Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.2008-2016
© 2020 The Japan Institute of Metals and Materials

Effects of Eccentric Mold Electromagnetic Stirring on Continuous Casting Large Steel Round Blooms

Liang Niu1, 2, Junxue Zhao1 and Shengtao Qiu2

1School of Metallurgical Engineering, Xi an University of Architecture and Technology, Xi an 710055, Shaanxi China
2National Engineering & Research Center of Continuous Casting Technology, Beijing 100081, China

In this paper, a coupled 3D mathematical model is established to study the electromagnetic, flow and temperature fields of round blooms with different degrees of eccentric mold electromagnetic stirring (M-EMS). The results show that under the action of severely eccentric M-EMS, the magnetic flux density and time-averaged electromagnetic force near the external arc side of a Φ380 mm round bloom are greater than those near the inner arc side; the inertial impingement jet from the nozzle is deflected toward the external arc sides, and the temperature of molten steel on the external arc side is higher. As the degree of M-EMS eccentricity decreases, the differences in the electromagnetic, flow and temperature fields between the inner and external arc sides of the round blooms gradually decrease. The molten steel temperature on the inner arc side increases significantly after moving the nozzle position to the inner arc side of the Φ380 mm round bloom, so this method is not suitable to eliminate the effects of M-EMS eccentricity on Φ380 mm round blooms.


(Received 2020/01/06; Accepted 2020/06/29; Published 2020/09/25)

Keywords: round bloom, mold electromagnetic stirring, eccentric stirring, nozzle position

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Sun H. and Zhang J.: Metall. Mater. Trans. B 45 (2014) 1133-1149.
  2. Cai L., Wang X. and Wang N.: Mater. Trans. B 51 (2020) 236-246.
  3. Li M.J., Murakami Y., Matsui I., Omura N. and Tada S.J.: Mater. Trans. 59 (2018) 1603-1609.
  4. Zhai Y., Pan K. and Wu D.: Metals 9 (2019) 993-1005.
  5. Schurmann D., Willers B. and Hackl G.: Mater. Trans. B 50 (2019) 716-731.
  6. Wu H., Wei N. and Bao Y.: Int. J. Miner. Metall. Mater. 18 (2011) 159-164.
  7. Shakhov S.I. and Vdovin K.N.: Steel Transl. 49 (2019) 261-264.
  8. Jiang D. and Zhu M.: Mater. Trans. B. 47 (2016) 3446-3458.
  9. Zhang Z.H., Jun J.L. and Liu W.P.: Steelmaking 29 (2013) 19-22.
  10. Su W., Zhu M.Y. and Zhang Z.Q.: Continue Casting 3 (2009) 42-47.
  11. Ren B.Z., Chen D.F., Wang H.D. and Wang H.: Steel Res. Int. 86 (2015) 1104-1115.
  12. Shamsi M.R.R.I. and Ajmani S.K.: ISIJ Int. 47 (2007) 433-442.
  13. Aboutalebi M.R., Hasan M. and Guthrie R.I.L.: Mater. Trans. B 26 (1995) 731-744.
  14. Ha M.Y., Lee H.G. and Seong S.H.: J. Mater. Process. Technol. 133 (2003) 322-339.
  15. Hietanen P.T., Louhenkilpi S. and Yu S.: Steel Res. Int. 88 (2017) 1600355.
  16. Yang H., Zhang X., Deng K., Li W., Gan Y. and Zhao L.: Mater. Trans. B 29 (1998) 1345-1356.
  17. Fang Q., Ni H.W. and Wang S.J.: Steelmaking 30 (2014) 57-61.
  18. Zhang W., Luo S., Chen Y., Wang W. and Zhu M.: Metals 9 (2019) 66-84.


© 2020 The Japan Institute of Metals and Materials
Comments to us :