Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1922-1929
© 2020 The Japan Institute of Metals and Materials

Self-Consistent Diffraction Stress Analysis Method for Estimating Stress, Strain-Free Lattice Parameter and Composition of Solid Solutions

Takashi Harumoto, Ji Shi and Yoshio Nakamura

Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Self-consistent diffraction stress analysis method is proposed for analyzing solid solutions. Owing to the feedback of the strain-free lattice parameter, it is possible to perform the proposed method even when the exact composition is unknown. Employing an example specimen of (111) fiber-textured palladium cobalt alloy film with different compositions, the validity of the proposed method is confirmed by comparing results with that of the conventional method. This convenient proposal expands the applicability of diffraction stress analysis.


(Received 2020/05/21; Accepted 2020/07/29; Published 2020/09/25)

Keywords: diffraction stress analysis, strain-free lattice parameter, composition estimation, textured film

PDF(open access)PDF (open access) Table of ContentsTable of Contents


  1. V. Hauk (ed.): Structural and Residual Stress Analysis by Nondestructive Methods, (Elsevier, Amsterdam, 1997).
  2. Welzel U., Ligot J., Lamparter P., Vermeulen A.C. and Mittemeijer E.J.: J. Appl. Cryst. 38 (2005) 1-29.
  3. M. Birkholz: Thin Film Analysis by X-Ray Scattering, (WILEY-VCH, Weinheim, 2006).
  4. E.J. Mittemeijer and U. Welzel (ed.): Modern Diffraction Methods, (WILEY-VCH, Weinheim, 2013).
  5. Aizawa K., Gong W., Harjo S., Abe J., Iwahashi T. and Kamiyama T.: Mater. Trans. 54 (2013) 1083-1086.
  6. Adachi H., Miyajima Y., Sato M. and Tsuji N.: Mater. Trans. 56 (2015) 671-678.
  7. Adachi H., Karamatsu Y., Nakayama S., Miyazawa T., Sato M. and Yamasaki T.: Mater. Trans. 57 (2016) 1447-1453.
  8. Doi T., Kanzaki M., Masaki Y., Miyazawa T. and Sato M.: Mater. Trans. 61 (2020) 1138-1142.
  9. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook 2nd ed., (MIT Press, Massachusetts, 1971).
  10. Akamaru S., Matsumoto T., Hara M., Nishimura K., Nunomura N. and Matsuyama M.: J. Alloy. Compd. 580 (2013) S102-S104.
  11. Akamaru S., Matsumoto T., Murai M., Nishimura K., Hara M. and Matsuyama M.: J. Alloy. Compd. 645 (2015) S213-S216.
  12. Akamaru S., Kimura A., Hara M., Nishimura K. and Abe T.: J. Magn. Magn. Mater. 484 (2019) 8-13.
  13. Chang P.C., Chen Y.C., Hsu C.C., Mudinepalli V.R., Chiu H.C. and Lin W.C.: J. Alloy. Compd. 710 (2017) 37-46.
  14. Gerber A., Kopnov G. and Karpovski M.: Appl. Phys. Lett. 111 (2017) 143505.
  15. Mudinepalli V.R., Chen Y.C., Chang P.C., Hsu C.C., Tsai C.Y., Chiu H.C., Wu C.T., Yen H.W., Shih S.J. and Lin W.C.: J. Alloy. Compd. 695 (2017) 2365-2373.
  16. Das S.S., Kopnov G. and Gerber A.: J. Appl. Phys. 124 (2018) 104502.
  17. Harumoto T., Shi J. and Nakamura Y.: Int. J. Hydrogen Energ. 45 (2020) 11662-11674.
  18. N.W. Ashcroft and N.D. Mermin: Solid State Physics, (Thomson Learning, New York, 1976) pp. 421-450.
  19. Bouamama K., Djemia P., Lebga N. and Kassali K.: Semicond. Sci. Technol. 24 (2009) 045005.
  20. Zhu L.F., Friak M., Dick A., Grabowski B., Hickel T., Liot F., Holec D., Schlieter A., Kuhn U., Eckert J., Ebrahimi Z., Emmerich H. and Neugebauer J.: Acta Mater. 60 (2012) 1594-1602.
  21. Harumoto T., Shi J. and Nakamura Y.: J. Appl. Phys. 126 (2019) 083906.
  22. Tanaka K., Akiniwa Y., Ito T. and Inoue K.: Jpn. Soc. Mech. Eng. Int. J. Ser. A 42 (1999) 224-234.
  23. Kamminga J.D., de Keijser T.H., Mittemeijer E.J. and Delhez R.: J. Appl. Cryst. 33 (2000) 1059-1066.
  24. Hanabusa T., Kusaka K. and Sakata O.: Thin Solid Films 459 (2004) 245-248.
  25. Yokoyama R. and Harada J.: J. Appl. Cryst. 42 (2009) 185-191.
  26. Faurie D., Renault P.O., Le Bourhis E., Chauveau T., Castelnau O. and Goudeau P.: J. Appl. Cryst. 44 (2011) 409-413.
  27. Gump J., Xia H., Chirita M., Sooryakumar R., Tomaz M.A. and Harp G.R.: J. Appl. Phys. 86 (1999) 6005-6009.
  28. Masumoto H. and Sawaya S.: Trans. JIM 11 (1970) 91-93.
  29. Rayne J.A.: Phys. Rev. 118 (1960) 1545-1549.
  30. Harumoto T., Ohnishi Y., Nishio K., Ishiguro T., Shi J. and Nakamura Y.: AIP Adv. 7 (2017) 065108.
  31. Harumoto T., Suzuki Y., Shi J. and Nakamura Y.: J. Appl. Cryst. 50 (2017) 1478-1489.
  32. Bozorth R.M., Davis D.D., Wolff P.A., Wernick J.H. and Compton V.B.: Phys. Rev. 122 (1961) 1157-1160.
  33. Matsuo Y.: J. Phys. Soc. Jpn. 32 (1972) 972-978.
  34. Ishida K. and Nishizawa T.: J. Phase Equilib. 12 (1991) 83-87.
  35. ICDD PDF Nos. 00-046-1043, 01-071-7395 and 00-015-0806.
  36. Hoffman D.W. and Thornton J.A.: J. Vac. Sci. Technol. 20 (1982) 355-358.
  37. Windischmann H.: Crit. Rev. Solid State Mater. Sci. 17 (1992) 547-596.
  38. Murata H. and Ohba T.: Mater. Trans. 49 (2008) 2907-2911.


© 2020 The Japan Institute of Metals and Materials
Comments to us :