Sample Length Dependence of Giant Magnetoimpedance in Fe–Zr–Nb–Cu–B Nanocrystalline Ribbons

Hongwei Qin1,*, Xiaojun Yu2, Bo Li2, Yanming Hao3, Shanxing Huang1, Jifan Hu1 and Minhua Jiang1

1Department of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, P. R. China
2Central Iron & Steel Research Institute, Beijing 100081, P. R. China
3Department of Physics, Tianjin Normal University, Tianjin 300074, P. R. China

In the present work the sample length dependence of giant magnetoimpedance for Fe84Zr2.08Nb1.92Cu1.11 nanocrystalline ribbons was investigated. With a reduction of sample length L, the peak field H_P of positive magnetoimpedance increases, due to an enhancement of demagnetization effect along the sample length direction. Meanwhile, a shortening of ribbon length brings about a decrease of the permeability under field, which results in a drop of negative magnetoimpedance. In addition, the frequency f_max where the maximum of (ΔZ/Z₀)max occurs, shifts to higher frequencies with reduction of sample length. The giant magnetoimpedance in nanocrystalline ribbons depends not only on the field and frequency, but also sensitively on the sample length, which should be considered in designing of GMI electronic circuits.

(Received January 7, 2005; Accepted April 4, 2005; Published June 15, 2005)

Keywords: nanocrystalline ribbons, giant magnetoimpedance, permeability, sample length, demagnetizing effect

1. Introduction

The giant magnetoimpedance (GMI) effect consisting a change of impedance under dc magnetic fields in soft magnetic materials has attracted much attention due to its practical electronic circuits. The permeability depends not only on the field and frequency, but also sensitively on the sample length, which should be considered in designing of GMI working elements. However, only small attention has been paid to the geometrical dimensions of sample, even though the shape anisotropy play an important role in determining macroscopic properties. In the present work, the sample length influence upon the giant magnetoimpedance in Fe84Zr2.08Nb1.92Cu1.11 annealed nanocrystalline ribbons has been investigated.

2. Experiments

The Fe84Zr2.08Nb1.92Cu1.11 alloy was prepared by arc melting in Ar atmosphere. The metallic ribbons were obtained by the single roller melt—spinning technique with wheel speed of 40 m/s. The ribbon thickness is about 20 μm, and its width is 2 mm. Ribbons were cut into samples with lengths L = 10, 30 and 60 mm, and then annealed in vacuum for 20 min at a temperature of 725°C, respectively. The X-ray diffraction measurement of Fe84Zr2.08Nb1.92Cu1.11 annealed ribbon was performed with Cu Kα radiation. The GMI measurements were carried out using an HP 4294A impedance analyzer at room temperature. The sample was connected to the analyzer with accessory test lead containing four cables, and placed in a Helmholtz coil which can produce DC fields up to 8 kA/m. The coils were so placed that the applied field was perpendicular to the earth’s magnetic field. The ac currents with the amplitude of 20 mA and dc fields were applied in the direction along the ribbon length for longitudinal magnetoimpedance measurement. The relative change of transverse real permeability under field was measured using a small coil with the equivalent impedance method by a HP 4294A impedance analyzer, where a dc field was applied perpendicular to the length of the sample as well as the coil.

3. Results and Discussion

Figure 1 shows the X-ray diffraction pattern of Fe84Zr2.08Nb1.92Cu1.11 ribbon annealed at 725°C for 20 min. The α-Fe phase occurs in the annealed ribbon. Based on Scherrer’s equation, the average grain size of α-Fe was estimated as about 10 nm. Beside of the main phase of α-Fe, a very little of Fe3Zr exists in the ribbon. Fe3Zr-type phase was previously observed in nanocrystalline ribbons Fe91Zr8B2 and Fe84Zr7B6Cu1 annealed at a high temperature such as 700°C. Figure 2 shows the dc field dependence of the magnetoimpedance ΔZ/Z₀ = (Z(H) − Z(0))/Z(0) for Fe84Zr2.08Nb1.92Cu1.11 nanocrystalline ribbons with different length L = 10, 30 and 60 mm. At frequencies f = 0.3 and 0.8 MHz,
there is a positive peak of magnetoimpedance at a smaller field \(H_p \). Such peak was attributed to the existence of transverse anisotropy,\(^{10}\) where the anisotropy field \(H_K \) equals to the peak field \(H_p \). It is evident from Fig. 2 that the peak field \(H_p \) increases with the reduction of sample length \(L \), which is related to the demagnetizing effect. The shorter the sample is, the larger the demagnetizing factor \(N \) along length direction becomes. A larger applied field \(H_{\text{app}} \) is needed to induce the impedance-peak for shorter sample. We also measured the frequency dependence of the \(H_p \). The \(H_p \) increases with increasing frequency, which indicates there is a distribution of the anisotropy field \(H_K \) along the direction perpendicular to the ribbon plane.\(^4\),\(^7\)

The frequency dependence of the peak value of positive magnetoimpedance \((\Delta Z/Z_0)_p \) for different sample length \(L = 10 \) mm and 60 mm is presented in Fig. 3. With increasing frequency, the peak value of positive magnetoimpedance \((\Delta Z/Z_0)_p \) increases at first, experiences a maximum, and then drops again. The drop of \((\Delta Z/Z_0)_p \) can be attributed to the reduction of permeability with frequency.\(^{11}\) The positive maximum magnetoimpedance shifts to lower frequency with reduction of sample length.

Figure 4 shows the frequency dependence of the magnetoimpedance \(\Delta Z/Z_0 = (Z(H) - Z(0))/Z(0) \) under different field \(H = 796, 2387 \) and 7162 A/m for samples Fe\(_{84}\)Zr\(_{2}\):\(_{0.8}\):\(_{0.9}\):\(_{2}\):\(_{0.8}\):\(_{0.9}\)Cu\(_{1}\):\(_{1}\)B\(_{11}\) with different length \(L = 10, 30 \) and 60 mm. Large negative magnetoimpedance can be observed. The magnetoimpedance increases with increasing frequency at first due to the enhancement of skin effect, undergoes a maximum value at a certain frequency \(f_{\max} \), and finally drops again with further increase of frequency due to the decrease of permeability.\(^{11}\)
susceptibility decreasing wire length, the coercivity increases and initial reported previously for an FeCrSiBCuNb wire that with the larger the negative magnetoimpedance becomes, which is tance. It can be seen from Fig. 4 that the longer the sample is, impedance are similar, but their frequencies where maximum frequency dependence of magnetoresistance and magneto- the reduction of change of permeability with field. The shown in Fig. 5. The drop of magnetoreactance results from the reduction of permeability with field. The frequency dependence of magnetoimpedance are similar, but their frequencies where maximum values occur are different. The magnetoimpedance is the combining effect of magnetoresistance and magnetoreac- tance. It can be seen from Fig. 4 that the longer the sample is, the larger the negative magnetoimpedance becomes, which is mainly due to the demagnetizing effect. The frequency f_{max} where the maximum of negative $(\Delta Z/Z_0)$ occurs, shifts to higher frequency with shortening the sample. Under $H = 7162$ A/m, values of $(\Delta Z/Z_0)_{\text{max}}$ are -56.18% at $f_{\text{max}} = 0.3$ MHz for $L = 60$ mm, -35.93% at $f_{\text{max}} = 1$ MHz for $L = 30$ mm, and -20.46% at $f_{\text{max}} = 2$ MHz for $L = 10$ mm. It was reported previously for an FeCrSiBCuNb wire that with decreasing wire length, the coercivity increases and initial susceptibility χ drops. Similar to the wire, the demagnetizing field in ribbons may change the domain pattern at both ends of ribbon, reducing the magnetic properties of ribbon itself, especially for the very short sample. Meanwhile, the effective field H_{eff} upon the sample for the shorter sample is smaller than the longer one due to the demagnetizing field H_{dem}.

Figure 6 shows the frequency dependence of real permeability change $\Delta \mu_\prime/\mu_\prime = (\mu_\prime(H) - \mu_\prime(0))/\mu_\prime(0)$ under $H = 7162$ A/m for Fe$_{84}$Zr$_{2.08}$Nb$_{1.92}$Cu$_{1.11}$ nanocrystalline ribbons with length $L = 10$ and 60 mm. The reduction of ribbon length brings about a drop of the permeability change, resulting in a smaller magnetoimpedance. Meanwhile, the permeability change $\Delta \mu_\prime/\mu_\prime$ is found to decrease with increasing frequency.

In conclusion, in the present work the sample length dependence of giant magnetoimpedance for Fe$_{84}$Zr$_{2.08}$Nb$_{1.92}$Cu$_{1.11}$ nanocrystalline ribbons was investigated. With the reduction of sample length L, the peak field H_p for positive magnetoimpedance increases, which is due to an increase of demagnetization effect. The reduction of ribbon length brings about a smaller permeability change, which results in a drop of negative magnetoimpedance. Meanwhile, the frequency f_{max} where the maximum of negative $(\Delta Z/Z_0)_{\text{max}}$ occurs, shifts to higher frequencies with reduc- tion of sample length. For example, under $H = 7162$ A/m, the value of $(\Delta Z/Z_0)_{\text{max}}$ for Fe$_{84}$Zr$_{2.08}$Nb$_{1.92}$Cu$_{1.11}$ nano- crystalline ribbons is -56.18% at $f_{\text{max}} = 0.3$ MHz for $L = 60$ mm, and -20.46% at $f_{\text{max}} = 2$ MHz for $L = 10$ mm.

REFERENCES