勝*

リチウムイオン二次電池負極材用 カーボンナノウォールの高速充放電特性

1. はじめに

黒鉛系材料を負極に用いたリチウムイオン二次電池は、小 型携帯用機器電源として広く使用されており、最近ではハイ ブリッド自動車や電気自動車用電源としても期待されてい る. 車載用電源としてリチウムイオン二次電池を使用する場 合には高速充放電と長寿命のサイクル特性を充たすことが要 求される.充放電の反応速度を向上させるためには、リチウ ムイオンの電極中での拡散を速やかに進行させる必要があ る.このためには、黒鉛結晶の微粒子化が有効であることは 明らかである.しかし、微粒子化のために黒鉛結晶を機械的 に粉砕すると結晶性が大幅に低減し、黒鉛の利点を生かすこ とができない.したがって、合成の段階で、最初から完全性 の高い微小サイズの黒鉛を作ることが望まれる.

最近,プラズマ CVD 法によって,基板に垂直に配向した シート状の形状をもつカーボンナノウォール(CNW)と呼ば れる新たなナノ構造体が生成された⁽¹⁾⁻⁽³⁾. CNW は, 図1 に示されているように,完全性の高い数十 nm の微小サイズ の黒鉛のドメイン(Nano-graphite domain)から構成されて いる⁽⁴⁾.この構造は、まさに上述した高速充放電用リチウム イオン二次電池負極材の理想的な構造といえる.筆者らは,

実際に CNW を負極材に用いることによって高速充放電特性 を観測した⁽⁵⁾. この CNW の構造やリチウムイオン二次電池 負極特性についてはすでに解説記事⁽⁶⁾⁽⁷⁾もあるが、本稿では 最新の結果も含めて CNW の生成と高速充放電特性について 紹介する.

橘

CNW の生成と電極作製 2.

CNW はプラズマ CVD 法によって773-973 K の比較的低 温の基板上に生成できる.炭素源としては,主にメタン (CH_4) やエチレン (C_2H_4) などの炭化水素が用いられる. 基 板の種類としては、Si,石英,Cuなどの半導体,絶縁体, 金属のいずれの基板にも生成できる。また、触媒金属は不要 である.図2に、石英基板上に生成された CNW の走査型電 子顕微鏡(SEM)像と透過型電子顕微鏡(TEM)像を示す. SEM 像からわかるように,数µm サイズのほぼ均一な CNW が成長しており、基板に対して垂直に配向した状態で 得られる. また, CNW の断面 TEM 像からは, 黒鉛の二次 元の層状構造が明確に観察される.ガス流量比,放電電流密 度、基板の種類や温度などの生成条件を変えることによって CNW のサイズやそれを構成している黒鉛のドメインサイズ を制御することもできる.

CNW を基板から剥がし、1773 K で焼鈍処理したものを ポリフッ化ビニリデン結着剤とともにニッケル箔に塗布した 緻密な電極を作製して,負極特性を評価した.対極・参照極 にはリチウム金属を用いた3極セル法によって測定を行 い、電解液にはLiBF4をエチレンカーボネート、ジエチル カーボネートの混合溶液に溶かした市販電解液を用いた.比 較対象には LONZA 社製の人造黒鉛 KS15(平均粒径 8 µm) で作製した電極を用いた.なお,容量および電流密度は活物 質の質量を基準とした.

3. 充放電特性

図 3 に CNW 電極の 50 mAh/g での定電流充放電曲線を

2010年2月26日受理

320

示す.1回目のリチウム挿入過程でのみ見られる0.8V付近 での黒鉛表面に生じる表面皮膜(SEI)形成による電流消費の 平坦部と,0V付近での可逆的リチウム挿入脱離の平坦部が

図2 基板に垂直に生成された CNW. (a) と(b) はそれ ぞれ CNW を横方向および上方向から撮影した SEM 像⁽⁴⁾. (c) は CNW の断面 TEM 像⁽⁵⁾.

明確に確認でき,典型的な黒鉛系負極の充放電曲線の形をしている.

脱離過程の0V付近の平坦部,すなわち黒鉛層間からリ チウムが脱離される時に消費される電流量から計算した可逆 容量は220mAh/gである. この値は黒鉛の理論値372 mAh/gには及ばないものの,比較的高い値を示している. また,一定の電位で充放電ができ,繰り返し特性も良い. こ れらの結果は,CNWが完全性の高い均一な黒鉛のドメイン から構成されていることと対応する.

4. ハイレート特性

図4にCNWの様々な電流密度でのリチウム脱離曲線(2回目サイクル)の拡大図を示す.最も小さな電流密度でゆっ くりリチウムを脱離させると、ステップ状に電位が上がって いくのが見える.これは、リチウムの脱離に伴うリチウム黒 鉛層間化合物のステージ構造変化に相当する⁽⁸⁾.

人造黒鉛(KS15)では電流密度が大きくなると,このステ ップがブロードとなって見えなくなり,かつ立ち上がりの電 位上昇,いわゆる IR ドロップが大きくなる.これに対し CNW では,図4に見られるように比較的大電流密度でもス テージ構造変化が確認でき,IR ドロップも小さく,大電流

図4 CNW の様々な電流密度でのリチウム脱離曲線(2 回目サイクル)⁽⁵⁾.

図5 CNW と人造黒鉛(KS15)のリチウム挿入脱離可 逆容量の電流密度依存性の比較.

密度での容量減少が KS15に比べて小さい. これらの結果は, CNW では電極を構成した時の内部抵抗が小さく、リチウム 挿入脱離・拡散反応に対してのレスポンスが速いことを示し ている.

図5には、CNWと人造黒鉛(KS15)の0~0.5Vでのリチ ウム脱離容量を可逆容量として求め、その電流密度依存性の 比較を示す. CNW は低電流密度 100 mA/g においてこそ KS15よりも小さな容量であるものの,1000 mA/g と電流を 10倍にしても、人造黒鉛の8倍もの容量を維持できる.こ のような CNW のハイレート特性は、CNW が完全性の高い 均一な微小サイズの黒鉛のドメインから構成されていること から理解できる. また, ドメインサイズを小さくすることに よってハイレート特性がより向上することも確認されてい る. このように CNW は高速充放電特性を示す新たな二次電 池負極材として期待される.

5. おわりに

CNW はこれまでに報告されている様々なグラファイト系 カーボンとは異なる新しいタイプのナノカーボン物質であ る. 最近では、本稿で示した電極特性以外にもユニークな電 気伝導特性(9)(10)や電界放出特性(11)も報告されており、新た なナノカーボン物質として益々関心が高まっている. また,

生成法は最近注目されているグラフェン(黒鉛の一層)の垂直 配向制御という観点からも興味深く, CNW 研究の今後の発 展が期待される.

文 献

- (1) Y. Wu, P. Qiao, et al.: Adv. Mat., 14(2002), 64-67.
- (2) M. Hiramatsu, et al.: Appl. Phys. Lett., 84(2004), 4708-4710.
- (3) S. Kurita, et al.: J. Appl. Phys., 97 (2005), 104320.
- (4) K. Kobayashi, et al.: J. Appl. Phys., 101 (2007), 094306.
- (5) O. Tanaike, et al.: Solid State Ionics, 180(2009), 381–385.
- 勝他: NEW DIAMOND, 25(2009), 34-36. (6) 橘
- 勝他:機能材料, 30(2010), 44-54. (7)橘
- (8) T. Ohzuku, et al.: J. Electrochem. Soc., 140(1993), 2490-2498.
- (9) K. Teii, et al.: J. Appl. Phys., 106 (2009), 084303.
- (10) S. Yamada, et al.: J. Phys. Soc. Jpn., 79(2010), 054708.
- (11) E. Stratakis, et al.: Appl. Phys. Lett., 96(2010), 043110.

◎フラーレンからタンパク質に至るまで様々な分子性 結晶の育成と新規物性の探索を行っている.現在の 主な研究対象は、ナノカーボン、有機半導体、タン パク質結晶である.
