次世代新中性子源 J-PARC により拡がる新しい材料科学

J-PARC とは?

新井正敏*

1. はじめに

小特集

J-PARC は加速器により生成される高エネルギー陽子を 利用し、各種実験研究を行う世界最大級の学際加速器複合施 設であり、線形加速器、3 GeV シンクロトロン、50 GeV シ ンクロトロン、物質生命科学実験施設、原子核実験施設(ハ ドロン)、素粒子実験施設(ニュートリノ)よりなっている. 物質生命科学実験施設は、3 GeV シンクロトロンから供給 される333マイクロ・アンペアの陽子を利用し、陽子パワー で言うと1 MW の中性子源(JSNS)と、ミュオン源(MUSE) を併設した施設で、主に物質、材料、を研究する施設であ る.(図1)

JSNS はいわゆる核破砕型パルス中性子源 (spallation source と呼ばれている)であり、25 Hz の周期で加速された 陽子(時間幅はほぼ1µ秒以下)を受け入れ、中性子を発生する.たった1マイクロ秒の瞬間に中性子が発生することか

図1 J-PARCの全貌. J-PARCは線形加速器(リナック),3GeVシンクロトロン,50GeVシンクロトロン,50GeVシンクロトロン,物質生命実験施設(MLF),原子核実験施設,素粒子実験施設よりなっている.

ら,その中性子パルスピーク強度は同じパワーを持つ原子炉 に比べ,一万倍程度になる.したがって,世界最強の原子炉 であるフランス・グルノーブルのラウエランジュバン研究所 (ILL)原子炉(60 MW)と比べても100倍程度のピーク強度を 発生することとなる.このため,積分強度で言えば ILL の 4分の一位にしかならないものの,100倍ものピーク強度を 効率的に利用できる装置(主に飛行時間法による装置)を配備 することにより,多くの実験において実際に100倍もの測定 効率が実現できることとなる.

J-PARC は建設開始の2001年以来8年の建設期を終え, 昨年5月に中性子の発生,9月にミュオンの発生,本年に入 って,50 GeV リングでの加速に成功した.また,約300 kW 相当の中性子発生にも成功しており,加速器自身の性能 の高さをすでに示している.現在,更なる性能向上の準備を しており,しばらく20 kW 程度の強度で運転を続ける必要 があるものの,各実験施設での成果が期待されている.また, 2008年12月には,中性子,ミュオンの一般共同利用も開始 された.

2. J-PARC 中性子源の特徴

さて、本稿では、物質の構造研究に最適な中性子について 述べるが、J-PARC 中性子源が生成する中性子が原子炉等 からの中性子に比べ、何が異なるのか以下に簡単に記述する.

原子炉における中性子は、核分裂連鎖反応により生成され る.例えば通常利用される燃料である²³⁵Uでの核分裂で は、一回の反応あたり、2.5個の中性子が生成される.この うち1個はそれに引き続く反応を継続することに利用され るので、一反応あたり1.5個の中性子がビーム実験に利用可 能となる.一方、高エネルギー加速陽子を重金属等にぶつけ て中性子発生を行う核破砕反応では、3 GeV の陽子1 つあ たり、60~70個の中性子を発生することができる(例えば鉛 等の重金属で).また、この発生数は、陽子のエネルギーあ るいは、陽子の数を掛け合わせた加速陽子出力(W)に比例 することから、J-PARC 中性子源は、1 MW の出力で(333 マイクロアンペア、3 GeV、25 Hz)、陽子パルスごとに1.2×

* 日本原子力研究開発機構; J-PARC センター物質・生命科学ディビジョン副ディビジョン長(〒319-1195 茨城県那珂郡東海村白方白根 2-4)

Overview of J-PARC; Masatoshi Arai (J-PARC Center, Materials and Life Science Division, Japan Atomic Energy Agency, Tokai, Ibaraki) Keywords: *J-PARC, neutron scattering, spallation source*

2009年3月13日受理

図2 パルスピーク強度の比較. JSNS の強度は米国 SNS の強度,フランス ILL のものに比べて強い ことが分かる.

10¹⁷個の中性子を発生する.これは,25 Hz であることを考慮して時間平均にすると,15 MW の研究用原子炉と同等な 値であり,これほどの中性子が J-PARC ではたった1マイ クロ秒の間に発生する.

ターゲットで発生した中性子は、その後、減速材(水素原 子を多く含んだ物質)を通すことにより、熱中性子にエネル ギー変換される.しかしながら、パルス特性を最大限引き出 すために、減速材の大きさは、せいぜい10センチ四方の立 方体程度である.したがって、減速材を見込む中性子分光器 に到達する中性子は、熱化した中性子とともに、熱化の途中 で放出された熱外中性子(おおむね1eV以上のもの)を多く 含むことになる.つまりこの特性を逆に利用すると、短波長 から、長波長の中性子を活用することができ、観測できる空 間領域、エネルギー領域を大幅に拡大することが可能とな る.このことをダイナミカル・レンジが広いという.以下の 各章では、個々の装置の性能について詳細が議論されるの で、ここでは、パルス中性子源で利用される基本的な測定手 法である飛行時間法について触れる.

3. パルス中性子源と飛行時間法

上述したように,瞬間的に発生した中性子が減速材から放 出され,ビームラインを通って実験装置へと導かれる.その 後,試料に散乱され,結晶物質であれば,Bragg散乱を起こ し,試料を取り巻く検出器によって回折ピークが観測され る.その様子を飛行時間法で観測した状況を図3に示す.

ここで重要なことは,測定中,試料も検出器も固定して居 るにもかかわらず,次々に飛来するエネルギーの異なる中性 子からの飛行時間を測定することで,自動的に散乱曲線が得 られる点である.

一方,ピークの時間幅は,中性子が減速材中で何度も衝突 をして減速材外に出てくるまで掛かった時間であり,この時 間幅は飛行中もほぼ保持される.したがって,分解能の向上 は,飛行距離を長くすることで,実現される.

ちなみに結晶回折に利用される典型的な中性子波長は1Å 程度であり、その速度は4km/秒程度(250µ秒/m)である.

図3 回折実験における飛行時間法の説明.減速材で発 生した中性子は試料で散乱され,試料を取り囲む 検出器により観測される.中性子の検出は,中性 子が発生した時刻を出発時刻として,飛行に要し た時間の関数として記録される(飛行時間法).

高分解能用減速材からの1Åの波長の中性子の時間幅は約 10µ秒程度あることから,100mの飛行距離があると分解 能0.04%を実現できる.

この例からも分かるように,検出器で観測されるピーク強 度は,中性子源で発生したピーク強度を直接反映することに なるため,JSNSのピーク強度の高さが装置の性能に如何に 重要かが理解できる.

紙面の関係上,十分な説明はできないが,このような原理 を利用して,物質内原子配列構造を研究する回折計,物質内 部の原子や磁気モーメントの運動を観測し,そのダイナミク スを研究する非弾性散乱装置が配備されつつある.以下に示 した装置が現在稼働中あるいは建設中(*)の装置であり,こ れらのうち9台の装置が以下の章に概説されている.

- 大強度チョッパー型分光器(4SEASONS, BL01, 分解能 5%)
- 高分解能非弾性散乱(DNA, BL02, 生物物質等のダイナミ クス)*
- •茨城県生物構造解析装置(iBIX, BL03, たんぱく質等の構造解析)
- •中性子核反応測定装置(BBRI, BL04)
- •中性子光学基礎物理実験装置(NOP, BL05)
- 超高分解能粉末中性子回折装置(SHRPD, BL08)
- 中性子源特性試験装置(NOBORU, BL10, テストポート)
- 高圧下回折装置(BL11) *
- ・非弾性散乱(HRC, BL12, 汎用型, 広い運動量・エネルギ 一領域をカバー)
- 冷中性子チョッパー型分光器(AMATERAS, BL14, 分解 能 10 μeV) *
- 高強度小角散乱(大観, BL15, ナノ構造)*
- 反射率計(ARISA-Ⅱ, BL16, 界面構造)
- •工学材料回折装置(匠, BL19, 残留応力測定)
- ・茨城県材料構造解析装置(iMATERIA, BL20, 大強度の粉 末回折計)
- 高強度汎用全散乱装置(NOVA, BL21, 非晶質, 液体の構造解析)*