Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1958-1966
© 2020 The Japan Institute of Metals and Materials

Effect of Polyethylene Glycol and Glue on Electrodeposition Behavior of Zn from Electrowinning Solution and Its Crystal Structure

Keita Uchida1, Satoshi Oue2 and Hiroaki Nakano2

1Department of Materials Process Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
2Department of Materials Science & Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan

To elucidate the effects of polyethylene glycol (PEG) and glue on the deposition of Zn from electrowinning solution and its resulting crystal structure, Zn electrodeposition was performed at a current density of 600 A·m−2 and a charge of 8.64 × 106 C·m−2 in an agitated sulfate solution containing 1.07 and 1.8 mol·dm−3 of ZnSO4 and H2SO4, respectively, at 45°C. With the additions of PEG and glue, the evolution of hydrogen was suppressed at the current density region less than the critical current density for Zn deposition, decreasing the critical current density of Zn. The degree of decrease in the critical current density of Zn was larger with glue than that with PEG. The current efficiency for Zn deposition was higher with PEG and glue than that without at the low current density region because the critical current density of Zn decreased with additives. Since the additives suppressed Zn deposition more than the hydrogen evolution at the high current density region, the current efficiency of Zn decreased by increasing the additive concentration. At the high current density region, little difference was observed in the current efficiency of Zn between PEG and glue. The effect of the molecular weight of PEG on the current efficiency of Zn was rarely observed at the molecular weight above 2000. With the addition of PEG, the deposits became fine platelets with preferred orientation of $\{ 10\bar{1}1\} $ and layered pyramidally, while $\{ 11\bar{2}0\} $ orientation was obtained, and the platelets grew perpendicularly to the substrate with the addition of glue. The surface roughness of deposited Zn decreased with additives, and it decreased further with PEG compared with that with glue.

[doi:10.2320/matertrans.MT-M2020182]

(Received 2020/06/09; Accepted 2020/07/14; Published 2020/09/25)

Keywords: zinc, electrodeposition, electrowinning, polyethylene glycol, glue, crystal orientation, polarization curve, current efficiency, critical current density, surface roughness

PDF(open access)PDF (open access) Table of ContentsTable of Contents

REFERENCES

  1. C.L. Mantell: Electrochemical Engineering, (McGraw-Hill Book Company, Inc., New York, NY, 1960) pp. 142-167, 185-192, 210-224.
  2. A. Yazawa: Hitetsu Kinzoku Seiren, (Nippon Kinzoku Gakkai, Sendai, 1980) pp. 228, 241.
  3. K. Ohta: Denki Kagaku Binran, (Denki Kagaku Kyokai, Maruzen, Tokyo, 2013) pp. 451-452.
  4. Kerby R.C., Jackson H.E., O’Keefe T.J. and Wang Y.-M.: Metall. Trans. B 8 (1977) 661-668.
  5. Karavasteva M. and Karavivanov St.: J. Appl. Electrochem. 23 (1993) 763-765.
  6. X. Tang, P. Yu, T.J. O’Keefe and G. Houlachi: Proc. Symp. Aqueous Electrotechnologies Progress in Theory and Practice, (The Minerals, Metals and Materials Society, Warrendale, 1997) pp. 115-125.
  7. Nakano H., Oue S., Shimizu S., Kuboyama H., Fukushima H. and Hayashibe Y.: J. MMIJ 124 (2008) 583-588.
  8. Dobashi M., Yoshihara S., Shirakashi T. and Yokota T.: J. Surf. Finish. Soc. Jpn. 48 (1997) 330-336.
  9. Ohgai T., Fukushima H., Akiyama T. and Baba N.: Shigen-to-Sozai 115 (1999) 700-704.
  10. Nakano H., Oue S., Miki T., Kobayashi S. and Fukushima H.: ISIJ Int. 46 (2006) 106-110.
  11. Nakano H., Oue S., Miki T., Kobayashi S. and Fukushima H.: Tetsu-to-Hagané 92 (2006) 501-506.
  12. Willson K.S. and Rogers J.A.: Tech. Proc. Amer. Electroplaters Soc. 51 (1964) 92-95.
  13. Nakano H., Ohgai T., Fukushima H., Akiyama T. and Kammel R.: Metall 55 (2001) 676-681.
  14. Fukushima H., Akiyama T. and Ohgai T.: Shigen-to-Sozai 110 (1994) 967-972.
  15. Fukushima H., Akiyama T. and Kiyotani K.: Shigen-to-Sozai 109 (1993) 861-864.
  16. A.J. Bard: Chemical Equilium, translated by Y. Matsuda and K. Ogura, (Kagaku Dojin, Kyoto, 1993) pp. 101-111 (in Japanese).
  17. Kubo B., Oue S., Futaba T., Kobayashi A., Goto Y. and Nakano H.: ISIJ Int. 59 (2019) 144-151.
  18. Imatani Y., Oue S., Kobayashi A., Takahashi T., Goto Y. and Nakano H.: J. Japan Inst. Metal 83 (2019) 363-371.
  19. Imatani Y., Oue S., Kobayashi A., Takahashi T., Goto Y. and Nakano H.: Mater. Trans. 61 (2020) 142-149.
  20. Pangarov N.A.: J. Electroanal. Chem. 9 (1965) 70-85.
  21. Pangarov N.A.: Electrochim. Acta 9 (1964) 721-726.
  22. Kashida K., Oue S. and Nakano H.: Mater. Trans. 58 (2017) 1418-1426.
  23. Nakano H., Tsuji H., Oue S., Fukushima H., Yang F. and Tian W.: Mater. Trans. 52 (2011) 2077-2082.
  24. Nakano H. and Fukushima H.: Tetsu-to-Hagané 88 (2002) 236-242.
  25. Fuchi K., Oue S., Kikuchi Y., Akamatsu S., Kashiwa Y. and Nakano H.: Mater. Trans. 59 (2018) 1767-1776.
  26. Nakano H., Ura T., Oue S. and Kobayashi S.: ISIJ Int. 54 (2014) 1653-1660.


[JIM HOME] [JOURNAL ARCHIVES]

© 2020 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp