Materials Transactions Online

Materials Transactions, Vol.61 No.10 (2020) pp.1895-1899
© 2020 The Japan Institute of Metals and Materials

Structural and Thermoelectric Characteristics of Sol-Gel based ZnO Thin Films Doped with Elements of Group IB

Thong Quang Trinh1, Tinh Trong Nguyen2, Dang Hai Le3 and Doanh Viet Vu3, 4

1Hanoi University of Science and Technology, Hanoi box 10000, Vietnam
2Institute of Applied Physics and Scientific Instruments, Vietnam Academy of Science and Technology, Hanoi box 10000, Vietnam
3Hanoi National University of Education, Hanoi box 10000, Vietnam
4Hanoi University of Business and Technology, Hanoi box 10000, Vietnam

This work presents the study results of zinc oxide (ZnO) thin films doped with elements of group IB, namely silver (Ag) and copper (Cu). The films were deposited on the Corning 1737F glass substrate using the solutions derived by sol-gel method. Effect of Ag and Cu doping on structural, surface morphology, and electrical properties were investigated. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (002) preferred orientation. The SEM images show the grown films composed with nanoparticles with sizes of about 30 to 50 nm. Doping result was verified by measurements of EDX to check compound elements, Hall effect for basic electric parameters, and UV-VIS. As a result, the EDX measurement revealed the doping ratio of Ag in ZnO as expected. Besides, the concentration of p-type carriers was between 1015 to 1017 cm−3, the resistivity was from 54 to 260 Ω·cm. Particularly, the band gap values were between 3.16 to 3.18 eV for the concentration of dopants between 1 to 3 mol. at% compared to that of 3.20 eV for ZnO films at room temperature. These results confirmed the success of introducing the dopants into ZnO matrix. The transport property of doped films also confirms the material nature throughout the characteristics including temperature dependence of electrical conductivity and Seebeck coefficient. In general, there was a clear change in material nature of ZnO films from n- to p-type with acceptable electrical property for thermoelectric applications.

[doi:10.2320/matertrans.MT-MN2019014]

(Received 2019/12/20; Accepted 2020/06/29; Published 2020/09/25)

Keywords: p-type ZnO thin films, sol-gel reaction, SEM, Hall measurement, Seebeck coefficient, thermoelectric power factor

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Bunn C.W.: Proc. Phys. Soc. 47 (1935) 835.
  2. Özgür Ü., Alivov Ya.I., Liu C., Teke A., Reshchikov M.A., Doğan S., Avrutin V., Cho S.-J. and Morkoç H.: J. Appl. Phys. 98 (2005) 041301.
  3. V.A. Coleman and C. Jagadish: Zinc Oxide Bulk, Thin Films and Nanostructure, ed. by C. Jagadish and S. Pearton, (Elsevier Limited, Amsterdam, 2006) Chap. 1.
  4. H. Morkoç and Ü. Özgur: Zinc Oxide: Fundamentals, Materials and Device Technology, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).
  5. Inoue Y., Okamoto M., Kawahara T., Okamoto Y. and Morimoto J.: Mater. Trans. 46 (2005) 1470-1475.
  6. Zhang L., Tosho T., Okinaka N. and Akiyam T.: Mater. Trans. 49 (2008) 2868-2874.
  7. Mohammed M.A., Sudin I., Noor A.M., Rajoo S., Uday M.B., Obayes N.H. and Omar M.F.: Int. J. Eng. Technol. 7 (2018) 27-30.
  8. D.C. Look: Zinc Oxide Bulk, Thin Films and Nanostructure, ed. by C. Jagadish and S. Pearton, (Elsevier Limited, Amsterdam, 2006) Chap. 2.
  9. Fan J.C., Sreekanth K.M., Xie Z., Chang S.L. and Rao K.V.: Prog. Mater. Sci. 58 (2013) 874-985.
  10. Park C.H., Zhang S.B. and Wei S.-H.: Phys. Rev. B 66 (2002) 073202.
  11. Fan J.C., Sreekanth K.M., Xie Z., Chang S.L. and Rao K.V.: Prog. Mater. Sci. 58 (2013) 874-985.
  12. Ryu Y.R., Lee T.S. and White H.W.: Appl. Phys. Lett. 83 (2003) 87.
  13. Zeuner A., Alves H., Sann J., Kriegseis W., Neumann C., Hofmann D.M., Meyer B.K., Hoffmann A., Haboeck U., Straßburg M. and Kaschner A.: Phys. Status Solidi C 1 (2004) 731-734.
  14. Kang H.S., Kim G.H., Kim D.L., Chang H.W., Ahn B.D. and Lee S.Y.: Appl. Phys. Lett. 89 (2006) 181103.
  15. Przeździecka E., Kamińska E., Pasternak I., Piotrowska A. and Kossut J.: Phys. Rev. B 76 (2007) 193303.
  16. Yan Y., Al-Jassim M.M. and Wei S.-H.: Appl. Phys. Lett. 89 (2006) 181912.
  17. Gómez-Pozos H., Arredondo E.J.L., Álvarez A.M., Biswal R., Kudriavtsev Y., Pérez J.V., Casallas-Moreno Y.L. and De la Luz Olvera Amador M.: Materials 9 (2016) 87.
  18. Kim G.H., Ahn B.D., Kim D.L., Jung K.H. and Lee S.Y.: Proc. SPIE 6474 (2007) 647409.
  19. Min J.H., Liang X.Y., Wang B., Zhao Y., Guo Y. and Wang L.J.: Adv. Mater. Res. 299-300 (2011) 436-439.
  20. Duan L., Gao W., Chen R. and Fu Z.: Solid State Commun. 145 (2008) 479-481.
  21. Kang H.S., Ahn B.D., Kim J.H., Kim G.H., Lim S.H., Chang H.W. and Lee S.Y.: Appl. Phys. Lett. 88 (2006) 202108.
  22. Zhou Q., Hong C.X., Yao Y., Ibrahim A.M., Xu L., Kumar R., Talballa S.M., Kim S.H. and Umar A.: Materials 10 (2017) 799.
  23. Kim I.S., Jeong E.-K., Kim D.Y., Kumar M. and Choi S.-Y.: Appl. Surf. Sci. 255 (2009) 4011-4014.
  24. Myers M.A., Lee J.H., Bi Z.H. and Wang H.Y.: J. Phys. Condens. Matter 24 (2012) 145802.
  25. Myers M.A., Lee J.H., Bi Z. and Wang H.: J. Phys. Condens. Matter 24 (2012) 229501.
  26. Liu F.-C., Li J.-Y., Chen T.-H., Chang C.-H., Lee C.-T., Hsiao W.-H. and Liu D.-S.: Materials 10 (2017) 797.
  27. Suja M., Bashar S.B., Morshed M.M. and Liu J.L.: ACS Appl. Mater. Interfaces 7 (2015) 8894-8899.
  28. Ievtushenko A., Karpyna V., Eriksson J., Tsiaoussis I., Shtepliuk I., Lashkarev G., Yakimova R. and Khranovskyy V.: Superlattices Microstruct. 117 (2018) 121-131.
  29. Navid N. and Rozati S.M.: Mater. Res. 21 (2018) e20170933.
  30. A. Mahmood and A. Naeem: Recent Applications in Sol-Gel Synthesis, (IntechOpen Limited, London, 2017) Chap. 9, pp. 168-193.
  31. Viet Vu D., Hai Le D., Xuan Nguyen C. and Quang Trinh T.: J. Sol-Gel Sci. Technol. 91 (2019) 146-153.
  32. Öztas M. and Bedir M.: Thin Solid Films 516 (2008) 1703-1709.
  33. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, 3rd ed., (Prentice Hall Inc: Upper Saddle River, NJ, USA, 2001) pp. 167-171.
  34. Hartmann A., Puchert M.K. and Lamb R.N.: Surf. Interface Anal. 24 (1996) 671-674.
  35. Rahmani M.B., Keshmiri S.H., Shafiei M., Latham K. and Wlodarski W.: Sens. Lett. 7 (2009) 621-628.


[JIM HOME] [JOURNAL ARCHIVES]

© 2020 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp