Bulk Glass Formation of Ti–Zr–Hf–Cu–M (M=Fe, Co, Ni) Alloys

Liqun Ma1, Limin Wang2, Tao Zhang1 and Akihisa Inoue1

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Inoue Superliquid glass Project, ERATO, JST, Sendai 982-0807, Japan

The glass-forming ability of Ti–Zr–Hf–Cu–M (M=Fe, Co, Ni) alloys was examined by melt-spinning and copper mold casting methods. New Ti20Zr20Hf20Cu20Ni20 bulk glassy rod of 1.5 mm in diameter was formed by copper mold casting. The Tg and Tm of the glassy rod were 711 K and 658 K and Tm/Tg was 0.57. The bulk glassy alloy can be characterized by equal concentration of constituent elements without distinct host component. It is confirmed that more multicomponent glassy systems have a better glass-forming ability as compared with simpler alloy systems. The glassy alloy rod also exhibits good mechanical properties which are similar to those for ordinary glassy alloys. The finding of this alloy system may provide a new synthesis method of bulk glassy alloys.

(Received December 3, 2001; Accepted December 27, 2001)

Keywords: bulk glassy alloy, glass-forming ability, copper mold casting, mechanical properties

1. Introduction

Since the first success of a bulk glassy alloy in La–Al–Ni system in 1989,1 much attention has been paid to the development of alloy systems with high glass-forming ability (GFA), with which a glassy state can be prepared with relatively lower cooling rates. The high glass-forming ability enables us to prepare bulk glassy alloys by copper mold casting or quenching the melt in a quartz tube into stirred water. As a result, a number of bulk glassy alloys have been successfully prepared in multicomponent systems such as Mg–1, Zr–2, Ti–3, Fe–4, Pd–5, Ni–6, Co–7 and Cu–8 based alloys. Summarizing the features of the above-mentioned multicomponent systems, the following three empirical rules have been proposed:10 i.e., (1) multi-component systems consisting of more than three kinds of elements, (2) significant difference in atomic size ratios above 12% among the main constituent elements, and (3) suitable negative heats of mixing among their main elements. The thermal stability of a glassy alloy is usually examined by differential scanning calorimetry (DSC). The DSC curves of the bulk glassy alloys are featured by the glass transition before crystallization. It has been found that the values of ΔTr (ΔTr = Tg – Tc) and Tg/Tm are related to the glass-forming ability, where Tg, Tr and Tm represent the glass transition, crystallization onset and melting temperatures, respectively. There is a tendency for glass-forming ability to increase with increasing ΔTr and Tg/Tm.11

For higher-order multicomponent glassy systems, it seems more difficult for the concentrations of all elements to simultaneously satisfy the composition requirements of crystalline phase than for lower-order systems. The crystallization process of the multicomponent supercooled liquid tends to become sluggish. Therefore, multicomponent alloy systems are expected to exhibit better GFA than that for the simple alloy systems. This is the well-known argument called “con- fusion principle”.12 This argument has also been quantified as:

$$\Delta T_{r} = \frac{T_{g}}{T_{m}} = \frac{n}{\sum n_{i} \Delta T_{i}}$$

where Tg and Tm represent the glass transition and melting temperatures, respectively. There is a tendency for glass-forming ability to increase with increasing ΔTr and Tg/Tm.11

For higher-order multicomponent glassy systems, it seems more difficult for the concentrations of all elements to simultaneously satisfy the composition requirements of crystalline phase than for lower-order systems. The crystallization process of the multicomponent supercooled liquid tends to become sluggish. Therefore, multicomponent alloy systems are expected to exhibit better GFA than that for the simple alloy systems. This is the well-known argument called “con- fusion principle”.12 This argument has also been quantified as:

$$\Delta T_{r} = \frac{T_{g}}{T_{m}} = \frac{n}{\sum n_{i} \Delta T_{i}}$$

where Tg and Tm represent the glass transition and melting temperatures, respectively. There is a tendency for glass-forming ability to increase with increasing ΔTr and Tg/Tm.11

2. Experimental Procedure

Ti–Zr–Hf–Cu–M (M=Fe, Co, Ni) alloys were prepared by arc melting the mixtures of pure metals in an argon atmosphere. Ribbon samples with a cross section of 0.02 × 1.0 mm2 were prepared by melt-spinning. Bulk alloys in a rod form with diameters of 1, 1.5 and 2 mm were prepared by copper mold casting. Glassy structure of the bulk alloy rods was identified by X-ray diffraction and optical microscopy. Thermal stability associated with Tg and Tm was examined by differential scanning calorimetry (DSC) at a heating rate of 0.67 K/s. Tm was determined by differential thermal analysis (DTA) at a heating rate of 0.17 K/s. Compressive fracture strength was measured with an Instron-type testing machine at a strain rate of 8.3 × 10−4 s−1 at room temperature. The gauge dimension was 1.5 mm in diameter and 3 mm in height. Fracture surface was examined by scanning electron microscopy (SEM). Hardness was measured with a Vickers hardness indenter under a load of 0.245 N.

3. Results and Discussion

Figure 1 shows the XRD patterns of the melt-spun Ti20Zr20Hf20Cu20M20 (M=Fe, Co, Ni) ribbons. Only broad peaks are seen, indicating that all the ribbons are in a sin-
Fig. 1 XRD patterns of melt-spun Ti_{20}Zr_{20}Hf_{20}Cu_{20}M_{20} (M = Fe, Co, Ni) ribbons.

Fig. 2 DSC curves of melt-spun Ti_{20}Zr_{20}Hf_{20}Cu_{20}M_{20} (M = Fe, Co, Ni) ribbons. It is noticed that a glass transition marked with T_g, followed by a supercooled liquid region, is observed in the temperature range before crystallization for the Ti_{20}Zr_{20}Hf_{20}Cu_{20}Ni_{20} alloy. There is no appreciable glass transition for both the Ti_{20}Zr_{20}Hf_{20}Cu_{20}Co_{20} and the Ti_{20}Zr_{20}Hf_{20}Cu_{20}Fe_{20} alloys. The DTA curves indicating the melting points (T_m) of the three melt-spun alloys are shown in Fig. 3. From Figs. 2 and 3, T_g, T_x, ΔT_x, T_m, and T_g/T_m are 658 K, 711 K, 53 K, 1149 K and 0.57 for the Ti_{20}Zr_{20}Hf_{20}Cu_{20}Ni_{20} amorphous alloy. This alloy is concluded to have a higher glass-forming ability than the other two alloys. We have tried to prepare bulk glassy samples of the Ni-containing alloy by the casting process. Figure 4 shows the outer surface appearance of the cast Ti_{20}Zr_{20}Hf_{20}Cu_{20}Ni_{20} samples of 1, 1.5 and 2 mm in diameter. Figure 5 shows the XRD patterns of these cast samples. It is clear that a glassy single phase is formed in the samples of 1 and 1.5 mm in diameter, while crystalline phases are formed for the 2 mm rod. We have also confirmed the absence of a microscale crystalline phase in the optical micrographs taken from the transverse cross section of the 1 mm and 1.5 mm rod samples. Figure 6 shows the DSC curves of the bulk rod samples. It is seen that there is no significant difference in T_g and T_x between the 1 mm and 1.5 mm bulk samples. The thermal properties are also similar to those for the amorphous ribbon.

Fig. 7 shows the compressive stress-elongation curve of the Ti_{20}Zr_{20}Hf_{20}Cu_{20}Ni_{20} bulk glassy alloy with a diameter of 1.5 mm. The glassy alloy exhibits elastic elongation of about 1.7%, followed by plastic elongation of about 0.3% and then final fracture. The compressive fracture strength (σ_f)
Bulk Glass Formation of Ti–Zr–Hf–Cu–M (M=Fe, Co, Ni) Alloys

Fig. 5 XRD patterns of cast Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$Ni$_{20}$ rod samples.

Fig. 6 DSC curves of cast Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$Ni$_{20}$ rod samples.

is 1920 MPa and the Young’s modulus (E) is 104 GPa. The fracture surface consisted of a developed vein pattern. The fracture occurred along the maximum shear plane which was declined by about 54 degrees to the direction of applied load. Vickers hardness of the bulk glassy alloy was 495. The resulting ratios of σ_f/σ and $(9.8 \text{ Hv})/3E$ are 0.0185 and 0.0156, respectively, in agreement with the previous data of ordinary glassy alloys.

The reason why the Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$Ni$_{20}$ alloy has higher glass-forming ability as compared with the Fe– or Co–containing alloys may be explained by using the above-described three empirical rules. The present alloy system has equal concentration of constituent elements and does not include any main host component. All the heats of mixing in this system are listed in Table 1. All elements of Fe, Co and Ni have negative heats of mixing against Ti, Zr and Hf and their absolute values for Ni with Ti, Zr and Hf are larger than those for Fe or Co with Ti, Zr and Hf. On the other hand, the heats of mixing between M and Cu are positive and their values are smaller for Ni–Cu pair than for Co–Cu and Fe–Cu pairs. Table 2 has summarized the atomic size ratios among the elements in the present system. The atomic size ratios among Ti, Zr and Hf are less than 10%. The atomic size ratios for Fe, Co and Ni with Ti, Zr or Hf are larger than 12%. The atomic size ratios for Fe, Co and Ni with Cu are much smaller than 12%. Therefore, the larger negative heats of mixing for Ni with Ti, Zr and Hf should be the main reason for the formation of the bulk glassy Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$Ni$_{20}$ alloy. The atomic size ratios in the present system seems to be the secondary factor for the formation of the bulk glassy alloy.

Here, it is interesting to describe that the bulk glassy state has been obtained in the Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$Ni$_{20}$ alloy without Al. It has been pointed out from structure analyses that Al element plays an important role in the glass-forming ability of the Zr–Al–TM (TM=transition metals) al-

Table 1 Heats of mixing (KJ/mol) among the elements in the Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$M$_{20}$ (M=Fe, Co, Ni) system.

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Zr</th>
<th>Hf</th>
<th>Cu</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0</td>
<td>0</td>
<td>−9</td>
<td>−17</td>
<td>−28</td>
<td>−35</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>0</td>
<td>0</td>
<td>−23</td>
<td>−25</td>
<td>−41</td>
<td>−49</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>0</td>
<td>0</td>
<td>−17</td>
<td>−24</td>
<td>−35</td>
<td>−42</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>−9</td>
<td>−23</td>
<td>−17</td>
<td>13</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>−17</td>
<td>−25</td>
<td>−24</td>
<td>13</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>−28</td>
<td>−41</td>
<td>−35</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>−35</td>
<td>−49</td>
<td>−42</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Atomic size ratios (%) among the elements in the Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$M$_{20}$ (M=Fe, Co, Ni) system.

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Zr</th>
<th>Hf</th>
<th>Cu</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>10</td>
<td>9</td>
<td>15</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>10</td>
<td>1</td>
<td>27</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>9</td>
<td>1</td>
<td>25</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>15</td>
<td>27</td>
<td>25</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>19</td>
<td>31</td>
<td>29</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>18</td>
<td>30</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>18</td>
<td>30</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

loys. The long-range rearrangement of Al atoms around Zr atoms is necessary in the crystallization process of the glassy Zr–Al–TM alloys. No bulk glassy phase has been obtained for the Zr$_{60}$Cu$_{20}$Ni$_{20}$ alloy. However, the use of Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$Ni$_{20}$ alloy can produce a bulk glassy rod with a diameter of 1.5 mm in the absence of Al addition. It is again confirmed from this result that more multicomponent glassy systems can exhibit higher glass-forming ability as compared with simple alloy systems. The relatively high glass-forming ability of the present Ti–Zr–Hf–Cu–Ni alloy may be attributed to the formation of a new kind of supercooled liquid with a high degree of dense random packing density, new short-range atomic configurations and long-range atomic interactions which agree with the features of the other ordinary bulk glassy alloys.

4. Summary

We have searched for a new bulk glassy alloy in which each concentration of constituent elements is not over 20 at%. The use of Ti$_{20}$Zr$_{20}$Hf$_{20}$Cu$_{20}$Ni$_{20}$ alloy produced a bulk glassy alloy rod with a diameter of 1.5 mm. The difference between T_x and T_g was 53 K and T_g/T_m was 0.57. The compressive fracture strength was 1920 MPa and Vickers hardness was 495. The present glassy system without distinct host component may provide a new alloy design method of bulk glassy alloys.

Acknowledgments

One of the authors (Liqun Ma) gratefully acknowledges the Japanese Society for the Promotion of Science (JSPS) for providing financial support to carry out the present work.

REFERENCES