Effects of Titanium and Oxygen Content on Microstructure in Low Carbon Steels

Sang-Yoon Lee¹, *, Young Joo Oh² and Kyung-Woo Yi¹

¹School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
²Metal Processing Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea

The effects of the titanium and oxygen concentration on the characteristics of inclusions and microstructure in low carbon wrought steels were investigated. Increasing the titanium concentration from 48 to 120 ppm promoted the formation of TiN particles and decreased the prior austenite grain size. The fraction of intragranular ferrite in the microstructure was relatively unchanged. When the oxygen concentration was increased from 50 to 130 ppm, the volume fraction and the number of inclusion increased. However, the fraction of intragranular ferrite in microstructures decreased abruptly above 80 ppm because the allotriomorph ferrite phase at the prior austenite grain boundary began to form.

(Received October 19, 2001; Accepted January 15, 2002)

Keywords: non-metallic inclusion, intragranular ferrite, titanium, oxygen, microstructure

1. Introduction

For several decades, many researchers have strived to improve mechanical properties in wrought steels, such as strength, toughness and ductility.¹–³ Intragranular ferrite is known to provide an optimal combination of high strength and good toughness due to refined grain size and interwoven structure.⁴ It has been reported that intragranular ferrite nucleates mainly at the surface of non-metallic inclusion⁵ and secondary nucleation occurred through sympathetic nucleation from the ferrite laths.⁶ However, it has been recognized that intragranular ferrite rarely observed in wrought steels because oxide particles have a lower density than weld metals.

Titanium–nitride,⁷ aluminum–rich inclusions,⁸ manganese–sulfide⁹ and titanium–oxide¹⁰,¹¹ have been reported to be effective in stimulating nucleation of intragranular ferrite because they work as the heterogeneous nucleation sites of ferrite. Among them, Ti₂O₃ was known as the most effective one.

Several factors influencing the formation of intragranular ferrite have been reported.¹² They are the density of the inclusions, the size distribution of the inclusions, the type of inclusions and the prior austenite grain size. These factors are determined by the steel composition and the solidification rate. Many studies on the characteristics of inclusions as a ferrite nucleation site have been reported. Goto et al.¹³,¹⁴ investigated the effect of the solidification rates on the composition and size distribution of the inclusions. Guo et al.¹⁵ reported the effect of the size distribution of the inclusions on the microstructure. Hong et al.¹⁶ modeled the growth and dissolution of inclusions in weld metals. In the present work, the effects of the composition, especially titanium and oxygen, on the characteristics of non-metallic inclusions and microstructures in low carbon steels were investigated.

2. Experimental Procedure

Low carbon specimens with different compositions were prepared using a vacuum induction melting and casting furnace. The chemical compositions of the specimens are given in Table 1.

The ingots were homogenized at 1373 K for 36 ks. Then, samples for investigation were cut from a quarter height of each ingot. The number of inclusions within an area of 360 × 360 μm² were counted using scanning electron microscopy (SEM) in backscattered mode. Several researchers¹⁷,¹⁸ have reported that inclusions between 0.2 and 6.0 μm in diameter could nucleate the intragranular ferrite. Therefore, the same range of non-metallic inclusions were counted in this study. The chemical analysis was carried out for more than 100 inclusions in each specimen by transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS).

The volume fraction of inclusions, V, was calculated by eq. (1). The harmonic mean of the inclusion diameters, d, and the number of inclusions per unit volume, N_v, were obtained using eqs. (2) and (3) which were proposed by DeHoff.¹⁹

\[V = \frac{\pi}{6} d^3 N_v \]
\[N_v = \frac{2}{\pi} \frac{N_A}{d} \]
\[\frac{1}{d} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_i} \]

where d_i is the apparent diameter of the i-th inclusion among n inclusions, N_A is the number of inclusions per unit area.

In order to investigate the microstructures, the samples were forged then machined to cylindrical specimens 8 mm in diameter and 12 mm in length. These specimens were austenitized at 1523 K for 600 s and then continuously cooled at 5 K/s to room temperature. The thermomechanical treatment was performed using a thermomechanical simulator (ThermecMastor-Z).

All specimens were polished and etched in 2% Nital for optical microscopy. The prior austenite grain size and the

*Ph. D candidate, Seoul National University.
Table 1 Chemical composition of specimens (mass%).

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Ti</th>
<th>O</th>
<th>N</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen 1</td>
<td>0.0090</td>
<td>0.005</td>
<td>0.002</td>
<td>0.04</td>
<td>1.74</td>
<td>0.23</td>
<td>0.003</td>
<td>0.0028</td>
</tr>
<tr>
<td>Specimen 2</td>
<td>0.0048</td>
<td>0.005</td>
<td>0.002</td>
<td>0.051</td>
<td>1.76</td>
<td>0.20</td>
<td>0.005</td>
<td>0.0027</td>
</tr>
<tr>
<td>Specimen 3</td>
<td>0.0120</td>
<td>0.005</td>
<td>0.001</td>
<td>0.055</td>
<td>1.75</td>
<td>0.19</td>
<td>0.006</td>
<td>0.0073</td>
</tr>
<tr>
<td>Specimen 4</td>
<td>0.0081</td>
<td>0.007</td>
<td>0.001</td>
<td>0.049</td>
<td>1.79</td>
<td>0.20</td>
<td>0.005</td>
<td>0.0028</td>
</tr>
<tr>
<td>Specimen 5</td>
<td>0.0100</td>
<td>0.010</td>
<td>0.002</td>
<td>0.050</td>
<td>1.72</td>
<td>0.21</td>
<td>0.005</td>
<td>0.0035</td>
</tr>
<tr>
<td>Specimen 6</td>
<td>0.0120</td>
<td>0.013</td>
<td>0.002</td>
<td>0.052</td>
<td>1.56</td>
<td>0.10</td>
<td>0.004</td>
<td>0.0031</td>
</tr>
</tbody>
</table>

3. Results and Discussion

3.1 Effects of titanium and oxygen contents on characteristics of inclusions

The typical size distribution of the inclusions is shown in Fig. 1. The inclusions in this study were within the range 0.2–2.5 μm and most inclusions were smaller than 1 μm.

The TEM replica micrographs of a typical inclusion in specimen 1 are shown in Figs. 2 and 3. The majority of the inclusions were spherical oxides and angular nitride. EDS and diffraction analysis indicated that the phases of the spherical and angular inclusions were Ti2O3 and TiN, respectively. Most TiN particles were less than 0.5 μm in diameter. In addition, precipitated MnS was observed on the surface of Ti2O3 and TiN particles.

Figure 4 shows the change of composition ratio of the inclusions with the change in the titanium concentration. Although light elements, such as oxygen and nitrogen, were not counted with EDS, the type of inclusions could be recognized as Ti–oxide and MnS, Ti–Mn–oxide and MnS, TiN and MnS, by the apparent difference in shape and the diffraction patterns of the inclusions. When the titanium concentration was increased from 48 to 120 ppm, it was realized that there was a relative increase in the number of tiny TiN particles compared to specimen 3. However, the total volume fraction of the inclusions did not change as shown in Fig. 5. Therefore, increasing the titanium concentration appears to promote the formation of tiny TiN particles that are unable to increase the total volume fraction of inclusions.

In contrast, the effects of the oxygen concentration on the size distribution and type of inclusions differ according to the titanium concentration. As oxygen concentration is increased from 50 to 100 ppm, the change in the inclusions type have
not been observed (Fig. 6). However, the volume fraction and
the total number of inclusions increased (Fig. 7). Therefore,
it is believed that the increase in the oxygen concentration led
to form of large enough inclusions to contribute the variation
of the volume fraction of inclusions.

3.2 Effects of titanium and oxygen content on mi-
crostructures
Figure 8 shows the microstructures with as a function of the
titanium concentration. Although the titanium concentration
was increased from 48 to 120 ppm, both the microstructures
were a mix of bainite and intragranular ferrite and were quite
similar.

Figure 9 shows the variation of the prior austenite grain
size and the number of inclusions with increasing titanium
centration. As mentioned above, when the titanium con-
centration increases from 90 to 120 ppm, the number of inclu-
sions increases. On the other hand, the prior austenite grain
size decreased from 150 to 100 µm. It appears that the tiny
TiN particles restricted the growth of the prior austenite grain
by pinning the austenite grain boundary.

Early reports20 showed that the minimum diameter of TiN
particles needed to nucleate intragranular ferrite in low car-
bon steels was approximately 200 nm and the increase in the
number of inclusions promotes the formation of intragranu-
Effects of Titanium and Oxygen Content on Microstructure in Low Carbon Steels

Fig. 10 Variation of fraction of intragranular ferrite with increasing titanium concentration.

Intragranular ferrite due to increasing intragranular inclusion surface area. Also, Oh et al.\textsuperscript{21) reported that the critical prior austenite grain size for stable formation of intragranular ferrite should be larger than 100\,\mu m and the fraction of intragranular ferrite increased with increasing prior austenite grain size up to 350\,\mu m. In particular, at austenite grain sizes between 100\,\mu m and 350\,\mu m, the larger austenite grain size, the more intragranular ferrite was formed. Because the prior austenite grain size decreased, even though the number of inclusions increased (Fig. 9), the fraction of intragranular ferrite appeared similar value (Fig. 10).

Figure 11 shows effect of the oxygen concentration on the microstructures. The microstructures consisted of a mix of intragranular ferrite and bainite below 100 ppm oxygen but allotriomorph ferrite nucleated and grown at prior austenite grain boundary was also observed as well as intragranular ferrite at above 100 ppm oxygen.

The variation in the fraction of intragranular ferrite with increasing oxygen concentration is shown in Fig. 12. The prior austenite grain size was almost constant at 150\,\mu m. Although the number and the volume fraction of inclusions increased (Fig. 6), the fraction of intragranular ferrite decreased abruptly at an oxygen concentration of approximately 80 ppm. Previous reports\textsuperscript{11,21) shows that the increase in the volume fraction of inclusions promotes the increase in the intragranular ferrite phase because of the increased number of ferrite nucleation sites. The decrease in the fraction of intragranular ferrite appears to be attributed to the formation of allotriomorph ferrite, which nucleated at the prior austenite grain boundary.

To exclude the influence of allotriomorph ferrite on the intragranular ferrite fraction, one sample (specimen 6) was austenitized at 1623 K (Fig. 13). The prior austenite grain size was above 300\,\mu m and the fraction of intragranular ferrite increased up to 0.7. It is assumed that the fraction of intragranular ferrite decreased at oxygen concentrations greater than above 100 ppm because allotriomorph ferrite formation at prior austenite grain boundary prevented the nucleation of intragranular ferrite at the surface of the inclusions.

Fig. 11 Effect of oxygen concentration on the microstructure. (a) specimen 1, (b) specimen 4, (c) specimen 5, (d) specimen 6.

Many studies\textsuperscript{9,22) reported that increasing oxygen concentration promoted ferrite formation at the prior austenite grain boundary. In particular, when the prior austenite grain size was not large enough like in the present study, ferrite formation at the prior austenite grain boundary may seriously affect the fraction of intragranular ferrite.
4. Conclusions

The effect of the titanium and oxygen concentration in low carbon steels on the characteristics of the inclusions and microstructures were investigated. With increasing titanium concentration, the number of inclusions increased but the volume fraction and microstructures were unchanged. With increasing oxygen concentration, the number and volume fraction of inclusions increased. However, the fraction of intragranular ferrite decreased at oxygen concentration above 80 ppm because allotriomorph ferrite formed at the prior austenite grain boundary.

REFERENCES