Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1994-2001
© 2020 The Japan Institute of Metals and Materials

Laser Ultrasonic Technique to Non-Destructively Detect Cracks on a Ni-Based Self-Fluxing Alloy Fabricated Using Directed Energy Deposition (DED)

Harumichi Sato1, Hisato Ogiso1, Yorihiro Yamashita2 and Yoshinori Funada2

1National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
2Industrial Research Institute of Ishikawa, Kanazawa 920-8203, Japan

Miniaturization of bearing rollers used in autos and robots will require a manufacturing system that combines a deposition method that can fabricate thin jigs without defects and a non-destructive inspection method that can detect cracks on such jigs. Here, we are developing a system that uses directed energy deposition (DED), which is a 3D-printing (additive manufacturing, AM) process, to fabricate thin jigs, and then uses laser ultrasonics (LU) to inspect the jigs. Here, deposited layers having a 0.4 × 0.6 mm2 cross-section were fabricated using DED, and then non-destructively inspected using LU. However, using LU on such a small area has three problems: the effect of overlapping of the excitation and detection laser beams, difficulty in separating the multiple types of waves due to the simultaneous generation, and complexity of the acoustic field. Therefore, first, the acoustic field was examined using the finite element method (FEM), and then LU was used to inspect a small area of the deposited layer using complex discrete wavelet transform. Results show successfully detection of spontaneously occurring cracks, thus confirming the effectiveness of LU for non-destructive inspection of a thin jig.


(Received 2020/03/13; Accepted 2020/06/24; Published 2020/09/25)

Keywords: non-destructive inspection, surface acoustic wave, laser ultrasonics, additive manufacturing, direct energy deposition

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Nagai Y., Hatori Y. and Okane T.: Mater. Trans. 61 (2020) 729-733.
  2. Nagai Y., Takeshita K. and Okane T.: Mater. Trans. 61 (2020) 734-739.
  3. F2792-12a: Standard Terminology for Additive Manufacturing Technologies, (ASTM International, West Conshohocken, 2013).
  4. Koizumi Y., Chiba A., Nomura N. and Nakano T.: Materia Japan 56 (2017) 686-690 [In Japanese].
  5. “Large (dm-scale) geological specimens cannot be penetrated by low-energy X-rays, reducing resolving capability”
  6. H. Rieder, A. Dillhöfer, M. Spies, J. Bamberg and T. Hess: Proc. 11th European Conference on Non-Destructive Testing (ECNDT 2014).
  7. Rieder H., Dillhöfer A., Spies M., Bamberg J. and Hess T.: AIP Conf. Proc. 1650 (2015) 184-191.
  8. H. Rieder, M. Spies, J. Bamberg and B. Henkel: Proc. 19th World Conference on Non-Destructive Testing, (2016).
  9. M. Klein and J. Sears: Proc. 23th International Congress on Applications of Laser and Electro-Optics, (2004).
  10. Clark D., Shaples S.D. and Wright D.C.: Insight 53 (2011) 610-613.
  11. Cerniglia D., Scafidi M., Pantano A. and Rudlin J.: Ultrasonics 62 (2015) 292-298.
  12. Lévesque D., Bescond C., Lord M., Cao X., Wanjara P. and Monchalin J.-P.: AIP Conf. Proc. 1706 (2016) 130003.
  13. Smith R.J., Li W., Coulson J., Clark M., Somekh M.G. and Sharples S.D.: Meas. Sci. Technol. 25 (2014) 055902.
  14. Smith R.J., Hirsch M., Patel R., Li W., Clareb A.T. and Sharples S.D.: J. Mater. Process. Technol. 236 (2016) 93-102.
  15. Davis G., Nagarajah R., Palanisamy S., Rashid R.A.R., Rajagopal P. and Balasubramaniam K.: Int. J. Adv. Manuf. Technol. 102 (2019) 2571-2579.
  16. C.B. Scruby and L.E. Drain: Laser Ultrasonic, (Adam Hilger, Bristol, Philadelphia, New York, 1990) Chap. 5.
  17. H. Sato, H. Ogiso, N. Sato, T. Shimizu, S. Nakano, Y. Ohara and K. Yamanaka: Proc. Symposium on Ultrasonic Electronics, 37, (2016) 3E1-5.
  18. H. Sato, H. Ogiso, Y. Yamashita and Y. Funada: Proc. Symposium on Ultrasonic Electronics, 39, (2019) 3P2-1.
  19. J.L. Rose: Ultrasonic Waves in Solid Media, (Cambridge university press, Cambridge, 1999) Chap. 8.
  20. Sato H., Lebedev M. and Akedo J.: Jpn. J. Appl. Phys. 45 (2006) 4573-4576.
  21. Sato H., Lebedev M. and Akedo J.: Jpn. J. Appl. Phys. 46 (2007) 4521-4528 [Erratum 47 (2008) 403].
  22. M. Yagawa and S. Yoshimura: Yugenyosoho (Finite Element Method), (Baifukan, Tokyo, 1991) Chap. 7 [in Japanese].
  23. M. Yagawa and S. Yoshimura: Yugenyosoho (Finite Element Method), (Baifukan, Tokyo, 1991) p. 173 [in Japanese].
  24. Sato M.: J. Acoustical Society of Japan 47 (1991) 405-423 [in Japanese].
  25. Gabor D.: J. IEE (London) 93 (1946) 429-457.
  26. Zhang Z., Kawabata H. and Liu Z.Q.: Integr. Comput. Aided Eng. 8 (2001) 351-362.
  27. Z. Zhang, S. Horihata, T. Miyake and H. Toda: ICASSP, (2005) IV-533-IV-536.
  28. Zhang Z., Toda H., Horihata S. and Miyake T.: Integr. Comput. Aided Eng. 13 (2006) 149-161.
  29. H. Toda, Z. Zhang and H. Kawabata: Saishin Wavelet Jissenkoza, (Softbank creative, Tokyo, 2005) Chap. 7 [in Japanese].
  30. T. Watanabe, K. Aizu, T. Nakazawa, H. Cho and K. Yamanaka: IEICE Tech. Rep. US2001-21, (2001-2006) [in Japanese].
  31. Takatsubo J., Wang B., Tsuda H. and Toyama N.: J. Solid. Mech. Mater. Eng. 1 (2007) 1405-1411.
  32. J.L. Rose: Ultrasonic Waves in Solid Media, (Cambridge university press, Cambridge, 1999) p. 347.
  33. P. McNutt: PhD Thesis, University of Birmingham, UK, (2015) p. 49.


© 2020 The Japan Institute of Metals and Materials
Comments to us :