Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1900-1906
© 2020 The Japan Institute of Metals and Materials

Dissimilar Metal Joining of Cu and Fe Using Super-Spread Wetting into Surface Fine Crevice Structures

Jaebong Yeon1, Takumi Kageyama1, Riku Yamada1, Peiyuan Ni2, Masashi Nakamoto1 and Toshihiro Tanaka1

1Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
2Northeastern University, Shenyang, 110819, China

Recently, our group employed surface fine crevice structures produced on Cu metal substrates using either laser irradiation or the reduction-sintering of oxide powders to induce region-selective super-spread wetting as a means of joining these substrates. The present work expanded the scope of this method by joining Cu and Fe substrates. Laser irradiation was found to permit the joining of Cu and Fe but generated voids at the join interface. In contrast, the reduction-sintering of mixed oxide powders allowed joining with essentially no voids. Thus, the latter technique is superior to laser irradiation when joining dissimilar metals.

[doi:10.2320/matertrans.MT-M2020120]

(Received 2020/04/13; Accepted 2020/07/02; Published 2020/09/25)

Keywords: dissimilar metal joining, super-spread wetting, laser irradiation, reduction, sintering

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Takahira N., Tanaka T., Hara S. and Lee J.: Mater. Trans. 46 (2005) 3008-3014.
  2. Takahira N., Yoshikawa T., Tanaka T. and Holappa L.: Mater. Trans. 48 (2007) 2708-2711.
  3. Takahira N., Yoshikawa T., Tanaka T. and Holappa L.: Mater. Trans. 48 (2007) 3126-3131.
  4. Fukuda A., Matsukawa H., Goto H., Suzuki M., Nakamoto M., Matsumoto R., Utsunomiya H. and Tanaka T.: Mater. Trans. 56 (2015) 1852-1856.
  5. Nakamoto M., Fukuda A., Pinkham J., Vilakazi S., Goto H., Matsumoto R., Utsunomiya H. and Tanaka T.: Mater. Trans. 57 (2016) 973-977.
  6. Fukuda A., Satake Y., Goto H., Suzuki M., Nakamoto M., Matsumoto R., Utsunomiya H. and Tanaka T.: J. Smart Process. 5 (2016) 153-158.
  7. Siboniso V., Yeon J., Grozescu C., Goto H., Nakamoto M., Matsumoto R., Utsunomiya H. and Tanaka T.: Mater. Trans. 58 (2017) 1227-1230.
  8. Yeon J., Ishida Y., Nakamoto M. and Tanaka T.: Mater. Trans. 59 (2018) 1192-1197.
  9. Ohtani H., Okuda K. and Ishida K.: J. Phase Equilibria 16 (1995) 416-429.
  10. Okamoto H.: J. Phase Equilibria Diffus. 35 (2014) 208-219.
  11. T.B. Massalski: Binary Alloy Phase Diagrams Plus Update on CD-ROM Version 1.0, (ASM International, Materials Park, Ohio, 1996).
  12. Yunus M., Srihari K., Pitarresi J.M. and Primavera A.: Microelectron. Reliab. 43 (2003) 2077-2086.
  13. Lu M.H. and Hsieh K.C.: J. Electron. Mater. 36 (2007) 1448-1454.
  14. Zhao N., Zhong Y., Huang M.L., Ma H.T. and Dong W.: Sci. Rep. 5 (2015) 13491.
  15. Frankenthal R.P. and Loginow A.W.: J. Electrochem. Soc. 107 (1960) 920-923.
  16. Miettinen J.: Calphad 32 (2008) 500-505.


[JIM HOME] [JOURNAL ARCHIVES]

© 2020 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp