Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.2030-2039
© 2020 The Japan Institute of Metals and Materials

Selective Extraction of Chromium from EAF Stainless Steel Slag by Pressurized Oxidation in a NaOH Solution

Qing-Zhong Zhao1, Ya-Nan Zeng1, Jun-Guo Li1 and Ya-Jun Wang1, 2

1School of Metallurgy and Energy, North China University of Science and Technology, 063009 Tangshan, P. R. China
2School of Materials and Metallurgy, Northeastern University, 110819 Shenyang, P. R. China

Chromium was selectively extracted from electric arc furnace (EAF) slag by pressurized oxidation in a NaOH solution. The effect of the temperature (T), NaOH concentration, oxygen pressure and reaction time on the extraction ratio of the chromium was investigated. It was found that the chromium extraction rate was significantly impacted by the temperature. At the optimum conditions of T = 170°C, NaOH concentration of 40 wt.%, oxygen pressure of 1.6 MPa and reaction time of 4 h, a maximum chromium extraction rate of 60.04% was obtained. It was observed by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS) that the residual particles were enclosed by a “secondary precipitation layer” mainly composed of Fe and O, which prevented further extraction of the chromium from the core residues. The leaching process of chromium was controlled by the diffusion of the solid phase product layer, and the activation energy of the extraction reaction was 56.67 kJ/mol.


(Received 2020/02/10; Accepted 2020/06/29; Published 2020/09/25)

Keywords: EAF slag, chromium extraction ratio, microstructure, kinetics

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Zhang H.W. and Hong X.: Resour. Conserv. Recycling 55 (2011) 745-754.
  2. Zeng Q., Li J., Mou Q.Q., Zhu H.Y. and Xue Z.L.: JOM 71 (2019) 2331-2337.
  3. Yildirim I.Z. and Prezzi M.: Adv. Civ. Eng. 2011 (2011) 1-13.
  4. Sheen Y.N., Wang H.Y. and Sun T.H.: Constr. Build. Mater. 40 (2013) 239-245.
  5. Giama E. and Papadopoulos A.M.: J. Clean. Prod. 99 (2015) 75-85.
  6. Galán-Arboledas R.J., Álvarez de Diego J., Dondi M. and Bueno S.: J. Clean. Prod. 142 (2017) 1778-1788.
  7. Shen H.T. and Forssberg E.: Waste Manag. 23 (2003) 933-949.
  8. Almeida M.I., Dias A.C., Demertzi M. and Arroja L.: J. Clean. Prod. 92 (2015) 206-215.
  9. Johnson T., Schewel L. and Graedel T.E.: Environ. Sci. Technol. 40 (2006) 7060-7069.
  10. Guo Q., Qu J.K., Han B.B., Wei G.Y., Zhang P.Y. and Qi T.: Trans. Nonferrous Met. Soc. China 24 (2014) 3979-3986.
  11. Wang Z.H., Zheng S.L., Wang S.N., Qin Y.L., Du H. and Zhang Y.: Hydrometallurgy 151 (2015) 51-55.
  12. Kim E., Spooren J., Broos K., Horckmans L. and Vrancken K.C.: Chem. Eng. J. 295 (2016) 542-551.
  13. Chen G., Wang J.J., Wang X.H., Zheng S.L., Du H. and Zhang Y.: Hydrometallurgy 139 (2013) 46-53.
  14. Liu L.J., Du H., Zhang Y., Zheng S.L. and Zhang Y.: T. Nonferr. Metal. Soc. 27 (2017) 891-900.
  15. Zhang H., Xu H.B., Zhang X.F., Zhang Y. and Zhang Y.: Hydrometallurgy 142 (2014) 47-55.
  16. Sun Z., Zhang Y., Zheng S.L. and Zhang Y.: AIChE J. 55 (2009) 2646-2656.
  17. Kim E., Spooren J., Broos K., Horckmans L. and Vrancken K.C.: Hydrometallurgy 158 (2015) 139-148.
  18. Kim E., Spooren J., Broos K., Horckmans L. and Vrancken K.C.: J. Clean. Prod. 117 (2016) 221-228.
  19. Wang Z.M., Li J.G., Liu B., Zeng Y.N. and Gao Z.Y.: Metall. Anal. 37 (2017) 15-20.
  20. Balasubramanian S. and Pugalenthi V.: Talanta 50 (1999) 457-467.
  21. Fan Y.Y., Yang K., Hu J., Liu X. and Zhang Z.G.: Environ. Sci. Manage. 37 (2012) 160-162.
  22. Adegoloye G., Beaucour A.L., Ortola S. and Noumowé A.: Constr. Build. Mater. 76 (2015) 313-321.
  23. Zhang X.Y., Zhang H., He P.J., Shao L.M., Wang R.Y. and Chen R.H.: Res. Environ. Sci. 21 (2008) 33-37.
  24. Shi H.Z., Wang R.Y., Chen R.H. and Lei S.: J. Build Mater. 13 (2010) 802-806.
  25. Adegoloye G., Beaucour A.L., Ortola S. and Noumowe A.: Constr. Build. Mater. 115 (2016) 171-178.
  26. Shen H.T., Forssberg E. and Nordstrom U.: Resour. Conserv. Recycling 40 (2004) 245-271.
  27. Wang H., Yan B.J. and Li F.: ISIJ Int. 55 (2015) 1425-1431.
  28. Gordus A.A.: J. Chem. Educ. 68 (1991) 927-930.
  29. Hanhoun M., Montastruc L., Azzaro-Pantel C., Béatrice B., Michèle F. and Pibouleau L.: Chem. Eng. J. 167 (2011) 50-58.
  30. Beaulieu L.Y., Logan E.R., Gering K.L. and Dahn J.R.: Rev. Sci. Instrum. (2017) 095101.
  31. Pitzer K.S.: J. Phys. Chem. 77 (1973) 268-277.
  32. Physical Property Data Manual of Chemical Industry (Inorganic volume), (Chemical Industry Press, Beijing, 2002) pp. 293-294. (In Chinese)
  33. Rutgers I.R.: Rheol. Acta 2 (1962) 305-348.
  34. Handbook of Physicochemical Constants in Chlorine Alkali Industry, (Chemical Industry Press, Beijing, 1988). (In Chinese)
  35. Tromans D.: Hydrometallurgy 50 (1988A) 279-296.
  36. Tromans D.: Hydrometallurgy 48 (1988B) 327-342.
  37. Zhang Y., Sun Z., Zheng S.L. and Zhang Y.: Chem. Ind. & Eng. Pro. 27 (2008) 1042-1047.
  38. Tathavadkar V.D., Antony M.P. and Jha A.: Metall. Mater. Trans. B 32 (2001) 593-602.
  39. Zhang Y., Zheng S.L., Xu H.B., Du H. and Zhang Y.: Int. J. Miner. Process. 95 (2010) 10-17.
  40. Guo Q., Qu J.K., Qi T., Wei G.Y. and Han B.B.: Int. J. Miner. Metall. Mater. 19 (2012) 100-105.
  41. Liu B., Du H., Wang S.N., Zhang Y. and Zheng S.L.: AIChE J. 59 (2012) 541-552.


© 2020 The Japan Institute of Metals and Materials
Comments to us :