小特集 次世代新中性子源 J-PARC により拡がる新しい材料科学 「何ができる?どこがすごい?」~各装置の紹介~ 試料水平型反射率計 ARISA-Ⅱ[†] 鳥 飼 直 也* 山 田 悟 史**

下ヶ橋

鴌

曲**

1. **ARISA-Ⅱ**で何ができる?

本装置は反射率測定装置であり、微小な角度で入射した中 性子の試料表面からの反射を計測し、材料の表面・界面や薄 膜中の深さ方向の密度プロファイルをサブ nm スケールで観 測するための装置である.

ARISA-IIでは、線源から斜め下向きに中性子を取出す特殊なビームライン設計とすることで、液体など試料を傾斜することなく水平を保持したまま、反射率の観測が可能である。そのため、金属薄膜のような固体試料は勿論のこと、液体表面を含む、殆どあらゆる状態の物質界面の測定に対応可能である。また、開発中の中性子集束ミラーと高性能の中性子検出器を導入することにより、従来の試料深さ方向に、面内方向の構造情報を加えた多次元での界面の精密構造観察を実現しようとしている。

測定試料環境としては、水面上の界面活性剤等の単分子膜 の測定のために温度・表面圧を調整できるバリヤ付きの液体 トラフ(水槽),減圧下で200℃までの昇温が可能な高温セル 等が標準的な試料環境として備えられている.また、中性子 の高い物質透過性を利用し、石英やシリコン等の厚い基板を 通して中性子の反射を観測する固/液界面セルで、溶液から 固体基板上への分子吸着や電気化学界面などをその場観測す ることができる.このような固/液界面セルや固体試料とい った自立する試料については、試料台上に備えられた2軸 のスイベルステージにより中性子に対する試料の角度を高い 精度で調整することができる.試料サイズについては、最大 で50×50 mm²までの面を持つ試料に対応している.金属材 料等のバルク形状を有する試料表面の研究については、試料 台の高さ調整機構により、厚さ10 cm 程度ならバルク材でも 十分に対応可能である.(ただし,厚さ10 cm にわたって精 密な構造情報が得られる訳ではないのでご注意願いたい.)将 来的には,偏極中性子を作り出し,金属薄膜や人工格子等の 磁気モーメントの空間分布を観測することも検討している.

瀬

戸

鴌

紀**

2. ARISA-Ⅱはどこがすごい?

反射率測定は、中性子の試料表面に対する入射角と反射角 が等しい位置で見られる鏡面反射を観測し、材料の表面・界 面や薄膜に対して,深さ方向の密度プロファイルをサブ nm スケールの高い精度でその場観測することができる.図 1に、シリコン基板上に調製された厚さ約110nmの複合高 分子薄膜についての反射率プロファイルを示した. 複合高分 子の一成分を重水素化することで異種高分子相間に中性子に 対するコントラストを付すことができ、得られたプロファイ ルの解析によって薄膜中で異種高分子相が交互に積層し、そ の異種相間の界面の厚みが約3nm であることが明らかにな った.図2には、同様の複合高分子が形成する多層構造から の反射強度パターンを示した. 鏡面反射($Q_{\rm X}=0$ nm⁻¹)の両 側に見られる微弱な非鏡面反射を観測することにより、試料 の面内方向の構造情報を得ることができ、薄膜中の積層界面 同士がある空間的な相関を持った粗さを有していることが示 唆された. 非鏡面反射の定量的な解析には、より大きな入射 中性子強度が必要とされる.

J-PARCではその強力な中性子源の特徴を生かし,時分 割の反射率測定により,多様な試料環境下における界面・薄 膜構造の逐次変化を観測可能である.また,微弱な非鏡面反 射の観測や,現在開発中の中性子集束ミラーおよび高性能中 性子検出器の導入による斜入射小角散乱測定の実現により, 界面・薄膜構造の多次元での精密構造観察が大いに展開され

** 高エネルギー加速器研究機構物質構造科学研究所(〒305-0801 つくば市大穂 1-1) Neutron Reflectometer with a Horizontal Sample-Geometry, ARISA-II; Naoya Torikai*, Norifumi Yamada**, Hidenori Sagehashi**, Hideki Seto**(*Graduate School of Engineering, Mie University, Tsu. **Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba) Keywords: *neutron reflection, material interface, thin film, depth profiling, in-situ observation, horizontal sample-geometry, time-resolved*

Keywords: neutron reflection, material interface, thin film, depth profiling, in-situ observation, horizontal sample-geometry, time-resolved phenomena, focusing mirror, grazing-incidence small-angle scattering

* 略称は今後,変更の可能性有り. 2009年4月22日受理

^{*} 三重大学大学院工学研究科准教授(2009年4月異動)(〒514-8507 津市栗真町屋町1577)

図1 複合高分子が薄膜中に自発的に形成した多層凝集構造からの鏡面反射率プロファイルと、その解析により得ら れた薄膜深さ方向の散乱長密度分布.同一の薄膜試料から得られたX線と中性子のデータが比較されている.

	KENS ARISA	J-PARC ARISA-II
測定対象 測定領域	弹性散乱 $Q_{\rm Z} < 2.3 {\rm nm}^{-1}$ (自由界面)	弾性散乱 Q _Z <1.9 nm ⁻¹ (自由界面) 今後,5 nm ⁻¹ まで拡大予定
中性子波長(またはエネ ルギー)およびフラック ス	熱中性子(0.12 nm < λ < 0.6 nm)	冷中性子(0.25 nm < λ < 0.9 nm) 今後,ディスクチョッパーの導入により,0.6 nm < λ <1.5 nm 等の使用予定あり
下向きビームライン取出 し角度	≦0.47度, 1.4度	2.22度, 5.71度
飛行距離	9 m	17.6 m
得られる情報	サブ nm スケールの深さ方向の密度プロファイル	同左 今後,面内方向の構造情報が付加される
対象研究分野	高分子,界面活性剤,蛋白質,脂質,金属薄膜,人工 格子,電気化学界面,など	同左
試料サイズ	最大 50×50 mm ²	同左
特殊環境	液体トラフ(表面圧・温度調整可),高温セル(減圧下 200℃まで),固/液界面セル	同左
測定時間	標準12時間(3 kW 出力)	標準5分(1MW出力) Qz 領域を限れば,秒オーダーでの測定可能
装置特徴	本邦初の本格的な試料水平型の中性子反射率計	試料水平型,試料を全く動かさない測定($Q_Z < 4 \ \mathrm{nm}^{-1}$ まで),非鏡面反射・斜入射小角散乱
装置運用状況	2006年3月にシャットダウン	2008年度後半よりコミッショニング開始
J-PARC 関連装置		

表1 ARISA-Ⅱ何ができる? どこがすごい?

ることが期待される.

ARISA-IIを, KENS で稼働していた反射率測定装置と比較すると表1のような特徴が挙げられる.ただし,ARISA-IIの装置本体は,KENSで使用していた装置をJ-PARCに移設したものであり,測定性能については予定しているフルスペックには到達できていない.今後,装置本体の新設,ビームラインの高度化が順次,予定されている.

3. ARISA-Ⅱ装置を活用するために

本装置は2008年度の後期よりコミッショニングを開始した. 国内の反射率実験については, JRR-3 内にも SUIREN (担当: JAEA 山崎, e-mail: yamazaki.dai@jaea.go.jp), MINE-2(担当: KUR 日野, e-mail: hino@rri.kyoto-u.ac. jp)が稼働し,実験が可能である. これら装置の利用を考え

図2 複合高分子薄膜が形成した多層凝集構造からの 中性子反射強度の二次元空間分布.鏡面反射(Q_x =0nm⁻¹,破線で表示)に対して垂直な方向に非 鏡面反射シグナルが観測されている.

る方は著者にご相談いただくか,各装置担当者に連絡いただ きたい.反射率の測定手法の基礎,J-PARC 装置における 展望については文献(1)~(4)を,最新の研究については文 献(5)~(7)をご覧いただきたい.また,茨城県中性子利用 促進研究会や産業利用推進研究会に反射率法をテーマとする 研究会⁽⁸⁾⁽⁹⁾が設けられている.これら研究会では反射率法の 基礎から実際の応用例,J-PARC の状況等についての情報 が得られる.これらを利用して反射率法の利用が今後ますま す広まることを期待している.

- (1) 鳥飼直也,武田全康:日本中性子科学会誌,18(2008),221, 山崎 大,日野正裕:日本中性子科学会誌,19(2009),34: 中性子反射率法の原理と実際の応用例が日本語で解説されている.同誌の入門講座シリーズとして,この後も別の執筆者による同測定法に関する連載が予定されている.
- (2) 桜井健次:X線反射率法入門,講談社,(2009):X線を対象 としているが,反射率法についての一般的な日本語の解説書 として参考となる.
- (3) J. Daillant and A. Gibaud: X-Ray and Neutron Reflectivity: Principles and Applications, Springer-Verlag, Berlin, (1999): X線および中性子の反射率法に関する原理から応用 までが解説されている.
- (4) 鳥飼直也:日本結晶学会誌, 50(2008),56: J-PARC 反射率 計で期待される測定性能とその将来展望について日本語で紹 介されている.
- (5) N. Torikai, N. L. Yamada, A. Noro, M. Harada, D. Kawaguchi, A. Takano, Y. Matsushita: Polym. J., 39 (2007), 1238: 高分子 研究を中心とする中性子反射率法による研究例をまとめた総 説.
- (6) M. R. Fitzsimmons, S. D. Bader, J. A. Borchers, G. P. Felcher, J. K. Furdyna, A. Hoffmann, J. B. Kortright, I. K. Schuller, T. C. Schulthess, S. K. Sinha, M. F. Toney, D. Weller, S. Wolf: J. Magn. Magn. Mater., 271 (2004), 103: 偏極中性子による磁性 薄膜および人工格子についての研究例をまとめた総説.
- (7) Langmuir, 25(2009), 3917: ソフト界面を対象とする中性子 反射率法によるごく最近の研究例をまとめた特集号.
- (8) http://www.sf21-ibaraki.jp/kenkyukai/index.html(茨城県中 性子利用促進研究会)
- (9) http://www.j-neutron.com/.(中性子産業利用推進協議会)