Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1912-1921
© 2020 The Japan Institute of Metals and Materials

Isothermal Aging Behaviors of Copper-Titanium-Magnesium Supersaturated Solid-Solution Alloys

Kaichi Saito1, Makio Suzuki1, Satoshi Semboshi2, Katsuhiko Sato1 and Yuichiro Hayasaka3

1Department of Materials Science, Akita University, Akita 010-8502, Japan
2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
3The Electron Microscopy Center, Tohoku University, Sendai 980-8577, Japan

Herein, the isothermal aging behavior of copper-titanium-magnesium (Cu-Ti-Mg) supersaturated solid-solution alloys, with different compositions, under test conditions of 450°C for 100 h, has been thoroughly investigated in a comparative study using various electron microscopy and microanalytical techniques. The Vickers hardness and electrical conductivity of the ternary alloys were recorded at slightly elevated (during aging) and reduced levels than their binary counterparts without Mg doping. Hence, it is proposed that the hardness and conductivity values are approximated from the superposition effect of precipitation hardening stimulated by Ti solutes and solution hardening by both Ti and Mg solutes. Furthermore, the tensile tests for these ternary specimens have demonstrated that Mg doping has a substantial effect on the improvement of the tensile strength and fracture elongation properties of binary Cu-Ti alloys. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy imaging combined with atomic-resolution energy-dispersive X-ray spectroscopy mapping analysis confirmed that the same metastable precipitate phase is responsible for peak hardening in ternary and Cu-Ti binary alloys. In addition, a large part of the Mg solutes is homogeneously distributed over the matrix regions, while there is also a smaller part of those present in the precipitates. The potential effects of Mg doping on the microstructures of Cu-Ti alloys were elucidated and the structural environment, which may yield relatively high mechanical properties, was discussed using the aforementioned observations.


(Received 2020/05/07; Accepted 2020/07/06; Published 2020/09/25)

Keywords: copper-titanium-magnesium alloy, precipitation-hardening, mechanical properties, electrical conductivity, HAADF-STEM, EDS

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Price R.J. and Kelly A.: Acta Metall. 11 (1963) 915-922.
  2. Wilkes P.: Acta Metall. 16 (1968) 153-158.
  3. Rioja R.J. and Laughlin D.E.: Acta Metall. 28 (1980) 1301-1313.
  4. Knights R. and Wilkes P.: Acta Metall. 21 (1973) 1503-1514.
  5. Cornie J.A., Datta A. and Soffa W.A.: Metall. Trans. 4 (1973) 727-733.
  6. Laughlin D.E. and Cahn J.W.: Metall. Trans. 5 (1974) 972-974.
  7. Laughlin D.E. and Cahn J.W.: Acta Metall. 23 (1975) 329-339.
  8. Datta A. and Soffa W.A.: Acta Metall. 24 (1976) 987-1001.
  9. R. Wagner: Strength of Metals and Alloys (Proc. 5th ICSMA), ed. by P. Haasen, V. Gerold and G. Kostrz, (Pergamon, New York, NY, 1980) Vol. 1, pp. 645-650.
  10. Thompson A.W. and Williams J.C.: Metall. Trans. A 15 (1984) 931-937.
  11. Donovan P.E.: J. Mater. Sci. Lett. 4 (1985) 1337-1339.
  12. Nagarjuna S., Srinivas M., Balasubramanian K. and Sarma D.S.: Acta Mater. 44 (1996) 2285-2293.
  13. Nagarjuna S. and Balasubramanian K.: J. Mater. Sci. 32 (1997) 3375-3385.
  14. Soffa W.A. and Laughlin D.E.: Prog. Mater. Sci. 49 (2004) 347-366.
  15. Semboshi S., Hiramoto E. and Iwase A.: Mater. Lett. 131 (2014) 90-93.
  16. Semboshi S., Amano S., Fu J., Iwase A. and Takasugi T.: Metall. Mater. Trans. A 48 (2017) 1501-1511.
  17. Nagarjuna S., Balasubramanian K. and Sarma D.S.: Mater. Sci. Eng. A 225 (1997) 118-124.
  18. Suzuki S., Hirabayashi K., Shibata H., Mimura K., Isshiki M. and Waseda Y.: Scr. Mater. 48 (2003) 431-435.
  19. Semboshi S. and Konno T.J.: J. Mater. Res. 23 (2008) 473-477.
  20. Semboshi S., Al-Kassab T., Gemma R. and Kirchheim R.: Ultramicroscopy 109 (2009) 593-598.
  21. Semboshi S., Nishida T. and Numakura H.: Mater. Sci. Eng. A 517 (2009) 105-113.
  22. Semboshi S., Kaneko Y., Takasugi T. and Masahashi N.: Metall. Mater. Trans. A 49 (2018) 4956-4965.
  23. Nishikawa K., Semboshi S. and Konno T.J.: Solid State Phenom. 127 (2007) 103-108.
  24. Maki K., Ito Y., Matsunaga H. and Mori H.: Scr. Mater. 68 (2013) 777-780.
  25. Ito Y., Matsunaga H., Mori H. and Maki K.: Mater. Trans. 55 (2014) 1738-1741.
  26. Gorsse S., Ouvrard B., Goune M. and Poulon-Quintin A.: J. Alloy. Compd. 633 (2015) 42-47.
  27. Nayeb-Hashemi A.A. and Clark J.B.: Bull. Alloy Phase Diagrams 5 (1984) 36-43.
  28. ASM handbook Vol. 3, Alloy Phase Diagrams, (ASM International Materials Park, Ohio, 2016)
  29. ASM Alloy Phase Diagram DatabaseTM, ASM International.
  30. Miyake J. and Fine M.E.: Acta Metall. Mater. 40 (1992) 733-741.
  31. The Japan Institute of Metals and Materials: Non-Ferrous Materials, (Maruzen, Tokyo, 1983) p. 64.


© 2020 The Japan Institute of Metals and Materials
Comments to us :