新技術・新製品

マイクロメートルサイズの酸化銀粒子を用いた 高温環境向け鉛フリー接合技術の開発

守田俊章^{*}₁ 保田雄亮^{*}₂ 井出英一^{*}₂ 廣瀬明夫^{**}

1. はじめに

自動車や産業機器に用いられる電子部品は、電流の高密度 化に伴い、半導体素子の動作温度が高温になる傾向があるた め、高温環境下での高い信頼性が要求されている.またシリ コンカーバイト(SiC)などの新デバイスでは、高温に耐える 接合材料が望まれている.さらに、これまでの高温環境向け 接合材料は鉛を多く含んだ材料が使用されていたが、近年で は環境保全の観点から、有害な鉛を含まない RoHS 指令に 対応した接合材料が望まれている.

こうしたニーズに対し,現在研究が進められている銀ナノ 粒子接合法⁽¹⁾⁽²⁾は,鉛フリーで,銀の融点よりも低い温度で 接合が可能であり,接合後に銀の特長である高放熱・高耐熱 性を持つため高温環境に適した接合技術として注目されてい る.しかし銀ナノ粒子は高価な材料で,かつ接合時に銀ナノ 粒子を安定化する目的で用いられている保護膜を300℃程度 の加熱により除去する必要があるため,接合温度の低温化に 限界があるなどの課題があった.

このような背景から,著者らは,酸化銀マイクロ粒子に還 元促進剤を添加し,低温で加熱・還元する際に銀ナノ粒子が 生成されることを利用した新たな接合技術を開発した⁽³⁾⁽⁴⁾. 本報告では,還元時における酸化銀粒子の状態変化,および 相手電極との接合部界面構造の解析を行い,その接合機構を 述べる.さらに本技術を用いたパワー半導体モジュールを試 作して放熱性,信頼性を評価し,実用性を検討した.

2. 酸化銀の還元温度

図1に酸化銀粒子(平均粒径:2~3 μm)に還元促進剤とし てミリスチルアルコール(C₁₄H₂₄OH;融点311 K)を10 mass%添加した粒子(以下,酸化銀接合材と記す)のTG・ DTA 曲線を示す.423 K 付近でDTA 曲線には発熱ピーク が観察でき,TG 曲線からは約20 mass%,重量減少してい た.図2 に図1の発熱ピーク前後の酸化銀接合材に対する

図1 還元促進剤を添加した酸化銀粒子に対する TG-DTA 試験結果.

新技術·新製品

^{*} 株式会社日立製作所材料研究所 1)主任研究員 2)研究員

^{**} 大阪大学教授;大学院工学研究科マテリアル生産科学専攻 Development of Lead Free Bonding Technique Corresponding to High Temperature Environment Using Micro-scaled Silveroxide Particles; Toshiaki Morita*, Yusuke Yasuda*, Eiichi Ide*, Akio Hirose** (*Materials Research Laboratory, Hitachi Ltd. **Division of Materials and Manufacturing Science, Osaka University) 2009年10月22日受理

X線回折結果を示す.413Kでは酸化銀のピークのみが確認 できるが、453Kでは酸化銀のピークが消失し、Agのピー クのみが確認できた.この結果より、423Kの発熱ピークお よび重量減少は酸化銀接合材の還元反応によると考えられ る.なおXRD結果にはCuのピークが確認できるが、これ は下地素材からのものである.

3. 酸化銀粒子の還元,および焼結挙動

図3(a)と(b)に図1の発熱ピーク温度前後の酸化銀接合材 表面状態を示す.発熱ピーク温度前の(a)413Kでは粒子表 面に顕著な変化は確認できないが,発熱ピーク温度後の(b) 453Kでは,粒子表面に10nm程度の粒状凹凸が多数ある ことが判った.これは酸化銀接合材の還元反応時に生成され た銀ナノ粒子であると考えられる.

4. 接合強度評価

図4に接合温度に対する接合強度評価結果を示す.表面を 金めっきした接合試験サンプルを用意し,このサンプルを酸 化銀接合材を用いて大気中で2.5 MPa 加圧,2.5 分間所定温 度で保持して接合した.比較のため,還元促進剤を加えない 酸化銀粒子単体も評価した.

還元促進剤を加えない酸化銀粒子では,接合温度を上げて も接合強度は低いまま変化せず,接合できないことが判っ た.一方酸化銀接合材では,523 K で約17 MPa,573 K 以 上では平均20 MPaの接合強度を示した.

図5に接合温度573K時の接合部断面SEM像を示す. 還

図3 大気中加熱後の酸化銀接合材の状態変化. (a) 413 K 加熱後,(b) 453 K 加熱後

図4 接合温度に対する接合強度.

元生成し,焼結した銀層は微細な欠陥が点在しているが,銀 焼結層は数 100 nm 程度の粒で構成され,緻密に焼結してい た.前述した酸化銀の還元時における銀ナノ粒子化により, 従来報告されている銀ナノ粒子接合と同様の効果が得られた と考えられる.

図6に、図5で観察した試料の金めっき膜と銀焼結層界 面の高分解能 TEM 像を示す.図6から結晶方位が一致して いることが判った.銀と金は共に面心立方構造であり,さら に格子定数の差が小さい(銀;0.4086 nm,金;0.4079 nm) ことから,金めっき面の方位に合うように銀ナノ粒子がエピ タキシャル成長したと考えられ,良好な接合状態にあること が確認できた.

5. 放熱性評価

酸化銀接合材を用いて半導体チップをダイボンドしたパワ ー半導体モジュールを作製し,熱抵抗を測定した.比較とし て,従来はんだ材(Pb-5Sn)を用いたモジュールも作製し, 評価に供した.なお,ダイボンド部の厚さは両サンプルとも 約80μmとした.

図7に温度サイクル(233 K 30分保持, 398 K 30分保持) 試験後の熱抵抗特性結果を示す. 横軸は温度サイクル回数で

図5 接合温度 573 K 時の Au めっきと, 還元焼結後 の銀層との接合部断面の SEM 像.

図 6 Ag/Au 接合部界面の高分解能 TEM 像.

図7 温度サイクル回数に対する熱抵抗変化.

ある.初期の熱抵抗値を比較すると,従来モジュール(Pb-5Sn 接合)は約0.15 K/W であり,酸化銀粒子接合モジュー ルは約0.12 K/W と従来モジュールに比べ約20%向上し た.これは,接合層が銀で構成された焼結層で SnPb 系に比 べて熱伝導性に優れていたこと,および接合部界面は金属接 合であることによると考えられる.また1000回までの温度 サイクル回数に対する熱抵抗値は何れも上昇せず,両者は同 等の信頼性を示した.なお,光交流法によって測定した熱伝 導率は,Pb-5Sn はんだ材が約40 W/mK,酸化銀接合材を 用いて作製した焼結後の銀フィルムでは約140 W/mK であ った.

6. ま と め

本報告で紹介したマイクロメートルサイズ酸化銀粒子の還 元反応を利用した接合法は,液相を介さずに低温で接合でき る技術であり,接合後の接合部は高い放熱性と耐熱性を持 つ.さらに,接合材の作製や保管が容易なことから接合コス トも大幅に低減できる.

また添加する還元促進剤の種類によって,接合温度473 K,および半導体素子搭載には必須条件である無加圧接合が できる.さらに,アルミニウムやシリコンなど表面に酸化物 を形成している材料についても酸化膜を除去せずに接合でき る.その一例として,アルミニウムとの接合部界面の高分解 能 TEM 像を図8に示す.その接合構造は,酸化銀粒子から 還元過程で生成し,焼結した銀が,アルミニウム表面に形成 した酸化膜と接合した構造である.

このように,従来の錫や鉛を主体としたはんだ材では接合 困難であった材料と接合できることは,半導体実装における

図8 Ag/Al 接合部界面の高分解能 TEM 像.

接合技術の低コスト化だけでなく,接合可能な電極種の拡大 によって接合技術の自由度が向上でき,これまで実現不可能 であった実装技術への展開が図れると考えている.

さらに,接合雰囲気は大気の他,還元雰囲気(水素)も適用 できることを確認しており,低コストな高放熱高耐熱 Pb フ リー接合技術として,LSI や発熱の大きいパワーデバイス系 半導体の実装に適用できると考えている.

7. 特許出願状況

本技術関連で出願した特許は,特開2008-166086,特開 2008-089166,特開2008-178911,特開2009-267374をはじ めとして約30件出願し,国内の他,アジア,欧州,北米を 中心に手続きを行っている.ハイブリッド自動車や電車等の インバータ,携帯電話用RFモジュール,ディスプレイのバ ックライト,照明等を適用製品として考えている.

文 献

- Y. Akada, H. Tastumi, T. Yamaguchi, A. Hirose, T. Morita and E. Ide: Mater. Trans., 49 (2008), 1537–1545.
- (2) T. Morita, E. Ide, Y. Yasuda, A. Hirose and K. Kobayashi: Jpn. J. Appl. Phys., 47 (2008), 6615–6622.
- (3) T. Morita, Y. Yasuda, E. Ide, Y. Akada and A. Hirose: Mater. Trans., 49 (2008), 2875–2880.
- (4) T. Morita, Y. Yasuda, E. Ide and A. Hirose: Mater. Trans., 50 (2009), 226–228.