Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.2025-2029
© 2020 The Japan Institute of Metals and Materials

The Critical Point of Average Grain Size in Phonon Thermal Conductivity of Fine-Grained Undoped Lead Telluride

Mongkol Bumrungpon1, Issei Morioka1, Ryusuke Yasufuku1, Toshiharu Hirai1, Kenichi Hanasaku1, Kenji Hirota1, Katsuhiro Takagi1 and Kazuhiro Hasezaki2

1Graduate School of Advanced Technology and Sciences, Tokushima University, Tokushima 770-8506, Japan
2Department of Mechanical Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan

Undoped PbTe was melted at 1123 K, ball milled (BM) at rotation speeds from 90 to 180 rpm and hot pressed (HP) at 147 MPa and 650 K. Milling at 120 rpm produced the minimum phonon thermal conductivity of 1.29 W m−1 K−1 and average grain size of 0.80 µm. Phonon thermal conductivity was constant from coarse grain size to fine grain size of 1 µm and decreased suddenly at 0.80 µm. This tendency of phonon thermal conductivity corresponded to theoretical calculations with grain boundary scattering. However, the observed critical point of 1 µm was much larger than the calculated value of 0.03 µm. There was a significant inverse relationship between phonon thermal conductivity and FWHM of X-ray diffraction peaks. The low phonon thermal conductivity was associated with not only grain boundary scattering but high internal strain.


(Received 2020/02/25; Accepted 2020/07/28; Published 2020/09/25)

Keywords: eco-materials, thermoelectric materials, powder metallurgy, lead telluride, microstructure

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. M.G. Kanatzidis, T. Hogan and S. Mahanti: Chemistry, Physics, and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride, (Springer Science & Business Media, New York, 2012) p. 35.
  2. D.M. Rowe: Thermoelectrics Handbook: Macro to Nano, (CRC press, Taylor & Francis Group, Boca Raton, Florida, 2006) Ch. 1.
  3. G.J. Snyder and E.S. Toberer: Materials For Sustainable Energy, (A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, UK, 2011) pp. 101-110.
  4. H.J. Goldsmid: Introduction to Thermoelectricity, (Springer, Heidelberg Dordrecht, London, 2016) pp. 1-7.
  5. Vining C.B.: Nat. Mater. 8 (2009) 83-85.
  6. Shinohara Y.: Materials Today: Proceedings 4 (2017) 12333-12342.
  7. Wood C.: Rep. Prog. Phys. 51 (1988) 459.
  8. Champier D.: Energy Convers. Manage. 140 (2017) 167-181.
  9. T.M. Tritt: Thermal Conductivity: Theory, Properties, and Applications, (Kluwer Academic/Plenum Publisher, New York, 2004) pp. 1-17.
  10. Biswas K., He J., Blum I.D., Wu C.I., Hogan T.P., Seidman D.N., Dravid V.P. and Kanatzidis M.G.: Nature 489 (2012) 414-418.
  11. LaLonde A.D., Pei Y. and Snyder G.J.: Energy Environ. Sci. 4 (2011) 2090-2096.
  12. Pei Y., LaLonde A., Iwanaga S. and Snyder G.J.: Energy Environ. Sci. 4 (2011) 2085-2089.
  13. C. Long, X. Hou, Y. Gelbstein, J. Zhang, B. Ren and Z. Wang: 25th Int. Conf. on Thermoelectrics, Vienna, (2006) pp. 382-385.
  14. Chen G., Dresselhaus M.S., Dresselhaus G., Fleurial J.P. and Caillat T.: Int. Mater. Rev. 48 (2003) 45-66.
  15. Takagiwa Y., Pei Y., Pomrehn G. and Snyder G.J.: Appl. Phys. Lett. 101 (2012) 092102-092103.
  16. Takagiwa Y., Pei Y., Pomrehn G. and Jeffrey Snyder G.: APL Mater. 1 (2013) 011101-011105.
  17. D.R. Lide: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, (CRC press, Taylor & Francis Group, Boca Raton, Florida, 1995) pp. 4-65.
  18. Rogacheva E., Krivulkin I., Popov V. and Lobkovskaya T.: Phys. Status Solidi A 148 (1995) K65-K67.
  19. Jacquot A., Lenoir B., Boffoue M. and Dauscher A.: Appl. Phys., A Mater. Sci. Process. 69 (1999) S613-S615.
  20. J. Yoshino: Theory and Application, ed. by M. Sakata, (Shokabo, Tokyo, 2005) pp. 44-51.
  21. J. Yoshino: Functionally Graded Materials 1996, (Elsevier, Amsterdam, 1997) pp. 495-500.
  22. Vining C.B., Laskow W., Hanson J.O., Van der Beck R.R. and Gorsuch P.D.: J. Appl. Phys. 69 (1991) 4333-4340.
  23. Bouad N., Record M.C., Tedenac J.C. and Marin-Ayral R.M.: J. Solid State Chem. 177 (2004) 221-226.
  24. Hanus R., Agne M.T., Rettie A.J., Chen Z., Tan G., Chung D.Y., Kanatzidis M.G., Pei Y., Voorhees P.W. and Snyder G.J.: Adv. Mater. 31 (2019) 1900108.
  25. Kitamura M., Hirota K. and Hasezaki K.: Mater. Trans. 59 (2018) 1225-1232.
  26. Bouad N., Marin-Ayral R. and Tedenac J.: J. Alloy. Compd. 297 (2000) 312-318.
  27. Bouad N., Marin-Ayral R.M., Nabias G. and Tédenac J.C.: J. Alloy. Compd. 353 (2003) 184-188.
  28. Wurst J.C. and Nelson J.A.: J. Am. Ceram. Soc. 55 (1972) 109.


© 2020 The Japan Institute of Metals and Materials
Comments to us :