Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1930-1939
© 2020 The Mining and Materials Processing Institute of Japan

Removal of Boron from Aqueous Solution Using Zero-Valent Magnesium Granules

Shoji Kasahara1, Tomio Takasu1, Nobuaki Nagano1, Yuki Mikoshi1, Hideyuki Itou1 and Naotaka Sakamoto2

1Department of Materials Science and Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
2Chemical and Textile Industry Research Institute, Fukuoka Industrial Technology Center, Fukuoka 818-8540, Japan

In order to understand the characteristics of the wastewater treatment method using zero-valent magnesium granules, the reaction between an aqueous solution containing boron and zero-valent magnesium granules was investigated by experiments and a reaction rate model. Particular attention was paid to the effect of adding hydrochloric acid before adding zero-valent magnesium and to the effect of adding sodium hydroxide to adjust the pH to 10.5 after 110 minutes. The following findings were obtained. The relationship between the pH and the dissolved magnesium concentration over time is determined by a reaction formula in which zero-valent magnesium granules react with an aqueous solution to generate Mg2+ ions while generating hydrogen. When magnesium hydroxide is produced, the pH becomes constant over time. Increasing the concentration of hydrochloric acid lowers the pH value reached. This relationship is determined in equilibrium with magnesium hydroxide. The reaction rate of the zero-valent magnesium granules is determined as the first-order reaction of the hydrogen ion activity when the pH was lower than 2.3 or higher than 8.5, and as the zero-order reaction of the hydrogen ion activity at pH from 2.3 to 8.5. The amount of magnesium hydroxide produced without the addition of sodium hydroxide is determined by the above-described reaction rate model of zero-valent magnesium granules. The boron concentration of the solution when the pH is adjusted to 10.5 by adding sodium hydroxide is determined by the Langmuir-type sorption isotherm of boron to the magnesium hydroxide produced. As described above, the behavior of removing boron from an aqueous solution using zero-valent magnesium granules can be well reproduced by the simple reaction rate model used in this study, and it can be said that it is useful for process design.


(Received 2020/03/25; Accepted 2020/07/06; Published 2020/09/25)

Keywords: zero-valent magnesium granules, wastewater treatment, reaction kinetics, magnesium hydroxide, sorption isotherm, boron

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. World Health Organization: Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, (World Health Organization, Geneva, 2017).
  2. Wolska J. and Bryjak M.: Desalination 310 (2013) 18-24.
  3. Wang B., Guo X. and Bai P.: Colloids Surf. A 444 (2014) 338-344.
  4. Guan Z., Lv J., Bai P. and Guo X.: Desalination 383 (2016) 29-37.
  5. Taguchi Y., Takahashi Y., Iwakura T., Yamaguchi T. and Baba S.: J. Environ. Chem. 11 (2001) 557-565.
  6. Kudo S. and Sakata M.: Bull. Chem. Soc. Jpn. 2 (2002) 265-268.
  7. H. Ikatsu, M. Aramoto and T. Miyahara: Bulletin of School of Policy Management, (Kibi International University, 2006) pp. 13-20.
  8. Iizuka A., Takahashi M., Nakamura T. and Yamasaki A.: Mater. Trans. 58 (2017) 1761-1767.
  9. Moriyama S., Sasaki K. and Hirajima T.: J. MMIJ 127 (2011) 708-713.
  10. Kameda T., Oba J. and Yoshioka T.: J. Hazard. Mater. 293 (2015) 54-63.
  11. Kameda T., Oba J. and Yoshioka T.: J. Environ. Manage. 165 (2016) 280-285.
  12. Kameda T., Oba J. and Yoshioka T.: J. Environ. Manage. 188 (2017) 58-63.
  13. Schiller J.E. and Khalafalla S.E.: Min. Eng. 36 (1984) 171-173.
  14. Bekin A. and Matsuoka I.: J. MMIJ 114 (1998) 553-559.
  15. Yoshida T., Igarashi T., Asakura K., Miyamae H., Iyatomi N. and Hashimoto K.: J. MMIJ 120 (2004) 577-583.
  16. Badulis G.C., Tokoro C. and Sasaki H.: J. MMIJ 122 (2006) 406-414.
  17. Semerjian L. and Ayoub G.: Adv. Environ. Res. 7 (2003) 389-403.
  18. Kosmulski M.: J. Colloid Interface Sci. 253 (2002) 77-87.
  19. Pokrovsky O.S. and Schott J.: Geochim. Cosmochim. Acta 68 (2004) 31-45.
  20. Garca-Soto M.M.F. and Camacho E.M.: Separ. Purif. Tech. 48 (2006) 36-44.
  21. Morimoto K., Sato T. and Yoneda T.: J. Clay Sci. Soc. Jpn. 48 (2009) 9-17.
  22. Sasaki K., Qiu X., Moriyama S., Tokoro C., Ideta K. and Miyawaki J.: Mater. Trans. 54 (2013) 1809-1817.
  23. Sasaki K. and Moriyama S.: Ceram. Int. 40 (2014) 1651-1660.
  24. Kameda T., Yamamoto Y., Kumagai S. and Yoshioka T.: J. Water Process Eng. 26 (2018) 237-241.
  25. K. Higashi and K. Otsuka: Bulletin of Tokyo Metropolitan Industrial Technology Research Institute 3, (Tokyo Metropolitan Industrial Technology Research Institute, 2000) pp. 75-78.
  26. Izawa S., Maeda M., Tokoro C. and Sasaki K.: J. MMIJ 130 (2014) 155-161.
  27. F. Noguchi, K. Kakimoto, T. Tachibana, K. Kawata and N. Sakamoto: Toku Kai 2006-167564.
  28. Noguci F., Yamane M., Kakimoto K., Sakamoto N., Tachibana T. and Kawata K.: CAMP-ISIJ 18 (2005) 286.
  29. N. Sakamoto, K. Kawata, K. Kakimoto, H. Itou, T. Takasu and F. Noguchi: Proceedings of The 26th International Japan-Korea Seminar on Ceramics, (2009) pp. 241-244.
  30. Noguchi F., Yamane M., Sakamoto N., Kawata K. and Kakimoto K.: CAMP-ISIJ 20 (2007) 238.
  31. Sakamoto N., Kawata K., Kakimoto K., Itou H., Takasu T. and Noguchi F.: CAMP-ISIJ 22 (2009) 305.
  32. Kumar M. and Chakraborty S.: J. Hazard. Mater. 135 (2006) 112-121.
  33. Siciliano A., Curcio G.M. and Limonti C.: Water 11 (2019) 1276.
  34. Lee G., Park J. and Harvey O.R.: Water Res. 47 (2013) 1136-1146.
  35. Ayyildiz O., Acar E. and Ileri B.: Water Air Soil Pollution 227 (2016) 363.
  36. Lee G. and Park J.: Geochim. Cosmochim. Acta 102 (2013) 162-174.
  37. K. Mori, T. Sunaba and H. Koga: Research Report, (Fukuoka Industry, Science & Technology Foundation, 2012) p. 7.
  38. D.L. Parkhurst and C.A.J. Appelo: Description of Input and Examples for PHREEQC Version 3— A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Techniques and Methods 6— A43, (U.S Geological Survey, Denver, 2003).
  39. Iitaka I.: Tetsu-to-Hagané 16 (1930) 438-447.
  40. Iitaka I.: Tetsu-to-Hagané 16 (1930) 655-666.
  41. Iitaka I.: Tetsu-to-Hagané 16 (1930) 1057-1063.
  42. Iitaka I.: Tetsu-to-Hagané 16 (1930) 1184-1189.


© 2020 The Mining and Materials Processing Institute of Japan
Comments to us :