといえる.

4. 絶縁体基板に成膜された金属薄膜の解析

3次元アトムプローブによる薄膜材料の微細組織解析例は これまでにも多数報告されているものの,それらの多くは金 属針,シリコンポスト,ドープシリコンなどアトムプローブ 測定用に特別に作製された"ポスト"上に成膜されていた. 薄膜基板は薄膜との格子整合性などを考慮して選択されるこ とから,実デバイスの作製に多用されている絶縁性酸化物基 板,特に熱酸化 Si 基板上に成膜された薄膜の解析がデバイ ス解析者から求められていた.このような実際に使われてい る平坦基板上に作製された薄膜から針状試料を作製し,それ をアトムプローブ分析することにより,初めて薄膜の構造と 特性の因果関係を解明できる.そこで,熱酸化 Si に成膜さ れた金属薄膜から集束イオンビーム法(FIB)により針状試料 を作製し,それをレーザー3次元アトムプローブで解析し た例について紹介する⁽¹⁶⁾.

測定試料は,熱酸化 Si 基板 (amorphous-SiO₂)上に薄い

図10 Cu-Ni/Au ジャンクションのレーザーアトムプロ ーブによる解析結果.

図11 残存基板厚さの影響評価のために作製した針状 試料. 異なる残存基板厚さを持っている. ~3 µm(a, b), ~1µm(c, d)~0.6µm(e, f). Adopted from ref. 16, ©2011, with permission from Elsevier.

Ta ボンド層を介して成膜された Cu-Ni/Au の二層膜であ る. この薄膜試料を用い, UV レーザー(343 nm)および Green レーザー(515 nm)による解析を行った.図10に示す ように Cu-Ni/Au ジャンクションの解析結果では,明らか な Cu と Ni の組成揺らぎが観察され,膜面に対して垂直方 向にピラー状の Cu 濃化相が確認された⁽¹⁷⁾.この薄膜試料 からアトムプローブ試料をリフトアウト法により作製する際 に,SiO₂の残存基板厚さを変え,図11に示すよう~3 μ m(a, b),~1 μ m(c,d),~0.6 μ m(e,f)と異なる絶縁膜厚さを持つ 試料をタングステン針状に固定し,レーザーアトムプローブ 測定結果に対する絶縁膜厚さの影響を調べた.

図12にそれぞれの試料から得られたマススペクトラムと, Cu-Ni層のCu⁶⁵⁺ピークから算出された質量分解能 $m/\Delta m$ およびSN比を示す.比較のために,Cu_{0.55}Ni_{0.45}合金試料か らのデータも示されている.絶縁性基板を含む試料から得ら れた $m/\Delta m$ およびSN比はいずれも合金試料から得られた 値に比べて低くなっているものの,半値幅から算出した $m/\Delta m$ は380に達しており,十分に実用的な値となった.ここ で,残存基板が最も薄い(~0.6 μ m)試料において最も低い $m/\Delta m$ とSN比を示していることがわかる.一般にレーザ ーアトムローブの質量分解能は熱(電気)伝導度の良い試料で

 図12 (a) それぞれの Cu-Ni 層から得た Cu⁶⁵₆₅ピーク(シ グナル: 64.80~65.25 u/e, ノイズ: 65.26~ 69.00 u/e). ~0.6 µm(緑),~1µm(赤), ~3µm (青) a-SiO₂ 基板バルク Cu-Ni(グレー). (b) と (c) はそれぞれ質量分解能と SN 比. Adopted from ref. 16, ©2011, with permission from Elsevier.

 図13 (a)-(c)それぞれの試料から得られた Au マップ ((a)3µm, (b)1µm, (c)0.6µm). (d)フーリエ 変換図形の<001>軸に沿った強度プロファイル.
0.6µm厚のa-SiO2層を持つ試料から得られた Auマップは(002)面を分解できていない.
Adopted from ref. 16, ©2011, with permission from Elsevier.

高くなることが報告されており⁽¹⁸⁾,絶縁体基板をタングス テンサポートと薄膜に挟んだ試料で,絶縁体層が厚い方が高 い質量分解能が得られるのは非常に興味深い結果である.

さらに、絶縁膜基板厚さに依存してアトムマップの空間分 解能が変化することも確認された.図13(a)-(c)にはそれぞ れのAu層から得られたアトムマップを示す.残存基板厚さ が3µmの試料では明瞭であったAu(002)格子面が、~0.6 µm試料では消失してしまっている.また、それぞれのアト ムマップのフーリエ変換図形の<001>軸に沿った強度プロフ ァイル(d)において残存基板厚さの減少に伴い、格子縞に起 因する強度ピークが減少しており、空間分解能の減少は明ら かである.空間分解能の減少は試料温度の上昇による表面拡 散の促進によるものと考えられ、これは金属薄膜と*a*-SiO₂ 層との界面周辺の熱伝導に起因している可能性がある.レー ザーの照射径は半値幅で150 μm ほどであり,UV レーザー を使用したために熱吸収はSiO₂層では起きずに,金属薄膜 とタングステン接合部のみで起こると考えられる.それぞれ の試料の先端形状がほぼ同じであるので,金属薄膜部分の発 熱は同等であると考えられる.従って,SiO₂層が厚くなる と,タングステン接合部から試料先端部への熱拡散を抑制す る効果が大きくなり,金属薄膜に接するSiO₂層はより低い 温度に保持され,金属薄膜の冷却効果が増大したと考えられ る.

5. ま と め

従来の電圧パルスや, Green レーザーパルスを用いたアト ムプローブでは、絶縁薄膜材料の解析は非常に困難であり、 バルク絶縁体材料の原子トモグラフィーの解析例は報告がな かった.これに対して,我々が最近行ったUV レーザーを 用いたアトムプローブ解析により,これら絶縁体のトモグラ フィー解析が実用的なレベルで可能であることが実証され た. 同時に、レーザーによる絶縁体電界蒸発機構についても 理解が進んできた. 今やレーザーアトムプローブの解析対象 が全ての無機材料に広がり、また FIB/SEM を用いた試料 作製により、粒界や薄膜といった任意の注目箇所から試料が 作製可能になってきている⁽¹⁹⁾.異なる電界蒸発閾値を有す る材料の積層膜、コンポジット材等は依然として成功の歩留 まりが低いものの、今後、測定条件を最適化することで克服 できるものと考えられ、レーザーアトムプローブの活躍の場 は大きく広がってくるものと期待できる. さらに,実際の薄 膜デバイスに常用される絶縁性基板上の薄膜材料のアトムプ ローブ解析が一般的なリフトアウト法によって作製した針状 試料から実用的なレベルで行うことができることが示された ことで、今後、アトムプローブ法の応用範囲はモデル薄膜の 微細組織解析手段にとどまらず、実際のデバイス用薄膜の微 細組織と特性との関係を解明するための手段として広がって いくものと思われる.

本研究は, CREST-JST の研究領域「物質現象の解明と 応用に資する新しい計測・分析基盤技術」の研究課題「レー ザー補助広角3次元アトムプローブの開発とデバイス解析 への応用」の支援により行った.

文 献

- (1) M. K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, Kluwer Academic, New York, (2000).
- (2) G. L. Kellogg and T. T. Tsong: J. Appl. Phys., 51(1980), 1184–1193.
- (3) B. Deconihout, F. Vurpillot, B. Gault, G. Da Costa, M. Bouet and A. Bostel: IFES04 Program and Abstracts, (Graz, 2004), 84.
- (4) T. F. Kelly, D. J. Larson, K. Thompson, R. L. Alvis, J. H. Bunton, J. D. Olson and B. P. Gorman: Annu. Rev. Mater. Res., 37 (2007), 681–727.
- (5) Y. M. Chen, T. Ohkubo, M. Kodzuka, K. Morita and K. Hono: Scripta Mater., **61**(2009), 693–696.

- (6) K. Hono, T. Ohkubo, Y. M. Chen, M. Kodzuka, K. Oh-ishi, H. Sepehri-Amin, F. Li, T. Kinno, S. Tomiya and Y. Kanitani: Ultramicroscopy, **111** (2011), 576–583.
- (7) M. K. Miller, A. Cerezo, M. G. Hetherington and G. D. W. Smith: Atom Probe Field Ion Microscopy, Oxford University Press, (1996).
- (8) G. Da Costa, F. Vurpillot, A. Bostel, M. Bouet and B. Deconihout: Rev. Sci. Instrum., 76 (2005), 013304.
- (9) Y. M. Chen, T. Ohkubo and K. Hono: Ultramicroscopy, 111 (2011), 562–566.
- (10) F. Li, T. Ohkubo, Y. M. Chen, M. Kodzuka and K. Hono: Ultramicroscopy, 111 (2011), 589–594.
- (11) S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin and S. Maensiri: Materials Chemistry and Physics, 115 (2009), 423–428.
- (12) S. Stankic, J. Bernardi, O. Diwald and E. Knzinger: J. Phys. Chem. B, **110**(2006), 13866–13871.
- (13) M. Sterrer, O. Diwald, E. Knozinger, P. V. Sushko and A. L. Shlugers: J. Phys. Chem. B, **106** (2002), 12478–12482.
- (14) M. Tsukada, H. Tamura, K. P. McKenna, A. L. Shluger, Y. M. Chen, T. Ohkubo and K. Hono: Ultramicroscopy, 111(2011), 567–570.
- (15) F. Li, T. Ohkubo, Y. M. Chen, M. Kodzuka, F. Ye, D. R. Ou, T. Mori and K. Hono: Scripta Mater., 63 (2010), 332–335.
- (16) M. Kodzuka, T. Ohkubo and K. Hono: Ultramicroscopy, 111 (2011), 557–561.
- (17) A. Sugihara, M. Kodzuka, K. Yakushiji, H. Kubota, S. Yuasa, A. Yamamoto, K. Ando, K. Takanashi, T. Ohkubo, K. Hono and A. Fukushima: Appl. Phys. Express, 3(2010), 065204.

- (18) R. Rachbauer, S. Massl, E. Stergar, P. Felfer and P. H. Mayrhofer: Surf. Coat. Technol., 204(2010), 1811–1816.
- (19) http://www.nims.go.jp/apfim/SpecimenPrepFIB.html

*****	************
~ ~ ~ ~ ~	
1989年3月	長岡技術科学大学大学院工学研究科修
	士課程修了
1992年7月	長岡技術科学大学機械系助手
1994年4月	大阪大学産業科学研究所助手
2002年4月	物質・材料研究機構材料研究所ナノ組
	織解析グループ主任研究員
2006年4月	物質・材料研究機構磁性材料センター
	ナノ組織解析グループリーダー
2011年4月	現職
古明八照,粉	約45月4月4月4月4月4月4月4月4月4月4月4月4月4月4月4月4月4月4月

- 専門分野:機能性無機材料の組織解析
- ◎電子顕微鏡,アトムプローブを用いて磁性材料他の マルチスケール組織解析に従事.最近は、セラミッ クス、半導体など無機材料一般に展開して活動中.

Yimeng Chen

小塚雅也

宝野和博