ナノ機能元素の超微細構造解析

幾 原 雄 $-_{1)}^{*,**,***}$ 柴 田 直 哉^{*}₂ 溝 口 照 康^{*}₂ 阿 部 英 司^{*}₃

* 東京大学大学院工学系研究科総合研究機構マテリアル工学専攻 1)教授 2)助教 3)准教授(〒113-8656 東京都文京区弥生 2-11-16)

** 財団法人ファインセラミックスセンターナノ構造研究所;主管研究員

*** 東北大学原子分子材料科学高等研究機構(WPI 機構); 教授

Atomic Scale Characterization of Function Providing Elements; Yuichi Ikuhara^{*,**,***}, Naoya Shibata^{*}, Teruyasu Mizoguchi^{*} and Eiji Abe^{*}(*Institute of Engineering Innovation, Department of Materials Science, The University of Tokyo, Tokyo, **Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya. ***WPI Advanced Institute for Materials Research, Tohoku University, Sendai)

Keywords: *HAADF–STEM*, grain boundary, interface, surface, dislocation, segregation, ceramics, function providing element 2009年3月10日受理

1. はじめに

材料の表面,界面,格子欠陥などの格子不整合領域は,そ の周期性の乱れに起因する特異な原子構造を有しており,し ばしば材料の機能発現の起源となっている.このような格子 不整合領域における原子・電子構造は材料の種々の特性と密 接に関係している.また,そのような領域にはドーパントや 不純物が偏在する場合が多く,これがそのマクロな特性に決 定的な役割を果たす.このような元素を我々は,"機能元素" と呼んでいる.機能元素を利用した材料設計指針を得るため には,格子不整合領域に偏在する微量元素の存在状態を精確 に計測するとともにその機能発現メカニズムを理解すること が必要である.

材料の内部構造を観察する手法として,透過電子顕微鏡法 (TEM)は最も有用な手法の一つであるが,機能元素を計測 するためにはさらなる高分解能化,高精度化が要求される. その要求に応えるべく今世紀に入ってから大きなブレイクス ルーがあった.それは,球面収差補正技術を駆使した走査透 過電子顕微鏡法(STEM)の登場である.本手法を適用する ことで,格子不整合領域に存在する単原子カラム一個一個に ついて,その位置や元素の識別ができ,さらに電子エネルギ 一損失分光法(EELS)を併用することで局所的な電子状態の 解析までが可能となりつつある.

本報では,種々の材料の格子不整合領域に着目し,その微 細構造や機能元素を STEM 法で詳細に解析した最新の結果 について紹介する.さらに,これら観察結果を基にした第一 原理計算を行い,機能元素のメカニズムを解明した結果につ いても示す.

2. 走查透過電子顕微鏡法(STEM)

STEM(Scanning Transmission Electron Microscopy)法は,

ーブ位置における散乱電子を試料下部の環状検出器(Annular Dark Field (ADF) detector) で収集し、プローブの走査と 同期させてモニター上に像を形成する手法である(1).この 際、電子プローブを原子カラム間隔以下にまで絞り込むと原 子分解能像を得ることが可能となる.本手法の特徴は、デフ ォーカスおよび試料厚みの変化に伴う像コントラストの反転 現象が無く、原子カラムの位置を像から直接決定できること にある. この優れた特徴は、特に格子不整合領域等の局所的 に構造が乱れた領域の原子構造を決めるにあたって、非常に 有用となる. また, より高角度に散乱された電子を検出する ことにより(HAADF(High Angle ADF)-STEM), 原子番号 Zのおよそ2乗に対応した像コントラストを得ることができ る. このようなコントラストはZコントラストとも呼ば れ, 粒界偏析などの局所的な組成変化を伴う領域において, 単原子カラムレベルでその分布を観察することが可能とな る.図1にチタン酸ストロンチウム(SrTiO₃)の[001]軸入射 からの HAADF-STEM 像を示す. これより Z の大きな Sr 原子(Z=38)が明るく、Zの小さなTi原子(Z=22)がそれよ りやや暗く観察されることが分かる.また、上述したように STEM 法をレンズ収差補正技術と組み合わされることによ り、分解能を大幅に向上することが可能となる(2).また近年、 STEM 法をレンズ収差補正技術と組み合わされることによ り、分解能を大幅に向上することが可能となった.現在、収 差補正を用いた STEM においては、1 Å 以下の電子プロー ブ径が優に達成されており、たとえば米国のバークレーやオ ークリッジ国立研究所のグループでは 0.05 nm (0.5 Å)のプ ローブを既に実現したと報告している⁽³⁾.さらに,収差補正 技術を用いると電子プローブの強度が向上することから, STEM 像の S/N 比が向上し,像質も大幅に改善できる利点 がある. 収差補正を用いた STEM 法は,格子不整合領域の 観察手法として今後益々重要になるものと思われる。なお本 研究で紹介する結果は、主に、STEM(日本電子社製 JEM-

1nm 以下に絞った電子プローブを試料上で走査し,各プロ

図1 チタン酸ストロンチウム(SrTiO₃)結晶の[001]軸 方位から観察した HAADF-STEM 像.

2100F, 200 KV), 球面収差補正装置(CEOS), EELS(Enfina, Gatan)を用いて観察・解析した内容である.

3. TiO₂(110)表面構造の直接観察⁽⁴⁾

酸化チタン(TiO₂)はセンサー材料,触媒担体,光触媒 等,様々な用途に用いられており,その機能はTiO₂表面構 造と密接に関連していると考えられている.これまでの表面 科学的な手法に基づく研究により,TiO₂表面構造について は広範な知見が得られているが,原子レベルの表面構造,特 に表面再構成構造に関しては未だ統一的な理解が得られてい ないのが現状である.そこで本研究では,ルチル型TiO₂の 安定表面である(110)表面構造を超高圧電子顕微鏡法 (HVEM)およびHAADF-STEMを用いて表面に平行な2 方向から表面構造を直接観察することにより,表面再構成構 造の3次元的な原子構造解析を行った.

まず清浄な(110)表面を有する TEM 試料を作製するため に,(110)TiO₂単結晶基板(ルチル構造)をイオン研磨により 薄片化し,その表面ダメージ層を熱処理によって除去した. この試料のエッジ部分に形成された(110)表面テラスを超高 圧電子顕微鏡(HVEM:JEOL社製 ARM-1250,1250 kV)を 用いて断面方向から観察し,その直後に同一試料に対して球 面収差補正を用いた HAADF-STEM による観察を行った.

図2に[001]方向からHVEMにより観察したTiO₂(110) 表面の原子構造像を示す⁽⁴⁾.マルチスライス法に基づく像シ ミュレーションとの比較の結果,像中の暗いコントラスト位 置がTiO₂構造の原子位置に直接対応することがわかった. したがって,像中に矢印で示すように,TiO₂(110)表面の最 表面原子は結晶内部の構造とは異なる位置に配置されている ことが明らかとなった.この結果は,TiO₂(110)表面構造が 再構成していることを示している.電子線損失エネルギー分 光法(EELS)によるTiL_{2,3}端微細構造解析により,HVEM 観察後のTiO₂(110)表面は還元されていることが明らかとな った⁽⁴⁾.つまり,TiO₂(110)表面の構造変化はHVEM 観察

図2 TiO₂(110)表面の[001]HVEM 観察像. 図中の暗 いコントラスト位置が原子カラムの存在位置に 対応する⁽⁴⁾.

中の環元に起因するものと考えられる.図3(a)に HVEM 観察直後のTiO₂(110)表面を「001]方向から観察した HAADF-STE M像を示す⁽⁴⁾. 像中の明るいコントラストは Ti原子カラム位置に直接対応しており、図中の矢印は再構 成した最表面 Ti 原子位置を示している. この像より, 最表 面 Ti 原子の位置はルチル構造の interstitial 位置に対応する ことが明らかとなった.同様に,HVEM 観察後のTiO₂ (110)表面を[110]方向からの観察した結果を図3(b)に示 す. 矢印で示した位置に再構成した Ti 原子が存在してい る. これら直交する2方向からの原子構造観察を組み合わ せることにより、最表面 Ti 原子の3次元的な原子位置を実 験的に同定することができる.その結果,最表面のTi原子 位置は長年受け入れられてきた Onishi and Iwasawa⁽⁵⁾によ って提唱されたモデルとは異なり,近年 Park et al.⁽⁶⁾によっ て提唱されたモデルと良く整合することが明らかとなった. これらの2つのモデルでは最表面の Ti interstitial 原子位置 が僅かに異っているのが特徴であり、走査プローブ顕微鏡や 回折法などではその判別が極めて困難であった.本結果は, 最先端の原子直視型透過電子顕微鏡法を駆使することで酸化 物結晶の詳細な表面構造決定が可能になることを示してい る. また, 最近注目されている Au 触媒において, Au/TiO2 界面などの観察にも HAADF-STEM が極めて有効であるこ とが報告されている(7).

Co 系層状化合物における層間 Ca 原子の規則構 造⁽⁸⁾⁽⁹⁾

 $Ca_x CoO_2$ は CoO_2 層と Ca 層が c 軸に交互に積層した構造 を有し(図 4(a)), 熱電素子への応用が期待されている材料 である⁽¹⁰⁾. Ca_xCoO₂ の物性は Ca 層内における Ca 原子の配 列に依存するとされているが,その配列が局所的に変調して いることからその構造の決定は困難であった.ここでは球面 収差補正 STEM-EELS 法を併用し, Ca_xCoO₂ における層間 Ca 原子の規則構造を直接観察した結果について述べる⁽⁸⁾⁽⁹⁾.

Ca_{0.33}CoO₂エピタキシャル薄膜は、反応性固相エピタキシャル法を用いて作製された⁽¹⁰⁾.まず(0001)-α-Al₂O₃基板上

 図3 HVEM 観察直後のTiO₂(110)表面のHAADF STEM像. 観察方向は(a)[001]および(b)[110] である. 図中には,原子構造モデルおよび STEM像シミュレーション結果も示している⁽⁴⁾.

図 4 (a) CaxCoO₃の結晶構造. (b) √3*a*×√3*a* および (c) 2*a*×√3*a* 規則構造の[0001]方向からの投影 図⁽⁸⁾.

に Na_{0.8}CoO₂ 薄膜を作製する.次にこの薄膜上に Ca(NO₃)₂ 粉末を被せ,酸素雰囲気下300℃でイオン交換処理を施す. このような手法によって結晶性の高い良質な Ca_{0.33}CoO₂ エ ピタキシャル薄膜を得ることができる.本薄膜の観察には, 球面収差補正装置と EELS を組み合わせた STEM を用いた.

図5 (a) $\sqrt{3}a \times \sqrt{3}a$ および(b) $2a \times \sqrt{3}a$ 規則構造領域の 高分解能 HAADF-STEM 像. (c) (a) の矢印で しめした領域から取得された Ca-L_{2,3}端および Co-L_{2,3}端 EELS 積分強度のラインプロファイ ル, (d) (b) の矢印でしめした領域における像強 度のラインプロファイル⁽⁸⁾⁽⁹⁾.

制限視野電子回折による解析から、Ca_{0.33}CoO₂薄膜には、 図 4(b) および (c) に示すような $\sqrt{3}a \times \sqrt{3}a$ 規則構造と $2a \times$ √3a 規則構造が層間に存在していることが判明した⁽⁸⁾. 一 方,図5(a)および(b)に高分解能 HAADF-STEM 像を示 す. 両規則構造ともに明るい原子層と暗い原子層が[0001] 軸にそって交互に形成されていることが分かる. これらの層 を同定するために, Ca-L_{2,3} 端と Co-L_{2,3} 端 EELS を[0001] 軸にそって測定した結果,明るい層が CoO2 層であり,暗い 層が Ca 層であることが分かった(図 5(c)).一方,各層間の 像強度の差は原子番号の差(Ca: 20, Co: 27)だけでは説明 できず,電子線の投影方向([1120]軸方向)の原子密度の違 いを反映しているものと考えることができる(図4(b), (c)). すなわち、Ca層の原子位置に注目すると、 $\sqrt{3}a \times \sqrt{3}a$ では[1100]軸方向に沿って等間隔に配列しているのに対し, 2a×、Ja規則構造はそのコントラストがペアをなして配列し ていることが分かる.この配列は図4の(b),(c)に示した 各規則構造の原子配列と一致している.一方,2a×√3a 規則 構造における Ca 層の像強度のラインプロファイルを調べた 結果,「1100]軸方向に像強度が変調していることが明らか となった(図 5(d))⁽⁸⁾. これは規則構造において Ca 空孔が 存在していること示唆している. 像強度の変調をさらに詳細 に調べた結果, Ca空孔サイトとCoサイトには相関性があ ることが明らかになった⁽⁸⁾.

上述したように、球面収差補正 STEM 法を用いることで、 Co 系層状化合物の層間に存在する原子の配列までも決定す ることが可能である.球面収差補正 STEM 法は、本節で紹 介した層状化合物のみならず,ペロブスカイト構造の CCTO(CaCu₃Ti₄O₁₂)におけるドーパント置換サイト⁽¹¹⁾,オ リビン型結晶構造をとる LiFePO₄ の Li サイト⁽¹²⁾や酸化物 系超格子界面⁽¹³⁾⁽¹⁴⁾などの原子配列の決定にも極めて有効で あることが示されている.

5. W ドープした NbSi₂ の転位芯構造

NbSi2は、1000℃を越える温度域で強度の逆温度依存性を 示す金属間化合物であり,超高温構造材料として期待されて いる. この NbSi₂ に 1 at % 程度の W を添加すると高温強度 が顕著に増加することから、ドープ元素と転位との直接的相 互作用の可能性が指摘されている(15).いわゆる固溶元素に よる雰囲気場形成機構であるが、ここでは STEM を用いて その検証を試みた結果について紹介する. 前述したように HAADF-STEM を用いれば,原子種の違いを著しく反映し たコントラストを得るため、転位芯近傍におけるW位置の 決定が期待できる.しかし、検出器上の散乱強度はデバイ・ ワーラー(DW)因子型の歪みの影響も受けるため⁽¹⁶⁾⁽¹⁷⁾,転 位芯のような歪んだ結晶領域における STEM 像コントラス トの解釈には注意を要する.この問題を解決するため、2重 の環状検出器によって HAADF と LAADF (低角散乱)によ る STEM 像を同時に取得する手法が有効である. すなわち LAADF 像では、DW 因子型のコラム歪みにより敏感なコン トラストを得ることが期待できる.

図6に、(Nb_{0.97}W_{0.03})Si₂単結晶に3%の歪みを導入した 後,高温強度上昇が始まる1200℃にて1hの熱処理を行った 試料中の転位芯を,エッジオン方向から観察した STEM 像 を示す⁽¹⁸⁾. NbSi₂では, $1/3[2\bar{1}\bar{1}0] \rightarrow 1/6[2\bar{1}\bar{1}0] + SF + 1/6$ [2110]のように完全転位の拡張が起こる.図6(a)の HAADF 像から,完全転位がおよそ2nmの拡張幅にて2本 の部分転位へと分解している様子が直接見て取れる.一方, 部分転位芯近傍において HAADF 像強度の上昇が認められ るが, これをもって W からの Z コントラストとは即断でき ない.図6(b)に示すLAADF像には、部分転位芯周辺の歪 み場に起因するコントラストが明瞭に現れている. ここで特 筆すべきは、X-Y原子面に沿った強度プロファイルに見て 取れるように, HAADF 像とLAADF 像において強度の極 大を示す原子サイトが異なる点である. すなわち, この事実 を持って HAADF 像での最も明るいコントラストは主に Z コントラストからなり、このサイトにおけるW原子の偏析 を示唆している.一方 LAADF 像の強度ピークは、W 位置 の2つ隣りの原子サイトにて得られていることから、ここ で DW 因子型のコラム歪みが大きくなっていると結論づけ られる⁽¹⁸⁾. このような HAADF 強度と LAADF 強度の散乱 角依存による反転は、転位芯周辺サイトのDW 因子を変化 させた STEM 像シミュレーションでよく再現されることが 確認された.最近では、高温強度が極大を示す1500℃にて 熱処理を行った試料中では、W が積層欠陥原子層のみに偏 析するという極めて興味深い結果も得られている.

図 6 (Nb_{0.97}W_{0.03}) Sl₂ の転位心から同時取得した(a) HAADF および(b) LAADF-STEM 像. それぞ れの環状検出器の内角設定は,およそ~30 mrad と~70 mrad である⁽¹⁸⁾.

また,結晶の転位芯解析については,セラミックスなど軽 元素を含む材料の観察も既に行われており,この場合, HADF-STEM と同時に BF(Bright-Field)-STEM を同時に 取り込みことで,転位芯における軽元素の原子位置までもが 決定できることが報告されている⁽¹⁹⁾.

6. 希土類添加アルミナセラミックスの粒界

アルミナセラミックスの高温強度は、YやLuなどの希土 類元素を微量添加することにより大幅に改善することが知ら れている⁽²⁰⁾. これらの微量添加元素はアルミナ多結晶中の 粒界に偏析し、高温下における粒界すべりを抑制するものと 推測されてきたが、その本質的なメカニズムに関しては未だ 不明な点が多かった. ここでは、微量の希土類元素を添加し たアルミナの粒界構造をSTEM法により観察した結果につ いて述べる. 図7にLuを添加した Σ 13アルミナ粒界の HAADF-STEM 観察結果を示す.明るく観察される点が Luの入った原子カラムに相当する. これより、Lu原子は粒 界においてダブルレイヤー層を形成していることが分かる. 一方、同じ Σ 13粒界を対象として添加するLu量を系統的に 変えて同様の観察を行った. その結果、Luの添加量が増え

図7 Y 添 加 *Σ*13 ア ル ミ ナ 粒 界 の HAADF – STEM 像.明るいコントラストの Y 原子が粒界でダブ ルレイヤーを形成して偏析している様子が分かる.

るにつれて、特定サイトへの離散的な偏析、モノレイヤー層 の形成、ダブルレイヤー層の形成と順次遷移して行くことが 分かった.添加するLuの量をさらに増やすと、粒界上に第 2相としてLu₂O₃相が析出する.このことは、ダブルレイヤ ーの形成で粒界偏析が飽和していることを示している.すな わちこの系の場合、粒界の偏析はいわゆる正規分布的ではな く、デルタ偏析の状態になっていることがはじめて分かった.

上述の Σ 13 粒界は対応粒界であるが、 Σ 値の大きい一般 粒界に分類できる粒界⁽²¹⁾の偏析挙動についても研究を進め ている.たとえば、Yを添加した Σ 31 粒界においては、Y 原子が粒界コアに形成される七員環構造の中心にのみ選択的 且つ規則的に偏析するがこと報告されている⁽²²⁾.図8に、 これら観察結果をもとに第一原理計算で得たY添加粒界の 電子密度マップを示す.偏析の無い場合の結合は主にイオン 結合性を示したが、七員環構造の中心に偏析したY原子周 囲の電子密度分布は方向性を生じ共有結合的な結合が形成さ れていることが分かる⁽²²⁾.アルミナセラミックスに希土類 元素を添加することによりその強度特性が向上する理由は、 このような強い結合が粒界に存在する希土類元素の周囲に形 成されるためと考えている.つまり、アルミナセラミックス における希土類元素添加効果の本質は、粒界における局所的 な化学結合状態変化に起因するものと結論づけられる.

このような粒界偏析に起因する材料物性の大きな変化は, ここで示した構造セラミックスのみならず機能セラミックス でも顕著に生じる.例えば,Prを添加したZnOバリスター では,Prが粒界の周期的な構造ユニット中に偏析すること がHAADF-STEMで確認されており,Prが粒界近傍のZn 空孔の形成を促進することでバリスター特性が発現すること が分かっている⁽²³⁾⁽²⁴⁾.

7. まとめ

実際の材料開発では材料の特性を向上する目的で種々のド ーパントが添加さている.しかし,ドーパントはこれまでの 経験的要素に基づいて選定される場合が多く,その原子論的 なメカニズムについても不明な点が多い.もし,そのメカニ

図8 第一原理計算によって得られた Y 添加 231 アル ミナ粒界の電子密度マップ⁽²²⁾. 粒界における七 員環の中心に Y が存在する.

ズムを解明できれば,原子・電子を制御した合理的な材料設 計が可能になるものと期待できる.収差補正走査透過電子顕 微鏡法の登場は,原子カラムごとにドーパントを識別するこ とを可能とし,その電子状態までも計測できる域に達したこ とを示している.すなわち,これまでブラックボックスであ ったサブオングストローム領域の局所的な構造や状態を,高 分解能でかつ定量的に解析することが現実的な視野に入って きた.

本稿では、材料の表面,結晶層間,転位芯,粒界ついて、 本特定領域研究で進めている最新の結果について紹介した. 今回は、TiO₂の表面,Co系層状化合物における層間原子, WドープしたNbSi₂の転位芯構造,希土類元素を添加した アルミナセラミックスの粒界を例として取り上げた.本手法 が今後益々種々の材料に応用され,材料開発の分野に大きな ブレークスルーをもたらすことを期待している.

本研究は, 黄栄博士, 杉浦健二博士, 太田裕道博士, 平山 司博士, 山本剛久博士をはじめ各グループの研究者および大 学院生との共同研究結果である.本研究は文部科学省特定領 域研究「機能元素のナノ材料科学」(領域番号 474)「機能元 素超構造解析」(科学研究費番号 19053001)の一環として行 われたことを付記する.

文 献

- (1) S. J. Pennycook and D. E. Jesson: Phys. Rev. Lett., **64**(1990), 938.
- (2) M. Haider, H. Rose, S. Uhlemann, B. Kabius and K. Urban: J. Electron Microsc., 47 (1998), 395.
- (3) C. Kisielowski, et al.: Microsc. Microanal., 14(2008), 469.
- (4) N. Shibata, A. Goto, S.-Y. Choi, T. Mizoguchi, T. Yamamoto and Y. Ikuhara: Science, 322(2008), 570.
- (5) H. Onishi and Y. Iwasawa: Phys. Rev. Lett., 76(1996), 791.
- (6) K. T. Park, M. H. Pan, V. Meunier and E. W. Plummer: Phys.

Rev. Lett., 96(2006), 226105.

- (7) N. Shibata, A. Goto, K. Matsunaga, T. Mizoguchi, S. D. Findlay, T. Yamamoto and Y. Ikuhara: Phys. Rev. Lett., 102(2009), 136105.
- (8) R. Huang, T. Mizoguchi, K. Sugiura, H. Ohta, T. Saito, K. Koumoto, T. Hirayama and Y. Ikuhara: Appl. Phys. Lett., 93(2008), 181907.
- (9) R. Huang, T. Mizoguchi, K. Sugiura, S. Nakagawa, H. Ohta, T. Saito, K. Koumoto, T. Hirayama and Y. Ikuhara: J. Mater. Res., 24(2009) 279.
- (10) K. Sugiura, H. Ohta, Y. Ishida, R. Huang, T. Saito, Y. Ikuhara, K. Nomura, H. Hosono and K. Koumoto: Appl. Phys., Express 2(2009) 035503.
- (11) S.-Y. Chung, S.-Y. Choi, T. Yamamoto and Y. Ikuhara: Phys. Rev. Lett., **100** (2008), 125502.
- (12) S.-Y. Chung, S.-Y. Choi, T. Yamamoto and Y. Ikuhara: Adv. Mater., 21 (2009), 885.
- (13) H. Ohta, S. W. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono and K. Koumoto: Nature Mater., 6(2007), 129.
- (14) T. Mizoguchi, H.Ohta, Y. Mune, Y. Nakanishi, K. Koumoto and Y. Ikuhara: AMTC Lett., 1(2008), 20.
- (15) T. Nakano, M. Kishimoto, D. Furuta and Y. Umakoshi: Acta mater., 48(2000), 3465.
- (16) E. Abe, S. J. Pennycook and A. P. Tsai: Nature, **421**(2003), 347.
- (17) E. Abe, Y. Yan and S. J. Pennycook: Nature. Mater., **3**(2004), 759.
- (18) Y. Maemura, E. Abe, K. Hagihara, T. Nakano and Y.

Umakoshi: AMTC Lett., 1(2008), 280.

- (19) N. Shibata, M. F. Chisholm, A. Nakamura, S. J. Pennycook, T. Yamamoto and Y. Ikuhara: Science, **316**(2007), 82.
- (20) H. Yoshida, Y. Ikuhara and T. Sakuma: Acta. Mater., 50 (2002), 2955.
- (21) 幾原雄一編著, セラミック材料の物理, 日刊工業新聞社, (1999).
- (22) J. P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto and Y. Ikuhara: Science, **311** (2006), 212.
- (23) Y. Sato, J. P. Buban, T. Mizoguchi, N. Shibata, M. Yodogawa, T. Yamamoto and Y. Ikuhara: Phys. Rev. Lett., 97(2006), 106802.
- (24) Y. Sato, T. Yamamoto and Y. Ikuhara: J. Am. Ceram. Soc., 90 (2007), 337.

- ★★★★★★★★★★★★★★★★★★★★★★★★ S.63年 九州大学大学院総合理工学研究科博士課程修 了(工学博士)
- S. 63年 財団法人ファインセンラミックスセンター (JFCC)入所

H.5年 同構造解析部統括部長代理,主管主席研究員

H.8年 東京大学大学院工学系研究科材料学専攻助教授 H.15年 東京大学大学院工学系研究科総合研究機構教授

JFCC ナノ構造研究所主管研究員・東北大学

幾原雄一

WPI 機構教授(兼任) H. 19年より文部科学省特定領域研究「機能元素のナ ノ材料科学」領域代表

専門分野:結晶界面工学,透過電子顕微鏡法,セラミック材料,格子欠陥, 材料強度学
