Effect of Anomalous Crystal Structure of Iron Aluminides Fe$_2$Al$_5$ and Fe$_4$Al$_{13}$: Low Phonon Thermal Conductivity and Potentiality as Thermoelectric Materials*1

Kazuki Tobita*2, Naoki Sato*2, Koichi Kitahara*3, Yoshiki Takagiwa*4 and Kaoru Kimura

Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwa 277–8561, Japan

Iron Aluminide Fe$_2$Al$_5$ has a rigid framework of both fully occupied aluminum and iron sites and channels of partially occupied aluminum sites. On the other hand, Fe$_4$Al$_{13}$ possesses a large unit cell with 102 atoms. These complex and peculiar crystal structures bring a low phonon thermal conductivity. Here, we report the thermoelectric properties and discuss how the proposed chain structure and large unit cell can lead to a low phonon thermal conductivity. The calculated room-temperature phonon thermal conductivity by using the Wiedemann-Franz law is approximately 1.5 W/mK and 0.8 W/mK for Fe$_2$Al$_5$ and Fe$_4$Al$_{13}$, respectively. From the comparison with other Fe-Al alloys, which have neither hourglass-like, and aluminum atoms are supposed to diffuse in a liquid-like manner along the channels. This behavior is similar to superionic conductor such as Cu$_2$Zn$_{13}$Se. The reduction in specific heat, which directly related to very low phonon thermal conductivity, is attributed to copper ion moving like liquid in Cu$_2$Zn$_{13}$Se. In the case of Fe$_2$Al$_5$, these properties will be dependent on the density of aluminum atoms in the channels. Besides, Fe$_2$Al$_5$ has a pseudogap near the Fermi level, which is suitable for large Seebeck coefficient.

As shown in Fig. 1(c), Fe$_4$Al$_{13}$ has a monoclinic unit cell with four partially occupied sites and 102 atoms in total, which is known as an approximant of decagonal quasicrystals. The unit cell volume of Fe$_4$Al$_{13}$ is seven times larger than that of Fe$_2$Al$_5$. The small Brillouin zone due to the large unit cell volume leads to the intensified Umklapp process of the phonon-phonon scattering and increases scattering rate of phonon at zone boundaries. These characteristics can lead to low phonon thermal conductivity.

We mainly report thermoelectric properties of Fe$_2$Al$_5$ and Fe$_4$Al$_{13}$, and also compare them with those of other Fe-Al compounds.

1. Introduction

Thermoelectric materials have gained attention owing to the fact that they can contribute to the solution for the global energy demand through waste-heat recovery. In recent years, the potential of thermoelectric materials, dimensionless ZT, is getting over unity.1 ZT is defined as

$$ZT = \frac{S^2 \sigma}{\kappa_{el} + \kappa_{ph}} T,$$

where S, σ, κ_{el}, κ_{ph}, and T are the Seebeck coefficient, the electrical conductivity, the electron thermal conductivity, the phonon thermal conductivity and the temperature, respectively. σ is related to κ_{el} through the Wiedemann-Franz law

$$\kappa_{el} = L \sigma T,$$

where L is the Lorenz number, $L = 2.44 \times 10^{-8} V^2/K^2$ for free electrons. κ_{ph} is given by

$$\kappa_{ph} = \frac{1}{3} C v^2 \tau,$$

where C, v, and τ are the phonon specific heat, the phonon group velocity, and the phonon relaxation time, respectively.

Unfortunately, a number of the existing high-ZT materials contain toxic and/or high-cost elements. For wide use of thermoelectric materials, it is necessary to use materials with low cost and nontoxicity as well as high-ZT values. Hence, in the present study, we have focused on iron-aluminum binary system as a candidate of environmentally friendly thermoelectric material.

According to Fe-Al phase diagram,2 there are three stable phases, FeAl$_2$, Fe$_2$Al$_5$, and Fe$_4$Al$_{13}$, on Al-rich region, and all of them form complex crystal structures which contain some partially occupied sites.

FeAl$_2$ has a triclinic unit cell with two partially occupied sites and 19 atoms in total,3 as shown in Fig. 1(a).4 The density of states of this material shows that the Fermi level lies in a smooth peak of the density of states,3 which accounts for low Seebeck coefficient.

The unit cell of Fe$_2$Al$_5$ with an orthorhombic structure consists of one iron site and three aluminum sites with different atomic occupancies, and it includes 15 atoms in total5 as shown in Fig. 1(b).4 The partially occupied sites are placed along c-axis and aluminum atoms are supposed to diffuse in a liquid-like manner along the channels.3 This behavior is similar to superionic conductor such as Cu$_2$Zn$_{13}$Se. The reduction in specific heat, which directly related to very low phonon thermal conductivity, is attributed to copper ion moving like liquid in Cu$_2$Zn$_{13}$Se.6 In the case of Fe$_2$Al$_5$, these properties will be dependent on the density of aluminum atoms in the channels. Besides, Fe$_2$Al$_5$ has a pseudogap near the Fermi level,3 which is suitable for large Seebeck coefficient.

As shown in Fig. 1(c),4 Fe$_4$Al$_{13}$ has a monoclinic unit cell with four partially occupied sites and 102 atoms in total, which is known as an approximant of decagonal quasicrystals.7 The unit cell volume of Fe$_4$Al$_{13}$ is seven times larger than that of Fe$_2$Al$_5$. The small Brillouin zone due to the large unit cell volume leads to the intensified Umklapp process of the phonon-phonon scattering and increases scattering rate of phonon at zone boundaries. These characteristics can lead to low phonon thermal conductivity.

We mainly report thermoelectric properties of Fe$_2$Al$_5$ and Fe$_4$Al$_{13}$, and also compare them with those of other Fe-Al compounds.

*This Paper was Originally Published in Japanese in J. Japan Inst. Met. Mater. 79 (2015) 672–676.

1Graduate Student, The University of Tokyo

2Graduate Student, The University of Tokyo. Present address: Toyota Technological Institute, Nagoya 468–8511, Japan

3Present address: National Institute for Materials Science, Tsukuba 305–0047, Japan

2. Experimental Details

We synthesized four kinds of iron-aluminide, FeAl, FeAl2, Fe2Al5, and Fe4Al13 with nominal compositions of Fe4Alx (x = 4.0, 7.1, 7.4, 7.6, 8.0, 8.4, 8.7, 9.0, 9.4, 9.7, 10.0, 10.2, 10.3, 10.6, 11.0, 11.8). Iron powders (99.9%, Kojundo Chemical Lab. Co., Ltd.) and aluminum shots (99.99%, Kojundo Chemical Lab. Co., Ltd.) were arc-melted under an argon atmosphere. The ingots were melted 2–4 times for homogenization. All of the ingots were crushed into powders with particle sizes below 100 μm, and then they were set in a 10 mm-diameter carbon die for spark plasma sintering (SPS) (SPS-515S, Sumitomo Coal Mining Co., Ltd.). The temperature of specimens was increased from ambient temperature to 1223 K for 30 min with a uniaxial pressure of 56 MPa under an argon atmosphere. After SPS treatment, the specimens were cooled to ambient temperature under argon atmosphere.

The characterization of the samples was performed by powder X-ray diffraction (XRD) measurements with Cu Kα radiation (Smartlab, Rigaku Co.). Samples were also analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) (JSM-6010LA, JEOL) in order to identify impurity phases. We also determined lattice parameter with standard silicon sample (NIST, 640d) by using RIETAN-FP, a Rietveld analysis software. The electrical conductivity and the Seebeck coefficient were measured in a helium atmosphere at temperatures between 373 K and 973 K by the four-probe method and the steady-state temperature gradient method, respectively (ZEM-1, Advance-Riko, Inc.). The thermal conductivity was obtained by the geometric density, which is determined using the dimensions and mass of the samples, specific heat, and thermal diffusivity which are measured from 373 K to 973 K by using the laser flash method (TC-7000, Advance-Riko, Inc.). The transverse and longitudinal speed of sound were measured by the ultrasonic pulse echo method (Echometer 1061, Karl Deutsch Prüf- und Messgerätebau GmbH & Co. KG).

3. Results and Discussion

3.1 Structure characterization

Table 1 lists the results of the sample synthesis. The mass losses during arc-melting were less than 2%. The relative densities of the sintered samples were over 95%.

Figure 2 shows the experimental powder XRD patterns for Fe4Alx (x = 8.7–10.3) together with the simulated pattern for Fe2Al5. The obtained XRD patterns of Fe4Alx (x = 9.4–10.2) are identified with the calculated patterns of the Fe2Al5 phase. The patterns for Fe4Al8.7 and Fe4Al9.0 contain impurity peaks around 2θ ~41° as indicated with arrows in Fig. 2, which do not conform with those of neighboring phase, FeAl2. On the other hand, the impurity peaks of Fe4Al10.3 conform with those of Fe4Al13. We attempted to identify the impurities of Fe4Al9.0 and Fe4Al8.7 by using SEM and EDX, finding the aluminum contents can vary by 1%. These results, however, could not explain the impurity peaks. Assuming that the lattice parameter increased by 4%, the impurity peaks around 2θ ~41° could be identified with the peaks of FeAl2. However, it seems unlikely that such large lattice expansion happened in the present synthesis procedure. This fact indicates Fe4Al8.7 and Fe4Al9.0 do not contain FeAl2.

We determined lattice parameter of Fe4Alx (x = 8.4–10.2). Figure 3 shows the lattice parameter of a-, b-, and c-axes, and unit cell volume. The parameters a, c, and V increase and b decreases with increasing the aluminum content except for Fe4Al8.4, suggesting that Fe4Al8.4 contains the secondary phase.

Taking above variations of lattice parameters into account, Fe4Al8.7 and Fe4Al9.0 seems to consist of Fe2Al5 though XRD patterns of them show impurity peaks, and we classified the samples into five categories shown as Table 1. Comparing the experimental range of Fe2Al5 with phase diagram (xAl = 0.70–0.73), the nominal mole fraction of aluminum is lower than phase diagram by 1.5%, due to weight loss during arc-melting.
3.2 Thermoelectric properties

We measured the specific heat, the thermal conductivity, the Seebeck coefficient and ZT of the single phase samples, Fe$_4$Al$_x$ ($x = 9.0, 9.4, 9.7, 10.0, 10.2, 10.3, 10.6, 11.0, 11.8$) (Fig. 4–7).

In the case of the samples consist of Fe$_2$Al$_5$, thermoelectric properties have little dependence on aluminum contents. The specific heat increases with the rise in temperature contrary to our expectation that aluminum atoms diffuse in a liquid-like
manner along the channels and inhibit thermal transport. The room-temperature phonon thermal conductivity of Fe$_2$Al$_5$ and Fe$_4$Al$_{13}$ are 1.5 W/mK and 0.8 W/mK respectively. Figure 6 shows the temperature dependence of the Seebeck coefficient; S decreases with increasing temperature. The absolute maximum value of S is 25 μV/K at 973 K for all samples except for Fe$_4$Al$_{9.0}$. In spite of low phonon thermal conductivity, the obtained maximum ZT value of these compounds is only 0.02 because of the low Seebeck coefficient.

Figure 8 shows the variation of phonon thermal conductivities for Fe-Al compounds. We obtained phonon thermal conductivities of FeAl($x_{\text{Al}} = 0.50$) and FeAl$_2$, and the previous studies provide the values of the others.\cite{9,10} The values of FeAl$_2$, Fe$_2$Al$_3$, and Fe$_4$Al$_{13}$, which have partially occupied sites in the unit cell, are lower than the values of the others. The unit cell volume of Fe$_4$Al$_{13}$ is seven times larger than that of Fe$_2$Al$_5$. However, the value of Fe$_4$Al$_{13}$ is only half of that of Fe$_2$Al$_5$.

3.3 The origin of low phonon thermal conductivity

From eq. (3), the phonon thermal conductivity originates from the specific heat, the group velocity and the phonon relaxation time. As mentioned above, the specific heat does not play a main role in the low phonon thermal conductivity.

We measured the speed of sounds of synthesized samples to estimate the group velocity. Table 2 shows the speed of sounds for FeAl, FeAl$_2$, Fe$_2$Al$_5$, and Fe$_4$Al$_{13}$ respectively. The difference in the speed of sounds is within only 10%, which is not enough to explain the difference in the phonon thermal conductivity.

Figure 9 shows the electrical conductivity as a function of the number of atoms in the unit cell. The fact that Fe$_2$Al$_5$ has the low electrical conductivity as well as the low phonon thermal conductivity may suggest partially occupied sites scattering not only phonon but electron suppress phonon and electron relaxation time. Although the phonon thermal conductivity of Fe$_2$Al$_5$ is twice as large as that of Fe$_4$Al$_{13}$, electrical conductivity is almost identical. In the case of Fe$_4$Al$_{13}$, the lower phonon thermal conductivity can be understood through the increased phonon scattering rate due to the larger unit cell. In conclusion, low relaxation time caused by phonon scattering at partially occupied sites plays a main role in low phonon thermal conductivity.

4. Conclusion

This study focuses on thermoelectric properties for Fe$_2$Al$_5$ and Fe$_4$Al$_{13}$, both of which have anomalous crystal structures, and on the origin of low phonon thermal conductivity for Fe$_2$Al$_5$. The experimental findings are concluded as follows: (i) the room-temperature phonon thermal conductivity of Fe$_2$Al$_5$ and Fe$_4$Al$_{13}$ are 1.5 W/mK and 0.8 W/mK respectively, (ii) despite Fe$_2$Al$_5$ contains only 15 atoms in the unit cell without heavy elements, the lattice thermal conductivity is low. Considering the chained crystal structure model of Fe$_2$Al$_5$, the observed low phonon thermal conductivity can be explained by such atomic disordering which suppresses the phonon relaxation time, (iii) in the case of Fe$_4$Al$_{13}$, lower phonon thermal conductivity can be understood through the increasing phonon scattering rate due to 102 atoms in the unit cell, (iv) the maximum dimensionless figure of merit was approximately 0.02 for both Fe$_2$Al$_5$ and Fe$_4$Al$_{13}$ at 973 K.
Acknowledgements

This work is partly supported by KAKENHI No. 24360262 and 26709051 from JSPS and the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by Light Metal Education Foundation Inc.

REFERENCES