Materials Transactions Online

Materials Transactions, Vol.61 No.09 (2020) pp.1874-1880
© 2020 The Japan Institute of Metals and Materials

Prediction of Face-Centered Cubic Single-Phase Formation for Non-Equiatomic Cr-Mn-Fe-Co-Ni High-Entropy Alloys Using Valence Electron Concentration and Mean-Square Atomic Displacement

Kodai Niitsu1, 2, Makoto Asakura1, Koretaka Yuge1 and Haruyuki Inui1, 2

1Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
2Center for Elements Strategy Initiative for Structure Materials (ESISM), Kyoto University, Kyoto 606-8501, Japan

We have investigated the face-centered cubic (FCC) single-phase formability of non-equiatomic Cr-Mn-Fe-Co-Ni HEAs as well as equiatomic derivative medium/high-entropy alloys (M/HEAs) considering their valence electron concentration (VEC) and mean-square atomic displacement (MSAD). While VEC remains the most decisive parameter to predict phase formation, MSAD can be a complementary parameter that modifies the VEC boundary. Multiplicity of constituent elements was beneficial to accommodate a larger MSAD, which resulted in a downward shift of the VEC boundary for the FCC single phase. This offers information about the correlations between the phase formation preference, VEC, and MSAD of M/HEAs with various compositions.

[doi:10.2320/matertrans.MT-M2020144]

(Received 2020/05/07; Accepted 2020/06/09; Published 2020/08/25)

Keywords: high-entropy alloys, superalloys, atomic displacement, phase diagram, phase transformations

PDF(open access)PDF (open access) Table of ContentsTable of Contents

REFERENCES

  1. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H. and Chang S.-Y.: Adv. Eng. Mater. 6 (2004) 299-303.
  2. Cantor B., Chang I.T.H., Knight P. and Vincent A.J.B.: Mater. Sci. Eng. A 375-377 (2004) 213-218.
  3. Gali A. and George E.P.: Intermetallics 39 (2013) 74-78.
  4. Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G. and George E.P.: Acta Mater. 61 (2013) 5743-5755.
  5. Yeh J.-W.: JOM 65 (2013) 1759-1771.
  6. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P. and Ritchie R.O.: Science 345 (2014) 1153-1158.
  7. Okamoto N.L., Fujimoto S., Kambara Y., Kawamura M., Chen Z.M.T., Matsunoshita H., Tanaka T., Inui H. and George E.P.: Sci. Rep. 6 (2016) 35863.
  8. Miracle D.B.: Mater. Sci. Technol. 31 (2015) 1142-1147.
  9. Santodonato L.J., Zhang Y., Feygenson M., Parish C.M., Gao M.C., Weber R.J.K., Neuefeind J.C., Tang Z. and Liaw P.K.: Nat. Commun. 6 (2015) 5964.
  10. Li Z., Pradeep K.G., Deng Y., Raabe D. and Tasan C.C.: Nature 534 (2016) 227.
  11. Zhang Y., Zhou Y.J., Lin J.P., Chen G.L. and Liaw P.K.: Adv. Eng. Mater. 10 (2008) 534.
  12. Zhang Y., Lu Z.P., Ma S.G., Liaw P.K., Tang Z., Cheng Y.Q. and Gao M.C.: MRS Commun. 4 (2014) 57.
  13. Senkov O.N. and Miracle D.B.: Mater. Res. Bull. 36 (2001) 2183-2198.
  14. Takeuchi A., Amiya K., Wada T., Yubuta K., Zhang W. and Makino A.: Mater. Trans. 55 (2014) 165-170.
  15. Guo S., Ng C., Lu J. and Liu C.T.: J. Appl. Phys. 109 (2011) 103505.
  16. Okamoto N.L., Yuge K., Tanaka K., Inui H. and George E.P.: AIP Adv. 6 (2016) 125008.
  17. U. Mizutani: Hume-Rothery Rules for Structurally Complex Alloy Phases, (CRC Press, Boca Raton, 2011).
  18. Perdew J.P., Burke K. and Ernzerhof M.: Phys. Rev. Lett. 77 (1996) 3865.
  19. Kresse G. and Hafner J.: Phys. Rev. B 47 (1993) 558-561.
  20. Kresse G.: Phys. Rev. B 54 (1996) 11169-11186.
  21. Kresse G. and Furthmüller J.: Comput. Mater. Sci. 6 (1996) 15-50.
  22. Zunger A., Wei S.H., Ferreira L.G. and Bernard J.E.: Phys. Rev. Lett. 65 (1990) 353.
  23. van de Walle A., Asta M. and Ceder G.: Calphad 26 (2002) 539-553.
  24. Methfessel M. and Paxton A.T.: Phys. Rev. B 40 (1989) 3616-3621.
  25. Monkhorst H.J. and Pach J.D.: Phys. Rev. B 13 (1976) 5188-5192.
  26. Wu Z., Bei H., Otto F., Pharr G.M. and George E.P.: Intermetallics 46 (2014) 131-140.
  27. Li Z., Kormann F., Grabowski B., Neugebauer J. and Raabe D.: Acta Mater. 136 (2017) 262-270.
  28. Yao M.J., Pradeep K.G., Tasan C.C. and Raabe D.: Scr. Mater. 72-73 (2014) 5-8.
  29. Tsai M.-H., Tsai K.-Y., Tsai C.-W., Lee C., Juan C.-C. and Yeh J.-W.: Mater. Res. Lett. 1 (2013) 207-212.
  30. R.W. Cahn and P. Hassen: Physical Metallurgy, Vol. 1, 4th edn., (North Holland, Amsterdam, 1996).
  31. Zhang F.X., Zhao S., Jin K., Xue H., Velisa G., Bei H., Huang R., Ko J.Y.P., Pagan D.C., Neuefeind J.C., Weber W.J. and Zhang Y.: Phys. Rev. Lett. 118 (2017) 205501.
  32. Ding J., Yu Q., Asta M. and Ritchie R.O.: Proc. Natl. Acad. Sci. USA 115 (2018) 8919-8924.


[JIM HOME] [JOURNAL ARCHIVES]

© 2020 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp