【電子照射プロセス】

アモルファス Fe-Nd-B 合金の 電子照射誘起結晶化によるナノ組織制御

永 瀬 丈 嗣*

1. 緒 言

超高圧電子顕微鏡は,(1)その高い加速電圧に起因する高い 透過能力を活用した厚膜・三次元観察,(2)大きな試料スペー スを活用した環境 TEM などの様々な特殊観察,(3)原子はじ き出し効果を利用した照射効果の電子顕微鏡その場観察,な どが可能であり,他の装置では達成しえない基礎研究を行う ことができる.通常,(3)に注目した研究は,原子炉材料に関 与する放射線照射効果あるいは格子欠陥基礎研究に用いられ る場合が多いが,本論文では,MeV 電子照射による非平衡 材料のナノ組織制御と,これを利用することによる機能特性 発現(磁気特性発現)について紹介する.

2. MeV 電子照射効果

金属材料に MeV 電子照射を行うと、入射高速電子と構成 原子の弾性衝突によって一原子はじき出しがおこる.図1 に、金属結晶および金属ガラスにおける MeV 電子照射模式 図を示す(1)(2). 一原子はじき出しにより,結晶中には空孔と 格子間原子からなるフレンケルペアが、ガラス中には自由体 積とそのアンチ成分からなる構造ゆらぎ(密度ゆらぎ)が形成 される(a). これらの原子レベルにおける照射損傷の導入 は、単に材料中へ欠陥を導入するのみならず、その構造変化 を誘起することも可能である.自由エネルギー-温度図(b) において,照射損傷導入の効果は,マクロには Bottom-up 型の効果をもたらし、照射欠陥の蓄積にとどまらずアモルフ ァス相の形成といった非平衡相の形成をも達成する⁽³⁾⁽⁴⁾.一 方,照射によって導入された空孔・自由体積による拡散促 進、また移動の活性化エネルギーが極めて低い格子間原子導 入による原子移動は、局所的(ミクロ)・短時間的な観点で は、(c)に示すように、Top-down 効果によって、欠陥導入 直後よりエネルギーが減少した構造を形成することも考えら れる.このような効果により、アモルファスのナノ結晶

化⁽⁵⁾⁻⁽⁷⁾といった相転移の誘起も可能となる.ただし,この Top-down効果の場合でも、マクロにみれば系全体の自由エ ネルギーは照射欠陥によって底上げされているため、局所的 な構造変化によって形成される構造は、非平衡状態のものが 形成されると考えられる. MeV 電子照射により、金属結晶 のアモルファス化が可能であることを考えると、電子照射に より形成される非平衡構造は、極めて非平衡度の高い構造が 形成される可能性が高い. MeV 電子照射によるアモルファ ス相の結晶化は、Bottom-up 型と Top-down 型が複合した 効果によるものと考えられる.

3. MeV 電子照射誘起ナノ結晶化を利用したナノ組 織制御と機能特性制御

MeV 電子照射誘起ナノ結晶化⁽⁷⁾⁻⁽⁹⁾の発現は,現在までに 21の金属ガラス合金で見出されている.この現象は,照射 条件(加速電圧,照射強度,全照射量など)に大きく依存する ため,同じ合金系でも,これらの条件が異なれば発現しない 場合もある.

図2に、Fe系金属ガラスの電子照射誘起ナノ結晶化挙動 について、最も系統的かつ詳細に研究がなされた Fe₈₈Zr₉B₃ 金属ガラスの例を示す⁽⁷⁾⁽⁸⁾.メルトスパンアモルファス単相 組織は、2.0 MeV 電子照射下でその構造を安定に保つこと ができずナノ結晶化する(a)(b).高分解能電子顕微鏡観察 (c)においても、ナノ結晶相の形成が確認できる.この電子 照射誘起ナノ結晶化は、照射領域のみで発現するために、ア モルファス中に直径約1µm 程度の領域のみをピンポイント で結晶化させることが可能である.さらに、電子顕微鏡内で 照射場所を選択することにより、模式図(d)に示すように、 アモルファスマトリックス中に規則的にナノ結晶化領域を配 置することが可能である(e).

Fe系金属ガラスは、一般的に軟磁性合金(例えば Fe-Si-B系)として使用される.一方、これをナノ結晶化させるとより高性能な軟磁性材料(例えば Fe-Si-B-Nb-Cu, Fe-Zr-B

* 大阪大学講師; 超高圧電子顕微鏡センター(兼任,工学研究科マテリアル生産科学専攻)(〒567-0047 茨木市美穂ヶ丘 7-1) Control of Nano-crystalline Structure in Fe-Nd-B Metallic Glass by MeV Electron Irradiation Induced Crystallization; Takeshi Nagase (Research Center for Ultra-High Voltage Electron Microscopy and Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Ibaraki)

Keywords: metallic glass, electron irradiation, high voltage electron microscope (HVEM), crystallization, microstructure, nano crystal 2010年2月26日受理

図1 金属結晶および 金属ガラスへの電子照射 効果.(a)模式図.(b) 自由エネルギー(G)-温 度(T)線図. T_m は融点, T_g はガラス転移温度, T_K は理想ガラス転移温度, T_K は理想ガラス転移温 度を表す.(c)エネルギ ー(E) -時間(t)線 $(1)^{(2)(4)}$.

系)あるいは硬質磁性(例えば Fe-Nd-B系)材料となる.図 3に、Fe-Nd-Bアモルファス材に2.0 MeV 電子照射を行い ナノ結晶化させた試料のローレンツ電子顕微鏡像を示す⁽⁸⁾. ナノ結晶化領域では、アモルファスマトリックス中に、 α -Feとunknownの化合物からなるナノコンポジット組織が 形成される⁽⁹⁾.アモルファス単相材料中に、2か所のマイク ロメーターオーダーナノ結晶化領域を導入することにより、 新たに磁区構造が形成されていることが確認できる.磁気特 性発現の原因は現在完全には解明されていないが、これは電 子照射誘起ナノ結晶化領域において、軟磁性を担う α -Fe 固 溶体と硬質磁性を担う何らかの化合物相による交換相互作用 により発現しているのではないかと推測される.

4. 結 言

本論文では、金属ガラスへの MeV 電子照射によるナノ結 晶化現象と組織制御による機能特性発現について紹介した. この手法は、HVEM を用いた基礎研究ではあるが、図1に 示した考え方を参考にすれば、MeV 電子照射法に限らずよ り工業的な手法を使ったナノ制御組織制御も可能である.

本研究の一部は、文部科学省のナノテクノロジー総合支援

図3 Fe-Nd-B 金属ガラスのピンポイントナ ノ結晶化制御による磁区構造変化⁽⁸⁾⁽⁹⁾.

図2 Fe-Zr-B金属ガラスにおける電子線照 射誘起ナノ結晶化とピンポイントナノ 結晶化制御.(a)(b)電子照射誘起ナノ 結晶化過程における明視野像および電 子回折像の変化,(c)ナノ結晶化組織 高分解能電子顕微鏡像,(d)ピンポイ ントナノ結晶化制御模式図,(e)実際 に結晶化制御を行った状態⁽⁷⁾⁽⁸⁾.

プロジェクトの支援を受けて実施されました. ローレンツ電 子顕微鏡にご協力いただいた NIMS・竹口雅樹先生, MeV 電子照射にご協力いただいた秋田大学・仁野章弘先生に深く 感謝の意を表します. 本研究の一部は, 研究拠点形成費補助 金グローバル COE プログラム「構造・機能先進材料デザイ ン教育研究拠点」(大阪大学)の研究費支援のもとに実施され ました.

文 献

- (1) 永瀬丈嗣:まてりあ, 47(2008), 519-523.
- (2) T. Nagase: Intermetallics, 18(2010), 767–772.
- (3) H. Mori: Current Topics in Amorphous Materials, Physics and Technology: Y. Sakurai, Y. Hamakawa, T. Masumoto, K. Shirae, K. Suzuki (Eds.), Elsevier Science Publishers, Amsterdam (1993), 120–126.
- (4) P.R. Okamoto, *et al.*: Physics of Crystal-to-glass transformations, Solid State Physics, vol. 52: H. Ehrenreich and F. Spaepen (Eds.), Academic Press, San Diego (1999), 1–135.
- (5) M. Doi, et al.: J. of Mater. Sci., 15(1980), 2867–2874.
- (6) J. L. Brimhall: J. of Mater. Sci., 19(1984), 1818–1826.
- (7) T. Nagase, et al.: Mater. Sci. Eng. A, **323**(2002), 218–225.
- (8) T. Nagase, *et al.*: Mater. Sci. Forum., **561–565**(2007), 1402–1406.

学専攻助教

ル生産科学専攻講師)

(9) A. Nino, et al.: Mater. Trans., 47 (2006), 335-340.

2008年

2010年

永瀬丈嗣

専門分野:材料組織学・金属ガラス学 ◎超高圧電子顕微鏡電子線照射法による結晶−ガラス 間相転移,ならびにヒエラルキー制御に関する研 究に従事.

★★★★★★★★★★★★★★★★★★★
2003年 大阪大学大学院工学研究科博士後期課程修了.
2003年 大阪大学大学院工学研究科マテリアル生産科

大阪大学超高圧電子顕微鏡センター助教 大阪大学超高圧電子顕微鏡センター講師

(兼任・大阪大学大学院工学研究科マテリア
