Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1949-1957
© 2020 The Japan Institute of Metals and Materials

Identical-Location Scanning Electron Microscopy Observation of Surface Morphological Changes of Pt-Cu Nanoparticles

Azusa Ooi1, Yuichi Shigihara2, Eiji Tada1 and Atsushi Nishikata1

1Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
2Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan

The surface morphological changes of electrodeposited Pt-75 at% Cu (Pt-75Cu) nanoparticles under potential cycling were investigated by identical-location scanning electron microscopy. The electrodeposited nanoparticles consisted of numerous nuclei (∼3 nm in diameter) that agglomerated to form larger secondary particles (30-50 nm). Upon immersion in sulfuric acid, Pt shells formed on the surfaces of the Pt-75Cu nanoparticles due to the selective dissolution of Cu. Although around 40% of the Cu was dissolved from Pt-75Cu, no noticeable surface morphological changes were observed. Thereafter, Pt-75Cu was subjected to potential cycling between 0.05 and 1.0 V, whereupon surface smoothing of the nanoparticles due to the surface diffusion of Pt was observed. Conversely, when Pt-75Cu was potential-cycled between 0.05 and 1.4 V, the particle diameters of the nanoparticles drastically decreased and the nuclei on the surface completely disappeared owing to Pt dissolution and re-deposition. The heat-treated nanoparticles developed numerous pores on their surfaces during immersion and the initial stage of potential cycling. However, their final morphologies were found to be similar to those of the non-heated sample. The formation of pores can be explained by the coarsening of nuclei by heat treatment.


(Received 2020/06/05; Accepted 2020/07/06; Published 2020/09/25)

Keywords: identical-location scanning electron microscopy, Pt-Cu nanoparticles, electrodeposition, dissolution, polymer electrolyte fuel cells

PDF(open access)PDF (open access) Table of ContentsTable of Contents


  1. Toda T., Igarashi H., Uchida H. and Watanabe M.: J. Electrochem. Soc. 146 (1999) 3750-3756.
  2. Stamenkovic V.R., Mun B.S., Mayrhofer K.J.J., Ross P.N. and Markovic N.M.: J. Am. Chem. Soc. 128 (2006) 8813-8819.
  3. Stamenkovic V.R., Mun B.S., Arenz M., Mayrhofer K.J., Lucas C.A., Wang G., Ross P.N. and Markovic N.M.: Nat. Mater. 6 (2007) 241-247.
  4. Strasser P., Koh S., Anniyev T., Greeley J., More K., Yu C., Liu Z., Kaya S., Nordlund D., Ogasawara H., Toney M.F. and Nilsson A.: Nat. Chem. 2 (2010) 454-460.
  5. Woo S., Kim I., Lee J.K., Bong S., Lee J. and Kim H.: Electrochim. Acta 56 (2011) 3036-3041.
  6. Martín A.J., Chaparro A.M. and Daza L.: J. Power Sources 169 (2007) 65-70.
  7. Chaisubanan N. and Tantavichet N.: J. Alloy. Compd. 559 (2013) 69-75.
  8. Yaldagard M., Seghatoleslami N. and Jahanshahi M.: Appl. Surf. Sci. 315 (2014) 222-234.
  9. Huang H.-Y., Su C.-J., Kao C.-L. and Chen P.-Y.: J. Electroanal. Chem. 650 (2010) 1-9.
  10. Nishimura T., Morikawa T., Yokoi M., Iwakura C. and Inoue H.: Electrochim. Acta 54 (2008) 499-505.
  11. Shigihara Y., Ooi A., Tada E. and Nishikata A.: J. Electrochem. Soc. 166 (2019) C3170-C3178.
  12. Gasteiger H.A., Kocha S.S., Sompalli B. and Wagner F.T.: Appl. Catal. B 56 (2005) 9-35.
  13. Chen S., Gasteiger H.A., Hayakawa K., Tada T. and Shao-Horn Y.: J. Electrochem. Soc. 157 (2010) A82-A97.
  14. Hoshi Y., Yoshida T., Nishikata A. and Tsuru T.: Electrochim. Acta 56 (2011) 5302-5309.
  15. Hoshi Y., Tada E., Nishikata A. and Tsuru T.: Electrochim. Acta 85 (2012) 268-272.
  16. Hoshi Y., Ozawa R., Tada E., Nishikata A. and Tsuru T.: Corros. Sci. 65 (2012) 512-519.
  17. Ooi A., Hoshi Y., Tada E. and Nishikata A.: Mater. Trans. 55 (2014) 1350-1355.
  18. Ooi A., Tada E. and Nishikata A.: J. Electrochem. Soc. 163 (2016) F1558-F1563.
  19. Ooi A., Tada E. and Nishikata A.: J. Electrochem. Soc. 164 (2017) C104-C112.
  20. Schuppert A.K., Topalov A.A., Savan A., Ludwig A. and Mayrhofer K.J.J.: ChemElectroChem 1 (2014) 358-361.
  21. Schuppert A.K., Savan A., Ludwig A. and Mayrhofer K.J.J.: Electrochim. Acta 144 (2014) 332-340.
  22. Ahluwalia R.K., Papadias D.D., Kariuki N.N., Peng J.-K., Wang X., Tsai Y., Graczyk D.G. and Myers D.J.: J. Electrochem. Soc. 165 (2018) F3024-F3035.
  23. Gatalo M., Jovanovič P., Petek U., Šala M., Šelih V.S., Ruiz-Zepeda F., Bele M., Hodnik N. and Gaberšček M.: ACS Appl. Energy Mater. 2 (2019) 3131-3141.
  24. Baldizzone C., Gan L., Hodnik N., Keeley G.P., Kostka A., Heggen M., Strasser P. and Mayrhofer K.J.J.: ACS Catal. 5 (2015) 5000-5007.
  25. Jovanovič P., Pavlišič A., Šelih V.S., Šala M., Hodnik N., Bele M., Hočevar S. and Gaberšček M.: ChemCatChem 6 (2014) 449-453.
  26. Artymowicz D.M., Erlebacher J. and Newman R.C.: Philos. Mag. 89 (2009) 1663-1693.
  27. Sugawara Y., Konno M., Muto I. and Hara N.: Electrocatalysis 9 (2018) 539-549.
  28. Pugh D.V., Dursun A. and Corcoran S.G.: J. Mater. Res. 18 (2003) 216-221.
  29. Pugh D.V., Dursun A. and Corcoran S.G.: J. Electrochem. Soc. 152 (2005) B455-B459.
  30. Gan L., Heggen M., Rudi S. and Strasser P.: Nano Lett. 12 (2012) 5423-5430.
  31. Oezaslan M., Heggen M. and Strasser P.: J. Am. Chem. Soc. 134 (2012) 514-524.
  32. Jeyabharathi C., Hodnik N., Baldizzone C., Meier J.C., Heggen M., Phani K.L.N., Bele M., Zorko M., Hocevar S. and Mayrhofer K.J.J.: ChemCatChem 5 (2013) 2627-2635.
  33. Hasché F., Oezaslan M. and Strasser P.: ChemCatChem 3 (2011) 1805-1813.
  34. Hodnik N., Zorko M., Bele M., Hočevar S. and Gaberšček M.: J. Phys. Chem. C 116 (2012) 21326-21333.
  35. Saminathan K., Kamavaram V., Veedu V. and Kannan A.M.: Int. J. Hydrogen Energ. 34 (2009) 3838-3844.
  36. Ross P.N.Jr.: Surf. Sci. 102 (1981) 463-485.
  37. Zana A., Speder J., Roefzaad M., Altmann L., Bäumer M. and Arenz M.: J. Electrochem. Soc. 160 (2013) F608-F615.
  38. Meier J.C., Galeano C., Katsounaros I., Topalov A.A., Kostka A., Schüth F. and Mayrhofer K.J.J.: ACS Catal. 2 (2012) 832-843.
  39. Arenz M. and Zana A.: Nano Energy 29 (2016) 299-313.
  40. Watt-Smith M.J., Friedrich J.M., Rigby S.P., Ralph T.R. and Walsh F.C.: J. Phys. D 41 (2008) 174004.
  41. Xu Q., Kreidler E. and He T.: Electrochim. Acta 55 (2010) 7551-7557.
  42. Li X., Chen Q., McCue I., Snyder J., Crozier P., Erlebacher J. and Sieradzki K.: Nano Lett. 14 (2014) 2569-2577.


© 2020 The Japan Institute of Metals and Materials
Comments to us :