Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1907-1911
© 2020 The Japan Institute of Metals and Materials

Hydrogen Trapping in Mg2Si and Al7FeCu2 Intermetallic Compounds in Aluminum Alloy: First-Principles Calculations

Masatake Yamaguchi1, 2, Tomohito Tsuru2, Ken-ichi Ebihara1, Mitsuhiro Itakura1, Kenji Matsuda3, Kazuyuki Shimizu4 and Hiroyuki Toda5

1Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Kashiwa 277-0871), Japan
2Nuclear Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195, Japan
3Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
4Department of Physical Science and Materials Engineering, Iwate University, Morioka 020-8551, Japan
5Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan

From first-principles calculations, we estimated the trapping energy of hydrogen atom at the interstitial site of perfect crystals of Mg2Si and Al7FeCu2 intermetallic compounds in the aluminum matrix. We found that Al7FeCu2 trapped hydrogen atoms strongly, whereas Mg2Si did not. The highest trapping energy in Al7FeCu2 is 0.56 eV/atom. We also found that the density of hydrogen trapping can be increased up to about 13 atoms/nm3 while keeping high trapping energy of about 0.40 eV/atom. We inferred that the Al7FeCu2 phase might remove hydrogen from the aluminum matrix, hence, preventing hydrogen embrittlement of aluminum alloy.


(Received 2020/06/22; Accepted 2020/07/02; Published 2020/09/25)

Keywords: first-principles calculations, trapping energy of hydrogen, aluminum alloy, intermetallic compounds

PDF(open access)PDF (open access) Table of ContentsTable of Contents


  1. Shimizu K., Toda H., Uesugi K. and Takeuchi A.: Metall. Mater. Trans. A 51 (2020) 1-19.
  2. Su H., Toda H., Shimizu K., Uesugi K., Takeuchi A. and Watanabe Y.: Acta Mater. 176 (2019) 96-108.
  3. Toda H., Hidaka T., Kobayashi M., Uesugi K., Takeuchi A. and Horikawa K.: Acta Mater. 57 (2009) 2277.
  4. Tsuru T., Yamaguchi M., Ebihara K., Itakura M., Shiihara Y., Matsuda K. and Toda H.: Comput. Mater. Sci. 148 (2018) 301-306.
  5. Yamaguchi M., Ebihara K., Itakura M., Tsuru T., Matsuda K. and Toda H.: Comput. Mater. Sci. 156 (2019) 368-375.
  6. Manaka T. and Itoh G.: J. JILM 67 (2017) 67-71.
  7. Su H., Yoshimura T., Toda H., Bhuiyan Md.S., Uesugi K., Takeuchi A., Sakaguchi N. and Watanabe Y.: Metall. Mater. Trans. A 47 (2016) 6077-6089.
  8. Kresse G. and Hafner J.: Phys. Rev. B 47 (1993) 558-561.
  9. Kresse G. and Furthmuller J.: Phys. Rev. B 54 (1996) 11169-11186.
  10. Perdew J.P., Burke K. and Ernzerhof M.: Phys. Rev. Lett. 77 (1996) 3865-3868.
  11. Blöchl P.E.: Phys. Rev. B 50 (1994) 17953.
  12. Monkhorst H.J. and Pack J.D.: Phys. Rev. B 13 (1976) 5188-5192.
  13. Noda Y., Kon H., Furukawa Y., Otsuka N., Nishida I.A. and Matsumoto K.: Mater. Trans., JIM 33 (1992) 845-850.
  14. Bown M.G. and Brown P.J.: Acta Crystallogr. 9 (1956) 911-914.
  15. Momma K. and Izumi F.: J. Appl. Crystallogr. 44 (2011) 1272-1276.
  16. Wolverton C., Ozolins V. and Asta M.: Phys. Rev. B 69 (2004) 144109.


© 2020 The Japan Institute of Metals and Materials
Comments to us :