Materials Transactions Online

Materials Transactions, Vol.62 No.02 (2021) pp.229-238
© 2021 The Japan Institute of Metals and Materials

Improvement of Mechanical Properties by Microstructural Evolution of Biomedical Co-Cr-W-Ni Alloys with the Addition of Mn and Si

Kosuke Ueki1, Soh Yanagihara2, Kyosuke Ueda2, Masaaki Nakai1, Takayoshi Nakano3 and Takayuki Narushima2, 4

1Department of Mechanical Engineering, Faculty of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
2Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
3Division of Materials Science and Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
4Research Center for Structural Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan

We investigated changes in the microstructure and mechanical properties of biomedical Co-20Cr-15W-10Ni alloys (mass%) containing 8 mass% Mn and 0-3 mass% Si due to hot forging, solution treatment, cold swaging, and static recrystallization. The η-phase (M6X-M12X type cubic structure, M: metallic elements, X: C and/or N, space group: Fd-3m (227)) and CoWSi type Laves phase (C14 MgZn2 type hexagonal structure, space group: P63/mmc (194)) were confirmed as precipitates in the as-cast and as-forged alloys. To the best of our knowledge, this is the first report that reveals the formation of CoWSi type Laves phase precipitates in Co-Cr-W-Ni-based alloys. The addition of Si promoted the formation of precipitates of both η-phase and CoWSi type Laves phase. The solution-treated 8Mn+(0, 1)Si-added alloys exhibited TWIP-like plastic deformation behavior with an increasing work-hardening rate during the early to middle stages of plastic deformation. This plastic deformation behavior is effective in achieving both the low yield stress and high strength required to develop a high-performance balloon-expandable stent. The 8Mn+2Si-added alloy retained the CoWSi type Laves phase even after solution treatment, such that the ductility decreased but the strength improved. Additions of Mn and Si are effective in improving the ductility and strength of the Co-Cr-W-Ni alloy, respectively.

[doi:10.2320/matertrans.MT-M2020300]

(Received 2020/09/08; Accepted 2020/11/30; Published 2021/01/25)

Keywords: cobalt-chromium-tungsten-nickel alloy, manganese addition, silicon addition, mechanical properties, precipitates, plastic deformation behavior

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Favre J., Koizumi Y., Chiba A., Fabregue D. and Maire E.: Metall. Mater. Trans. A 44 (2013) 2819-2830.
  2. P. Poncin and J. Proft: Proc. Materials and Processes for Medical Devices Conference, (ASM International, 2004) pp. 253-259.
  3. Morral F.R.: J. Mater. 1 (1966) 384-412.
  4. Marrey R.V., Butgermeister R., Grishaber R.B. and Ritchie R.O.: Biomaterials 27 (2006) 1988-2000.
  5. Ueki K., Yanagihara S., Ueda K., Nakai M., Nakano T. and Narushima T.: Mater. Sci. Eng. A 766 (2019) 138400.
  6. Pierce D.T., Bentley J., Jiménez J.A. and Wittig J.E.: Scr. Mater. 66 (2012) 753-756.
  7. Rémy L. and Pineau A.: Mater. Sci. Eng. 26 (1976) 123-132.
  8. Narushima T., Mineta S., Kurihara Y. and Ueda K.: JOM 65 (2013) 489-504.
  9. Ueki K., Ueda K. and Narushima T.: Metall. Mater. Trans. A 47 (2016) 2773-2782.
  10. Ueki K., Ueda K., Nakai M., Nakano T. and Narushima T.: Metall. Mater. Trans. A 49 (2018) 2393-2404.
  11. Ueki K., Abe M., Ueda K., Nakai M., Nakano T. and Narushima T.: Mater. Sci. Eng. A 739 (2019) 53-61.
  12. Mineta S., Alfirano , Namba S., Yoneda T., Ueda K. and Narushima T.: Metall. Mater. Trans. A 43 (2012) 3351-3358.
  13. Mineta S., Namba S., Yoneda T., Ueda T. and Narushima T.: Metall. Mater. Trans. A 41 (2010) 2129-2138.
  14. Alfirano , Mineta S., Namba S., Yoneda T., Ueda K. and Narushima T.: Metall. Mater. Trans. A 42 (2011) 1941-1949.
  15. Achmad T.L., Fu W., Chen H., Zhang C. and Yang Z.G.: Comput. Mater. Sci. 121 (2016) 86-96.
  16. Li M.X., He Y.Z. and Sun G.X.: Mater. Des. 25 (2004) 355-358.
  17. Yamanaka K., Mori M., Kuramoto K. and Chiba A.: Mater. Des. 55 (2014) 987-998.
  18. Mehrizi M.Z. and Beygi R.: J. Adv. Mater. Process. 5 (2017) 23-32.
  19. Yamamoto K., Kimura Y. and Mishima Y.: Mater. Trans. 45 (2004) 2598-2601.
  20. Young K., Ouchi T. and Fetcenko M.A.: J. Alloy. Compd. 476 (2009) 774-781.
  21. Gupta K.P.: J. Phase Equilibria Diffus. 27 (2006) 517-522.
  22. Gupta K.P.: J. Phase Equilibria Diffus. 27 (2006) 529-534.
  23. Hu B., Xu H., Liu S., Du Y., He C., Sha C., Zhao D. and Peng Y.: Calphad 35 (2011) 346-354.
  24. Clementi E., Raimondi D.L. and Reinhardt W.P.: J. Chem. Phys. 38 (1963) 2686-2689.
  25. Sun Z., Edmondson P.D. and Yamamoto Y.: Acta Mater. 144 (2018) 716-727.
  26. Achmad T.L., Fu W., Chen H., Zhang C. and Yang Y.G.: J. Alloy. Compd. 694 (2017) 1265-1279.
  27. Pierce D.T., Jiménez J.A., Bentley J., Raabe D., Oskay C. and Wittig J.E.: Acta Mater. 68 (2014) 238-253.
  28. Pierce D.T., Jiménez J.A., Bentley J., Raabe D. and Wittig J.E.: Acta Mater. 100 (2015) 178-190.
  29. Ding H., Tang Z.Y., Li W., Wang M. and Song D.: J. Iron Steel Res. Int. 13 (2006) 66-70.
  30. Urrutia I.G., Zaefferer S. and Raabe D.: Mater. Sci. Eng. A 527 (2010) 3552-3560.


[JIM HOME] [JOURNAL ARCHIVES]

© 2021 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp