超塑性ダイレス引抜きによる 金属マイクロチューブの創成

Bring STR 43

1. はじめに

近年,超微細な金属マイクロチューブは,マイクロマシン 用の機械・構造部品や冷却用マイクロノズル,放電加工用電 極管,コンタクトプローブ,無痛注射針⁽¹⁾など,多種多様な 用途をもつ素材として期待されている.現在,チューブの縮 管方法は,金型を要するダイス引抜きが中心である⁽²⁾.しか しながら,マイクロチューブの創成において従来の引抜き加 工で必要とされるダイスなどの微細金型は,高精度なものが 要求されるため,それらの創製が非常に困難なものとなる. また微小化するチューブ内部にプラグやマンドレルを挿入す ることも難しくなる.さらにマイクロ化がもたらす金型とチ ューブ間の摩擦抵抗の増大が,加工限界の低下を促すことも 予想されうる問題点である.すなわち,微細金型の存在その ものがマイクロ化を推進する上で大きな障害である.

一方,ダイレス引抜きは,素材を局部的に加熱し,加熱部 を軸方向に移動させ,同時にチューブを引っ張ることで,細 管化させる方法である⁽³⁾⁻⁽⁶⁾.特徴として金型・工具を用い ずにフレキシビリティの高い加工法による細管化が可能で, 従来の引抜き加工に比べて大きな断面減少率を得ることがで きる.ダイレス引抜きは古くから提案されている縮管プロセ スであるが,高生産性を実現することが困難なことから実用 化に至った例は少なく,マイクロ加工へ適用された例も全く ないのが現状である.

このような背景のもと本研究では、ガラス細工で利用され る極細管の製造原理である超塑性を利用し、製作が困難とさ れる微細金型・工具を必要としないダイレス引抜きによる超 微細なマイクロチューブの創成を目的としている.本稿で は、ダイレス引抜きを超塑性材料に適用した事例について述 ベ、実際に創成した外径 190 µm の金属マイクロチューブを 紹介する.また引抜き中の基礎的な変形挙動について実験お よび実験では追及できない点を熱-変形連成有限要素解析を 用いて明らかにし、金属マイクロチューブの創成プロセスと してのダイレス引抜きの有効性を検討する.

古

島

2. 超塑性ダイレス引抜きの原理

超塑性ダイレス引抜きは、図1に示すように素材の一端を 固定し、一部を加熱し、素材の他端を速度 V_1 で引っ張り、 同時に加熱変形領域を速度 V_2 で移動させることによりチュ ーブを細管化させる加工法である.チューブの変形前後の断 面積をそれぞれ A_1, A_2 とする.いま変形が定常状態にある とすると、所望の断面減少率rは式(1)で求められる⁽³⁾.

$$r = 1 - A_1 / A_2 = V_1 / (V_1 + V_2) \tag{1}$$

また細管化過程において,変形開始点(加熱部)と変形終了 点(冷却部)の変形抵抗を σ_1, σ_2 とすると,加工限界におけ る限界断面減少率 r_c は式(2)で求められる⁽⁷⁾.

* 首都大学東京助教;大学院理工学研究科機械工学専攻(〒192-0397 八王子市南大沢 1-1)
Fabrication of Metal Micro-tubes Using Superplastic Dieless Drawing Process; Tsuyoshi Furushima (Department of Mechanical Engineering, Tokyo Metropolitan University, Tokyo)
Keywords: *dieless drawing, micro-tube, superplasticity, finite element method, size effect, heat transfer*

Neywords. anews arowing, micro-twoe, superpussicity, jimile element method, size effect, neat transfer 2009年10月2日受理

剛*

shinshinkiei

 $r_{\rm c} = 1 - \sigma_1 / \sigma_2 \tag{2}$

式(2)から細管化における加工限界は加熱部と冷却部の 変形抵抗差に依存するといえる.すなわち,加熱部で非常に 低い変形抵抗を生じる超塑性材料の適用は,ダイレス引抜き の加工限界の飛躍的な向上が容易に想像できる.

超塑性ダイレス引抜きによるマイクロチューブの 創成実験

供試管として外径 D=2 mm, 内径 d=1 mm の Zn-22Al 超塑性合金管を用いた. 超塑性ダイレス引抜き装置の概略図 を図2に示す. 試験片の加熱源として,局所的な加熱と短時 間の昇温の必要性から最大出力2kW,周波数2.2 MHzの トランジスター式高周波誘導加熱装置を使用した. 加熱コイ ルは出力トランスに固定して,トランスごとステッピングモ ーター駆動の高精度 z 軸テーブルで移動させた. チューブの 被加熱部が変形した後,直ちに冷却しないと変形が進行し, 試料は破断に至るので,ジュール・トムソン効果を利用した エアクーラーを介した冷却コイルを製作し,加熱コイルの直 上に取り付けて実験を行った.

本実験では、1回の断面減少率66.7%のダイレス引抜きを 4回繰り返すことによって図3に示すような外径D=190 µm、内径d=91µmの金属マイクロチューブの創成に成功

図3 創成した金属マイクロチューブ.

している.図4は変形前後の外径Dと内外径比d/Dの関係 を示したものである.内外径比 d/D が0 に近づくと外径に 対して内径が非常に小さい状態、すなわち、チューブが潰れ ていることを意味する.初期チューブの内外径比は0.5であ る. 外径の減少, すなわち, 寸法が微小化しても d/D がほ ぼ一定の値(約0.5)を示すことがわかる.一般に、従来のダ イス引抜きでは、肉厚が増肉化し、チューブ径が微細になる と内径が潰れてしまう.しかしながら,超塑性ダイレス引抜 きでは、肉厚の増肉化が抑制され、内径を維持したままマイ クロチューブを創成できる.筆者らはこの現象を横断面にお いて幾何学的相似則が成立していると表現した. これは本加 工法において、マンドレルやプラグなどチューブ内部に詰め る金型が加工中に不要であることを意味している. チューブ 寸法のマイクロ化に伴い, プラグなども微細化し, その製作 や設置は非常に困難となるため、超塑性ダイレス引抜きはマ イクロチューブの創成において非常に有効な手法であること を示している.

超塑性ダイレス引抜きにおける伝熱挙動および変 形挙動の寸法効果

金属マイクロチューブのようにチューブの寸法を小さくす ると寸法効果の影響を無視できなくなる.一般的な伝熱挙動 に関する寸法効果として,熱容量は体積の3乗に,表面積 は2乗にそれぞれ比例し,熱伝導率は一定であるため,物 体はマイクロ化に伴い急速に加熱・冷却することが知られて いる.ダイレス引抜きは,熱伝達および熱伝導を伴う加工で あるため,マイクロスケールではマクロスケールとは異なる 伝熱挙動を示すことが考えられる.このような伝熱挙動の寸 法効果は,引抜き変形挙動に対して大きな影響を及ぼすこと が予測される.すなわち,マイクロスケールでのダイレス引 抜きの変形特性を把握し,マクロとは異なるマイクロスケー

図4 超塑性ダイレス引抜きにおける幾何学的相似則の 成立.

ルに適した加工条件の指針を得るためには、伝熱挙動に関す る寸法効果を明らかにする必要がある。そこで本章では、超 塑性ダイレス引抜きの熱-変形連成有限要素解析を行い、マ イクロからマクロスケールに渡るダイレス引抜き中の伝熱お よび変形挙動に及ぼす寸法効果の影響について述べる。

汎用 FEM 解析コード Marc/Mentat (ver.2001)を用いて 熱-変形連成剛塑性解析を行った.解析モデルは軸対称問題 とした.寸法効果の影響を調査するため,初期チューブは外 径 D=0.5, 5, 50 mm と大きさの異なる3種類のチューブを 用いた.これらのチューブの内径 d,長さ l,加熱・冷却コ イルの幅など,寸法に関するパラメータはすべて相似になる ようにした.また材料の変形抵抗の温度依存性を考慮した解 析を行っている.

図5 超塑性ダイレス引抜きにおける温度分布に及ぼ す寸法効果. (a) V₂=0.6 mm/s, (b) V₂=12 mm/s, (c) V₂= 150 mm/s

まず断面減少率 r=0% (引張変形を加えない状態)の条件 下での伝熱挙動に及ぼす寸法効果を調査した.図5はチュー ブ表面の温度分布に及ぼす寸法効果の影響を示したものであ る.図5(a)に示すように引抜き速度が比較的低速度の場合 ($V_2=0.6 \text{ mm/s}$),最も局所加熱を実現できたのはD=50mmのマクロスケールのチューブであった.一方,D=0.5mmのマイクロチューブでは、寸法が小さいため熱が拡散し てしまい局所加熱が実現できなかったと考えられる.特に、 引抜き速度が比較的低速度な場合では、熱が十分に軸方向に 拡散する時間が与えられるため、熱伝導率の影響を大きく受 け、D=50, 5, 0.5 mmの順番で急な温度勾配が得られてい るのがわかる.

図 5(b)は V₂=12 mm/s の場合における温度分布を示した ものである.最高温度より右側の領域の温度勾配は、D= 0.5, 5, 50 mm でもほとんど変わらないことがわかる. これ は表面積と体積比の関係に起因する寸法効果によるものと考 えられる. 最高温度よりも右側の領域は、冷却コイルが存在 しているため、熱が表面から逃げていくことになる.マイク ロスケールでは表面積に対して熱容量が小さくなるため、加 熱冷却の応答が鋭敏になり、さらには表面積の効果が大きく なり、大気への熱伝達が促進される.そのため、最高温度よ りも右側の領域ではマイクロスケールである D=0.5 mm の チューブも D=5 mm の中間スケールのチューブも D=50 mmのマクロスケールのチューブも右側の温度勾配に大きな 差がみられなかったと考えられる.しかしながら、内部の温 度分布に着目すると各速度条件には大きな差があることがわ かる.図6はチューブ内部の温度分布を示したものである. マクロスケールのチューブの場合、肉厚も厚いため、内部ま で均一な温度分布にならない. この現象は引抜き速度をさら に速くすると、より顕著に生じてくる.図6(c)は $V_2=150$ mm/sにおけるチューブ軸方向の温度分布を示したものであ

図 6 超塑性ダイレス引抜きにおける寸法と引抜き速度 が内部温度分布に及ぼす影響. (a) D = 50 mm, $V_2 = 12$ mm/s, (b) D = 5 mm, $V_2 = 150$ mm/s, (c) D = 50 mm, $V_2 = 150$ mm/s

 図7 超塑性ダイレス引抜きにおける寸法と引抜き速度 が変形限界に及ぼす影響影響.
(a) V₂=12 mm/s, (b) V₂=150 mm/s

る. 最高温度よりも右側の領域では, $V_2 = 12 \text{ mm/s}$ に比べ ると温度勾配が緩やかになっていることがわかる.これは引 抜き速度が速くなると、冷却コイル内をチューブが通過する のに要する時間が短くなるため、冷却に十分な時間が割けな くなるからである.軸方向の温度分布をみるとD=50, 5,0.5 mm の順に温度勾配が急になっているように観察できる が、チューブ内部の温度分布をみると必ずしも、マクロスケ ールのチューブが良好な結果を示しているわけでないことが わかる. すなわち高速度域である $V_2 = 150 \text{ mm/s}$ の条件で は、マクロスケールおよび中間スケールのD=50,5mmの チューブでは図 6(b), (c)に示すようにチューブの内部に熱 が伝わらず,表面のみの温度の上昇しか見られない. すなわ ち、マクロスケールのチューブでは物体の熱伝導率が一定で ある以上、チューブ内部まで熱を伝えることができる限界の 速度が存在すると考えられる.以上の伝熱挙動の結果から, マイクロスケールでは、高速度域を含めたダイレス引抜きで も良好な局所加熱を実現できることがわかった.

図7は引抜き速度 $V_2=12$, 150 mm/s の各速度域において 断面減少率r=35%の条件で引抜いた後の各種寸法のチュー ブの外観形状を示したものである.引抜き速度 $V_2=12$ mm/ s の場合, どの寸法のチューブも安定して引抜けているのが わかる.本解析で引抜き速度を最も速くした $V_2=150$ mm/s の解析では,内部まで十分に加熱されているD=0.5 mm の チューブにおいて唯一引抜きが成功しているのがわかる.そ の一方で,D=5, 50 mm のチューブでは,冷却が不十分な ため,変形が一部分に集中し,引抜きの失敗が示唆される結 果を示した.以上の結果から,マイクロスケールでは,高速 度域でのダイレス引抜きが可能であることがわかった.

5. おわりに

本研究では,金属マイクロチューブの創成を目標とした超 塑性ダイレス引抜きの有効性を検討し,以下の結論を得た.

(1) 断面減少率 r=66.7%の引抜きを4回繰り返すことに よって外径 D=190 µm, 内径 d=191 µm の極細金属マイク ロチューブの創成に成功した.

(2) 超塑性ダイレス引抜き前後の横断面形状において幾何 学的相似則が成立していることを明らかにした.

(3) 熱-変形連成有限要素解析を用いて実験で検討しきれ ないダイレス引抜きにおける伝熱および変形挙動を明らかに し、マイクロスケールにおけるダイレス引抜きの有効性を示 した.

超塑性ダイレス引抜きの大きな特徴は、従来の引抜き加工 では欠かすことのできないダイスやプラグが不必要なことで ある.断面減少率の制御も、特別な金型・工具を用いること なく加工速度を任意に制御することで容易に実現可能であ る.今後、高精度な微小域の温度測定・制御を実現すること で、高い柔軟性を持つマイクロ加工プロセスとしての可能性 が期待できる.今後、本プロセスによって多種多様な形状の マイクロ中空部材が創成されるようになれば、現在のマイク ロ加工のより一層の発展が期待できるであろう.

最後に本研究を遂行するにあたり,首都大学東京大学院理 工学研究科の真鍋健一教授をはじめ,多くの方々に暖かいご 指導ご鞭撻を賜りました.心より感謝申し上げます.

文 献

- (1)仲町英治:日本機械学会誌,107-1023(2004),45.
- (2) 佐藤良一: 塑性と加工, **29-**328(1988), 439.
- (3)関口秀夫,小畠耕二,小坂田宏造:塑性と加工,17-180 (1976),67-71.
- (4)小畠耕二,関口秀夫,小坂田宏造,吉川勝幸:塑性と加工, 20-224(1979),814-819.
- (5)小畠耕二,関口秀夫,小坂田宏造,吉川勝幸:塑性と加工, 21-228(1980),52-58.
- (6) L. Yonggang, R. Q. Nathaniel and K. Aravinda: Mater. Sci. Eng. A, 358(2003), 59–70.
- (7)関口秀夫:第98回塑性加工学会シンポジウムテキスト, (1985),21-35.

 ★★★★★★★★★★★★★★★★★★★★★★★
2005年3月 東京都立大学大学院工学研究科修士課程 修了
2006年7月 首都大学東京大学院理工学研究科研究員

2006年7月 目前入子東京入子院理工子研究科研究員 2007年4月 現職

2008年5月 東京都立大学大学院工学研究科博士(工 学)の学位を取得

専門分野:ダイレス加工,マイクロ加工,塑性加工, 塑性工学

◎金型を使わないダイレス加工法の開発とそのマイク ロ加工への応用を行っているほか、マイクロ加工用 の材料モデリングについての研究にも従事.
