プロジェクト報告「機能元素のナノ材料科学」

格子欠陥制御に基づく機能材料の開発

山本剛 $\Lambda_{1}^{*,**}$ 枝川圭 $-_{2}^{*}$ 杉山正 π_{3}^{*}

* 東京大学 1)准教授;大学院新領域創成科学研究科(〒277-8561 柏市柏の葉 5-1-5)
2)准教授;生産技術研究所
3)准教授;大学院総合研究機構

*** 財団法人ファインセラミックスセンターナノ構造研究所 客員研究員 Creation of Functional Materials by Controlling Defect Structures; Takahisa Yamamoto*,**, Keiichi Edagawa*, Masakazu Sugiyama* (*The University of Tokyo, Kashiwa. **Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya) Keywords: SrTiO₃: Strontium Titanate, InGaAs: Indium Garium Arsenic, GaN: Garium nitride, Defect, Dislocation, TEM: transmission electron microscopy, EELS: Electron energy loss spectroscopy 2009年2月27日受理

1. はじめに

結晶中に含まれる粒界,界面,点欠陥,転位などの格子欠 陥は材料の種々の機能と密接に関係することが知られてい る.本計画研究では,これらの格子欠陥に着目し,原子レベ ルでの構造解析を密接に連携させた材料開発を進めている. 本稿では計画研究において進められている研究成果の一例を 紹介したい.

SrTiO₃における陽イオン空孔形成

SrTiO₃やBaTiO₃多結晶体では粒界にしばしば静電ポテ ンシャル障壁が形成され、その障壁に起因した非線形電流-電圧特性が発現する. BaTiO₃では130℃程度で生じる強誘 電的相転移に起因して温度上昇に伴い抵抗値が不連続的に増 加する PTCR 特性が現れ, SrTiO3 では非線形電流-電圧特 性をバリスタ素子として利用している⁽¹⁾⁽²⁾.これらの特性の 起源となる静電ポテンシャル障壁の形成は、粒界を中心とし て分布した陽イオン空孔と密接に関係することが指摘されて おり、その空孔分布を如何に制御するかが機能制御の観点か ら重要な意味を持つ(3).一方で、粒界に起因する現象である ため、それらの電気特性は粒界の方位関係に依存して変化す ることが知られている.整合性の良いΣ粒界では電気特性 の変化が少なく、ランダム粒界ではその変化が顕著とな る(4). そのためこのような現象を系統的に明らかにしていく ためには, 粒界の方位関係を規定しその条件下で種々の検討 を行っていく必要があり、これまでに双結晶を用いた種々の 研究が行われてきた.一般に点欠陥の生成,消滅は粒界など の原子構造が乱れた領域で優先的に生じるものと考えられて いる. これは空孔形成時のエネルギーが完全結晶と比べ減少 することと関連しているが、例えば、粒界ではさらにその原 子カラム位置に依存することが予想される. 最近, この空孔 形成エネルギーの粒界原子構造依存性について以下に述べる ような結果が得られている⁽⁵⁾.図1(a)にSrTiO₃(310)[001]

含まれる原子番号で変化する.図においてより明るく認めら れるカラムが Sr カラムであり、もう一方は Ti-O カラムに 対応している.図1(b)は、この構造をもとに理論計算によ り求めた粒界最安定構造である.隣接する結晶の原子配列が 粒界平行方向にシフトした原子配置を有していることが分か り、これは実際に得られた図1(a)の構造とも符合してい る. 従来, この種の計算では剛体変位が考慮されていなかっ た. その結果, 粒界は対称構造を有し, かつ, 粒界原子カラ ム内に Half-occupancy の存在が予想されてきた. しかしな がら,図1に示すように Half-occupancy を考慮しなくても 実際の粒界構造を再現できる⁽⁶⁾.得られた最安定粒界構造を 用いて計算された部分状態密度を図2に示す. Ti-O 間の強 い混成軌道が価電子帯酸素バンドの-4.5 eV~-2 eV 付近 に形成されている.一方で,価電子帯へのSrの寄与は少さ く, Sr とOの結合がイオン結合であることが分かる. この ような電子状態の違いが粒界における空孔形成挙動と密接に 関係することとなる.図3にバルク内の空孔形成エネルギー を基準とした粒界における空孔形成エネルギーの変化量 △E を示す.図においてエネルギーが増加した場合には青で、減 少した場合には赤でそれぞれの原子位置を色分けして示し た. まず,総体として粒界では空孔形成エネルギーがバルク 内に比べ低下することが理解できる.この結果は、粒界が空 孔の優先的な生成, 消滅場所であるとするこれまでの大雑把 な議論と符合する.一方,バルク内の形成エネルギーからの 変化量(ΔE)は, Tiイオンでは大きく, Sr および O イオン では小さいことが確認できる.この違いは、図2に示した 電子状態と密接に関係している.共有結合性の高いTiイオ ンは、粒界における原子配置の緩和に敏感でありその影響を 大きく受けるのに対して、イオン結合性が高い Sr ではその 影響が小さく,結果として, ΔE に大きな差が現れてこな い. ここで,絶対値としての空孔形成エネルギーは Sr が圧 倒的に小さく⁽⁵⁾, 粒界ではいずれにせよ Sr 空孔が形成しや

 $\Sigma 5$ 双結晶における粒界 HAADF – STEM 像を示す.

HAADF-STEM 像では明るいコントラスト位置が原子カラ ム位置と直接対応し、そのコントラスト強度は原子カラムに

図1 (a) SrTiO₃25 粒界 STEM-HAADF 像, (b) 再安定構造. (b)には陽イオン配置のみを示した. また, 図(b)中に矩形状に示したユニットストラクチャーは(a) で認められた粒界ユニットストラクチャーに対応する.

図2 図1(b)に示した再安定構造から求めた部分状態 密度.

すいことを付記しておく. すなわち,熱処理中に生じる空孔 は形成エネルギーの小さな空孔が優先的に形成しやすく,そ の結果, Sr 空孔が集積した領域が形成されることとなる.

図4に傾角45°のランダム粒界から得られた電子線エネル ギー損失分光(EELS)測定のうち酸素K端およびその理論ス ペクトルをそれぞれ示す⁽⁷⁾.この粒界では熱処理条件を適切 に調整することにより顕著な非線形I-V特性が現れる事が 知られている⁽⁸⁾.極僅かな違いではあるが粒界近傍からは Sr空孔に起因するスペクトルの変化が認められ,この変化 はSr空孔を含んだ理論スペクトルの形状変化と符合する. ここでこの測定は粒界直上ではなく粒界近傍の粒内において 行っていることに注意願いたい.すなわち,上に述べた結果 は,優先的に生じる空孔種が粒界近傍に分布していることに 対応している.このような点欠陥形成挙動を任意に制御する 手法を構築することが今後の電子セラミックス材料の機能特

図3 SrTiO₃25 粒界における各イオンの空孔形成エネ ルギーの変化量.バルク内の空孔形成エネルギー を基準とし、粒界において増加している場合には 青で、減少している場合には赤で示している.

 図4 (a) SrTiO₃45°対称傾角粒界および粒界から5nm 離れた粒内におけるEELS酸素K端スペクト ル,(b) SrTiO₃結晶およびSr空孔を含む結晶か ら算出した理論スペクトル.

性改善に大きく役立つものと考えられる.現在ここに述べた 陽イオン空孔を制御した機能性薄膜の作成に取り組んでいる.

Ⅲ-V族化合物半導体ヘテロ界面の高度な制御に よる半導体デバイスの高機能化

Ⅲ-V族化合物半導体のエピタキシャル薄膜は光デバイス・電子デバイスの機能を本質的に決定する心臓部である. 近年のデバイスの高機能化に伴い、ナノスケールのヘテロ界 面を理解し制御する必要性がよりクローズアップされてい る.本研究では、(1)シリコン基板へのⅢ-V族化合物半導 体へテロエピタキシャル成長におけるシリコン/Ⅲ-Vへテロ 界面、(2)Ⅲ-V族化合物半導体量子井戸構造のヘテロ界 面、の2つに着目し、透過電子顕微鏡法による高精度解析 を通した界面構造の改善を行っている.ここではシリコン基 板へのⅢ-V族化合物半導体へテロエピタキシャル成長にお けるシリコン/Ⅲ-Vへテロ界面に関する研究について紹介す る.

シリコン基板上のⅢ-V族化合物半導体ヘテロエピタキシ ャル成長は、LSI にⅢ-V族化合物半導体が有する発光や高 電子移動度などの特性を導入するための異種機能融合デバイ ス開発に不可欠な技術である.しかしながら、これまで精力 的に研究されてきたにもかかわらず、シリコン基板との格子 不整合に起因した、Ⅲ-V半導体中へのミスフィット転位の 低減は未だ実現されておらず、高品位な結晶が得られていな いのが現状である. 我々は, 高速 n-MOSFET のチャネル 層に適した InGaAs のシリコン上成長において、この貫通転 位を低減させるための技術を開発しつつある⁽⁹⁾. Si 基板上 に SiO₂マスクを形成し、そのマスクを一部除去することに より基板表面を直径約1µm 程度露出させる(図5).結晶 は、この露出した基板表面から優先成長し、その後、マスク 上を横方向へ成長していくこととなる. このように,結晶成 長を横方向へ制限することにより貫通転位の極めて少ない InGaAs 結晶の作製に成功した.シリコン基板と InGaAs 界

図5 シリコン(111)表面に形成した直径1μmの選択 成長領域から横方向エピタキシャル成長した In-GaAs 結晶層の断面 TEM 明視野像.

図6 Si 基 板 上 に 選 択 成 長 さ せ た InGaAs 結 晶 の HRTEM 像. 図中 A の領域には双晶が認められ るが, B の領域には双晶のない高品質な結晶が成 長している.

面には数%の大きな格子不整合が存在するにもかかわらず, 界面から数原子層の間でミスフィット転位が消滅している. 図6にマスク上に形成された InGaAs 結晶の HRTEM 像を 示す.シリコン上では(111)表面と平行な回転双晶界面が多 数存在しているが,図6に示すようにマスク上ではこれら が消滅し,高品質な結晶が得られている.今後,横方向成長 における結晶成長機構を詳細に検討し,さらに高品質なII-V半導体結晶成長を展開させていく予定である.

4. GaN 刃状転位における転位芯電気伝導

一般に半導体中の転位は、ダングリングボンド等に起因し て、転位芯に局在し、かつ、転位線方向に拡がった一次元的 な電子状態を形成する場合がある. そのような一次元状態に 起因したエネルギーバンドが、半導体のバンドギャップ中に 形成され、さらに、フェルミ準位がそのバンド内に位置する 場合,転位はあたかも量子細線のように一次元電気伝導を示 すものと考えられる.この場合,電子が朝永-ラッティンジ ャー流体的な振る舞いを示したり、電気伝導にパイエルス転 移が現れるなど、一次元電子系に特有な諸物性の発現が期待 される.しかしながら、そのような理論的予測に反して、半 導体中転位の電気伝導が実験的に確認された例は少数に限ら れており、その伝導機構の詳細は未解明である. Hess と Labusch は、Ge 中に曲げ変形で導入した60°転位が電気伝導 を示すことを報告している⁽¹⁰⁾. Doding と Labusch は, CdS 中の個々のらせん転位に微小電極を付けて電気伝導を測定 し,転位芯が高伝導を示すことを直接的に示している⁽¹¹⁾. また,GaN 薄膜の貫通転位の電気伝導が AFM/電流同時測 定法により調べられ、らせん転位が伝導を示す一方、刃状転 位は示さないことが報告されている(12)(13). 最近我々は, GaN 単結晶に圧縮変形により転位を導入し、その電気伝導 性を走査型拡がり抵抗顕微鏡法(SSRM)により調べ、刃状転 位に起因した電気伝導測定に成功した.

試料はハイドライド気相成長法(HVPE法)により作製さ れたn型(キャリア濃度5×10¹⁸/cm³)単結晶を用いた.図 7に示す方位に直方体試料を切り出し、950℃において一軸 圧縮変形による転位導入を行った. この塑性変形における主 すべり系は(1010)-[1210]である. すべり面に沿って切り出 した試料の TEM 観察から、塑性変形により導入された転位 の多くはバーガースベクトル $b = (a/3)[1\bar{2}10]$ の刃状転位で あることを確認している. 導入された転位の密度は約10%/ cm²である.変形試料表面を機械研磨,光誘起電解研磨し, ボロンドープのダイヤモンドコート Si カンチレバーを用い て SSRM 観察を行った. このときのバイアス電圧は 5~10 Vである.図8(a)(b)にそれぞれ、未変形試料および導入 歪 5%の変形試料の(0001)表面上での SSRM 像を示す.測 定に用いた試料表面は刃状転位が終端する面である.図にお いて明るいコントラストで認められる領域は、高電気伝導領 域に対応する.図8(a)に示すように局所的に電気伝導度が 高くなっている"導電性スポット"が確認できている.この 導電性スポットの面密度は、図8(b)に示すように塑性変形 により顕著に増大していることが見出された. 塑性変形試料

図7 GaN 単結晶の圧縮変形における結晶方位関係.

図8 未変形試料(a)と5%変形試料(b)のSSRM 像.

におけるスポット面密度は10⁹/cm²程度と見積もられ, TEM 観察によって得られた転位密度と同程度である.また 塑性変形試料に見られる導電性スポットの配列方向が、塑性 変形時の転位のすべり方向とほぼ一致していることが確認さ れている. さらに,同時に測定した AFM 高さ像と導電性ス ポットの分布に有意な相関が見られなかった. これらの事実 から、塑性変形試料に見られる多数の導電性スポットは、塑 性変形によって導入された刃状転位に起因するものと結論で きる. なお、導電性スポットの電流値はバックグラウンドの 電流値の100~1000倍であった. GaN 中の転位の電気伝導 性を調べた過去の研究(12)(13)では、刃状転位は伝導性を示さ ないことが報告されており、今回の結果は既報に反する.し かしながらこれまでの研究は、いずれも薄膜成長時に導入さ れた貫通転位を調べたものであるのに対し、今回電気伝導性 が明らかになった刃状転位は塑性変形により導入された転位 である. 塑性変形により導入された転位は,結晶成長時に不 純物によるデコレーションを受けやすい貫通転位とは異なる 転位芯構造を有する可能性があり、これが電気伝導性の違い を生じた原因と推測される.これと関連して GaN 中刃状転 位の電子構造が転位芯構造に依存して大きく変化することが 理論的に示されている(14). 今後, このような転位芯におけ

る電気伝導の物性とその応用研究を展開していきたい.

5. おわりに

本計画研究では,原子構造・電子状態解析と材料機能を密 接に連携させた材料プロセスを展開させている.今後,これ までに得られた基礎研究成果をもとに新たなデバイスの創成 を行っていきたい.

本研究は文部科学省科学研究費補助金特定領域研究「機能 元素のナノ材料科学(領域番号474)」ナノ機能元素制御高機 能薄膜材料の創成(科学研究費番号19053002において行われ た.また,1章については幾原雄一博士(東京大学),溝口照 康博士(東京大学),柴田直哉博士(東京大学),3章について は米永一郎博士(東北大学金属材料研究所)との共同研究であ る.ここに謝意を表す.

文 献

- $(\,1\,)$ B. Huybrechts, K. Ishizaki and M. Tanaka: J. Mat. Sci., ${\bf 30}(1995),\,2463.$
- (2) G. Goodman: Grain Boundary Phenomena in Electronic Ceramics, Advances in Ceramics, vol. 1, ed. by L. M. Levinson and D. C. Hill (1981).
- (3) T. Yamamoto, Y. Sato, T. Tanaka, K. Hayashi, Y. Ikuhara and T. Sakuma: J. Mater. Sci., 40 (2005), 881.
- (4) K. Hayashi, T. Yamamoto and T. Sakuma: J. Am. Ceram. Soc., **79**(1996), 1669.
- (5) M. Imaeda, T. Mizoguchi, Y. Sato, H.-S. Lee, S. D. Findlay, N. Shibata, T. Yamamoto and Y. Ikuhara: Phys. Rev. B, 78 (2008), 245320.
- (6) N. D. Browning and S. J. Pennycook: J. Phys. D., 29(1996), 1779.
- (7) T. Yamamoto, Y. Ikuhara and T. Sakuma: J. Mater. Sci. Let., 20 (2001), 1827.
- (8) T. Mizoguchi, Y. Sato, J. P. Buban, K. Matsunaga, T. Yamamoto and Y. Ikuhara: Appl. Phys. Lett., 87(2005), 241920.
- (9) M. Deura, T. Hoshii, T. Yamamoto, Y. Ikuhara, M. Takenaka, S. Takagi, Y. Nakano and M. Sugiyama: App. Phys. Express, 2(2009), 011101.
- (10) J. Hess and R. Labusch: Phys. Stat. Sol. (a), 138(1993), 617.
- (11) G. Doding and R. Labusch: Phys. Stat. Sol. (a), 68(1981), 469.
- (12) J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer and R. J. Molnar: Appl. Phys. Lett., 78 (2001), 1685.
- (13) J. Spradlin, S. Dogan, J. Xie, R. Molnar, A. A. Baski and H. Morkoc: Appl. Phys. Lett., 84(2004), 4150.
- (14) S. M. Lee, M. A. Belkhir, X. Y. Zhu, Y. H. Lee, Y. G. Hwang and T. Frauenheim: Phys. Rev. B, 61 (2000), 16033.

1989年3月 東京大学大学院材料工学専攻修士課程修 了

1989年4月 同専攻助手

山本剛久

2001年4月 東京大学大学院新領域創成科学研究科物 質系専攻准教授

専門分野:セラミック材料学 セラミックス材料の微細組織制御,粒界界面物性の研 究に従事.
